1
|
Phewchan P, Laoruengthana A, Lamlertthon S, Tiyaboonchai W. Injectable vancomycin-loaded silk fibroin/methylcellulose containing calcium phosphate-based in situ thermosensitive hydrogel for local treatment of osteomyelitis: Fabrication, characterization, and in vitro performance evaluation. J Biomed Mater Res A 2024; 112:2210-2224. [PMID: 38984391 DOI: 10.1002/jbm.a.37772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The conventional treatment of osteomyelitis with antibiotic-loaded nondegradable polymethylmethacrylate (ATB-PMMA) beads has certain limitations, including impeded bone reconstruction and the need for secondary surgery. To overcome this challenge, this study aimed to develop and characterize an injectable vancomycin-loaded silk fibroin/methylcellulose containing calcium phosphate-based in situ thermosensitive hydrogel (VC-SF/MC-CAPs). The VC-SF/MC-CAPs solution can be easily administered at room temperature with a low injectability force of ≤30 N and a high vancomycin (VC) content of ~96%. Additionally, at physiological temperature (37 °C), the solution could transform into a rigid hydrogel within 7 minutes. In vitro drug release performed under both physiological (pH 7.4) and infection conditions (pH 4.5) revealed a prolonged release pattern of VC-SF/MC-CAPs following the Peppas-Sahlin kinetic model. In addition, the released VC from VC-SF/MC-CAPs hydrogels exhibited antibacterial activity against Staphylococcus aureus for a period exceeding 35 days, as characterized by the disk diffusion assay. Furthermore, at pH 7.4, the VC-SF/MC-CAPs demonstrated >60% degradation within 35 days. Importantly, when exposed to physiological pH conditions, CAPs are transformed into bioactive hydroxyapatite, which benefits bone formation. Therefore, VC-SF/MC-CAPs showed significant potential as a local drug delivery system for treating osteomyelitis.
Collapse
Affiliation(s)
- Premchirakorn Phewchan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Artit Laoruengthana
- Department of Orthopedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Supaporn Lamlertthon
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
- The Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bonetti L, Borsacchi S, Soriente A, Boccali A, Calucci L, Raucci MG, Altomare L. Injectable in situ gelling methylcellulose-based hydrogels for bone tissue regeneration. J Mater Chem B 2024; 12:4427-4440. [PMID: 38629219 DOI: 10.1039/d3tb02414h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Injectable bone substitutes (IBSs) represent a compelling choice for bone tissue regeneration, as they can be exploited to optimally fill complex bone defects in a minimally invasive manner. In this context, in situ gelling methylcellulose (MC) hydrogels may be engineered to be free-flowing injectable solutions at room temperature and gels upon exposure to body temperature. Moreover, incorporating a suitable inorganic phase can further enhance the mechanical properties of MC hydrogels and promote mineralization, thus assisting early cell adhesion to the hydrogel and effectively guiding bone tissue regeneration. In this work, thermo-responsive IBSs were designed selecting MC as the organic matrix and calcium phosphate (CaP) or CaP modified with graphene oxide (CaPGO) as the inorganic component. The resulting biocomposites displayed a transition temperature around body temperature, preserved injectability even after loading with the inorganic components, and exhibited adequate retention on an ex vivo calf femoral bone defect model. The addition of CaP and CaPGO promoted the in vitro mineralization process already 14 days after immersion in simulated body fluid. Interestingly, combined X-ray diffraction and solid state nuclear magnetic resonance characterizations revealed that the formed biomimetic phase was constituted by crystalline hydroxyapatite and amorphous calcium phosphate. In vitro biological characterization revealed the beneficial impact of CaP and CaPGO, indicating their potential in promoting cell adhesion, proliferation and osteogenic differentiation. Remarkably, the addition of GO, which is very attractive for its bioactive properties, did not negatively affect the injectability of the hydrogel nor the mineralization process, but had a positive impact on cell growth and osteogenic differentiation on both pre-differentiated and undifferentiated cells. Overall, the proposed formulations represent potential candidates for use as IBSs for application in bone regeneration both under physiological and pathological conditions.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Silvia Borsacchi
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
- Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Alessandra Soriente
- Institute for Polymers, Composites and Biomaterials (IPCB), Italian National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Napoli, Italy
| | - Alberto Boccali
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Lucia Calucci
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
- Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Maria Grazia Raucci
- Institute for Polymers, Composites and Biomaterials (IPCB), Italian National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Napoli, Italy
| | - Lina Altomare
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Wu C, Li J, Zhang YQ, Li X, Wang SY, Li DQ. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. CHEMSUSCHEM 2023; 16:e202300518. [PMID: 37501498 DOI: 10.1002/cssc.202300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The cellulose-based hydrogel has occupied a pivotal position in almost all walks of life. However, the native cellulose can not be directly used for preparing hydrogel due to the complex non-covalent interactions. Some literature has discussed the dissolution and modification of cellulose but has yet to address the influence of the pretreatment on the as-prepared hydrogels. Firstly, the "touching" of cellulose by derived and non-derived solvents was introduced, namely, the dissolution of cellulose. Secondly, the "conversion" of functional groups on the cellulose surface by special routes, which is the modification of cellulose. The above-mentioned two parts were intended to explain the changes in physicochemical properties of cellulose by these routes and their influences on the subsequent hydrogel preparation. Finally, the "reinforcement" of cellulose-based hydrogels by physical and chemical techniques was summarized, viz., improving the mechanical properties of cellulose-based hydrogels and the changes in the multi-level structure of the interior of cellulose-based hydrogels.
Collapse
Affiliation(s)
- Chao Wu
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Yu-Qing Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Shu-Ya Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| |
Collapse
|
5
|
Fu H, Wang L, Bao Q, Ni D, Hu P, Shi J. Acid Neutralization and Immune Regulation by Calcium-Aluminum-Layered Double Hydroxide for Osteoporosis Reversion. J Am Chem Soc 2022; 144:8987-8999. [PMID: 35549335 DOI: 10.1021/jacs.2c00749] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteoporosis is a kind of global chronic bone disease characterized by progressive loss of bone mass and bone quality reduction, leading to a largely increased risk of bone fragility. In clinics, the current treatment of osteoporosis relies on the inhibition of bone damage by osteoclasts but ignores the function of immune cells in the progress of osteoporosis, leading to much compromised therapeutic efficacy. In this work, a highly effective osteoporosis-immunotherapeutic modality is established for the treatment of osteoporosis based on acid neutralization in synergy with immune microenvironment regulation by a specially designed nanocatalytic medicine, calcein functionalized calcium-aluminum-layered double hydroxide (CALC) nanosheets. Briefly, the mildly alkaline CALC nanosheets could neutralize the acidic microenvironment of osteoporosis accompanying the acidity-responsive LDH degradation. Subsequently, calcium phosphate nanoparticles (CAPs) are generated by the reaction between the released Ca2+ from LDH degradation and endogenous phosphates, resulting in M2 phenotype anti-inflammatory differentiation of bone macrophages through a c-Maf transcriptional factor pathway and the following activity enhancements of regulatory T cells (Treg) and the deactivation of T helper 17 cells (TH17). Both in vitro and in vivo results show an excellent therapeutic efficacy on osteoporosis featuring a significant BV/TV (%) enhancement of femurs from 6.2 to 10.7, demonstrating high feasibility of this therapeutic concept through the combined acid neutralization and immune regulation. Such an inorganic nanomaterial-based strategy provides a novel, efficient, and biosafe therapeutic modality for intractable osteoporosis treatment, which will benefit patients suffering from osteoporosis.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Lingtian Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Qunqun Bao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Ping Hu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
6
|
[Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:487-494. [PMID: 35426290 PMCID: PMC9011084 DOI: 10.7507/1002-1892.202111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. METHODS Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. RESULTS As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. CONCLUSION Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.
Collapse
|
7
|
Hydrogels in Burn Wound Management-A Review. Gels 2022; 8:gels8020122. [PMID: 35200503 PMCID: PMC8872485 DOI: 10.3390/gels8020122] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Inert hydrogels are of a great importance in burn first aid. Hydrogel dressings may be an alternative to cooling burn wounds with streaming water, especially in cases of mass casualty events, lack of clean water, hypothermia, or large extent of burns. Hydrogels that contain mostly water evacuate the heat cumulating in the skin by evaporation. They not only cool the burn wound, but also reduce pain and protect the wound area from contamination and further injuries. Hydrogels are ideally used during the first hours after injury, but as they do not have antimicrobial properties per se, they might not prevent wound infection. The hydrogel matrix enables incorporating active substances into the dressing. The active forms may contain ammonium salts, nanocrystal silver, zinc, growth factor, cytokines, or cells, as well as natural agents, such as honey or herbs. Active dressings may have antimicrobial activity or stimulate wound healing. Numerous experiments on animal models proved their safety and efficiency. Hydrogels are a new dressing type that are still in development.
Collapse
|
8
|
Chen J, Cui Y, Ma Y, Zhang S. The gelation behavior of thiolated citrus high-methoxyl pectin induced by sodium phosphate dibasic dodecahydrate. Carbohydr Polym 2022; 277:118849. [PMID: 34893259 DOI: 10.1016/j.carbpol.2021.118849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
The present study found that sodium phosphate dibasic dodecahydrate (Na2HPO4) was capable of inducing the gelation of thiolated citrus high-methoxyl pectin (TCHMP). TCHMP was synthesized by amidation of citrus high-methoxyl pectin. The gel formation exhibited an obvious concentration-dependence, including TCHMP and Na2HPO4 concentration. For Na2HPO4-induced TCHMP gels (TCHMPGs), gel strength and water holding capacity (WHC) increased, while the microcellular network structure was more compact with the increase of TCHMP and Na2HPO4 concentration. Dynamic viscoelastic experiment showed when Na2HPO4 concentration was more than or equal to 0.5 mol/L, TCHMP sols could be transferred into gels within 30 min. Crystal property was not changed while thermal stability was improved after phase transition. Gelling forces analysis indicated that disulfide bonds were the main interaction forces in TCHMPGs. Consequently, TCHMPGs were covalently crosslinked and exhibited satisfactory gel performance. The results provide a theoretical basis for the formation of gels by Na2HPO4 induced TCHMP.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Yanli Cui
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
9
|
Yeo YH, Chathuranga K, Lee JS, Koo J, Park WH. Multifunctional and thermoresponsive methylcellulose composite hydrogels with photothermal effect. Carbohydr Polym 2022; 277:118834. [PMID: 34893251 DOI: 10.1016/j.carbpol.2021.118834] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Multifunctional and thermoresponsive hydrogels can be used as soft materials in various medical applications, such as beauty devices, drug delivery, and near-infrared (NIR) lasers. In this study, methylcellulose (MC) composite hydrogels containing tannic acid (TA) and Fe3+ were prepared via a simple, fast process. The MC composite hydrogel contains hydrogen bonds between the MC polymer and TA and coordination bonds between TA and Fe3+, without losing the reversible thermogelation properties of the MC polymer. The gelation rates and mechanical properties of the MC composite hydrogel were controlled by varying its TA and Fe3+ contents. In particular, the hydrogel with a TA-Fe chelating complex showed an excellent photothermal effect, indicating its potential application in cosmetic beauty devices. It also exhibited UV-blocking, antioxidant, and antibacterial properties owing to the multifunctional TA. The facile processing of these MC/TA/Fe hydrogels provides new opportunities for biomedical applications and beauty devices employing NIR laser therapy.
Collapse
Affiliation(s)
- Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jaseung Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
10
|
Varshosaz J, Sajadi-Javan ZS, Kouhi M, Mirian M. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels. Int J Biol Macromol 2021; 192:869-882. [PMID: 34634330 DOI: 10.1016/j.ijbiomac.2021.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been known as promising materials for the regeneration of irregular shape tissue defects. In this study, novel thermosensitive methylcellulose (MC) hydrogels containing bassorin (Ba) and halloysite nanotubes (HNTs) have been developed for application in bone tissue engineering. Bassorin isolated from gum tragacanth (GT) with the concentration of 0.25-1.5 w/v% was blended with MC. The best MC/Ba gel (containing 0.5% bassorin) was chosen based on the results of injectability and rheological tests. HNTs (1-7%) were added to this formulation and tested for the physicochemical, mechanical, rheological, degradation, swelling, and biological properties. In vitro biological evaluations including cell proliferation (by MTT assay), cell attachment (by SEM), osteogenic activity (by Alizarin Red staining and alkaline phosphatase assay), and osteogenic gene expression (by quantitative real-time polymerase chain reaction) were done using MG-63 cells. Results showed that bassorin led to the increased gel-forming ability (at a lower temperature) and mechanical properties of MC hydrogel. The presence of HNTs and bassorin affected the degradation rate and swelling degree of MC-based hydrogel. Results showed significant enhancement in cell proliferation, differentiation, and mineralization, as well as higher bone-specific gene expression of the cell on bassorin and HNTs incorporated MC compared to pure MC hydrogel.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Sadat Sajadi-Javan
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Hu X, Liu Y, Chen Y, Zhang T, Miao M. Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen. Foods 2021; 10:foods10112653. [PMID: 34828934 PMCID: PMC8621403 DOI: 10.3390/foods10112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The pH-responsive hydrogels were obtained through successive carboxymethylation and phosphorylase elongatation of phytoglycogen and their structure and functional characterizations were investigated. Phytoglycogen (PG) was first carboxymethylated to obtain carboxymethyl phytoglycogen (CM-PG) with degree of substitution (DS) at 0.15, 0.25, 0.30, and 0.40, respectively. Iodine staining and X-ray diffraction analysis suggested that the linear glucan chains were successfully phosphorylase-elongated from the non-reducing ends at the CM-PG surface and assembled into the double helical segments, leading to formation of the hydrogel. The DS of CM-PG significantly influenced elongation of glucan chains. Specifically, fewer glucan chains were elongated for CM-PG with higher DS and the final glucan chains were shorter, resulting in lower gelation rate of chain-elongated CM-PG and lower firmness of the corresponding hydrogels. Scanning electron microscope observed that the hydrogels exhibited a porous and interconnected morphology. The swelling ratio and volume of hydrogels was low at pH 3–5 and then became larger at pH 6–8 due to electrostatic repulsion resulting from deprotonated carboxymethyl groups. Particularly, the hydrogel prepared from chain-elongated CM-PG (DS = 0.25) showed the highest sensitivity to pH. These results suggested that phosphorylase-treated CM-PG formed the pH-responsive hydrogel and that the elongation degree and the properties of hydrogels depended on the carboxymethylation degree. Thus, it was inferred that these hydrogels was a potential carrier system of bioactive substances for their targeted releasing in small intestine.
Collapse
Affiliation(s)
- Xiuting Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Yimei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
- Correspondence:
| |
Collapse
|
12
|
Bonetti L, De Nardo L, Farè S. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:486-513. [DOI: 10.1089/ten.teb.2020.0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| |
Collapse
|
13
|
Deng L, Liu Y, Yang L, Yi JZ, Deng F, Zhang LM. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration. Colloids Surf B Biointerfaces 2020; 194:111159. [DOI: 10.1016/j.colsurfb.2020.111159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
|
14
|
Preparation and controlled properties of temperature/photo dual sensitive polymers by facile Ugi reaction. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Shin JY, Yeo YH, Jeong JE, Park SA, Park WH. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydr Polym 2020; 238:116192. [PMID: 32299570 DOI: 10.1016/j.carbpol.2020.116192] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Thermo-sensitive methylcellulose (MC) hydrogel has been widely used as a scaffold material for biomedical applications. However, due to its poor mechanical properties, the MC-based hydrogel has rarely been employed in 3D bioprinting for tissue engineering scaffolds. In this study, the dual crosslinkable tyramine-modified MC (MC-Tyr) conjugate was prepared via a two-step synthesis, and its hydrogel showed excellent mechanical properties and printability for 3D bioprinting applications. The MC-Tyr conjugate formed a dual-crosslinked hydrogel by modulating the temperature and/or visible light. A combination of reversible physical crosslinking (thermal crosslinking) and irreversible chemical crosslinking (photocrosslinking) was used in this dual crosslinked hydrogel. Also, the photocrosslinking of MC-Tyr solution was facilitated by visible light exposure in the presence of biocompatible photoinitiators (riboflavin, RF and riboflavin 5'-monophophate, RFp). The RF and RFp were used to compare the cytotoxicity and salting-out effect of MC-Tyr hydrogel, as well as the initiation ability, based on the difference in chemical structure. Also, the influence of the printing parameters on the printed MC hydrogel was investigated. Finally, the cell-laden MC-Tyr bioink was successfully extruded into stable 3D hydrogel constructs with high resolution via a dual crosslinking strategy. Furthermore, the MC-Tyr scaffolds showed excellent cell viability and proliferation.
Collapse
Affiliation(s)
- Ji Youn Shin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae Eun Jeong
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
16
|
Kegl T, Košak A, Lobnik A, Novak Z, Kralj AK, Ban I. Adsorption of rare earth metals from wastewater by nanomaterials: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121632. [PMID: 31753662 DOI: 10.1016/j.jhazmat.2019.121632] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 05/27/2023]
Abstract
Rare earth elements are widely used in chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology because of their unique properties. To fulfil ever increasing demands for these elements, recycling of rare-earth-element-containing products as well as their recovery from wastewater is quite important. In order to recover rare earth elements from wastewater, their adsorption from low-concentration aqueous solutions, by using nanomaterials, is investigated due to technological simplicity and high efficiency. This paper is a review of the state-of-the-art adsorption technologies of rare earth elements from diluted aqueous solutions by using various nanomaterials. Furthermore, desorption and reusability of rare earth metals and nanomaterials are discussed. On the basis of this review it can be concluded that laboratory testing indicates promising adsorption capacities, which depend significantly on nanomaterial type and adsorption conditions. The adsorption process, which mostly follows the Langmuir, Freundlich, Sips, and Temkin isotherms, is typically endothermic and spontaneous. Furthermore, pseudo-second order, pseudo-first order, and intra-particle diffusion models are the best models to describe the kinetics of adsorption. The dominant adsorption mechanisms are surface complexation and ion exchange. More investigation, however, will be required in order to synthesize appropriate, environmentally friendly, and efficient nanomaterials for adsorption of rare earth elements from real wastewater.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
| | - Aljoša Košak
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Zoran Novak
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Anita Kovač Kralj
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
17
|
Dong W, Hu R, Wu Q. A New Discovery of Calcium Phosphate Urinary Stones Formation Induced by Melamine: Nanocrystalline Assembly Mechanism. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenya Dong
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai 200092 China
| | - Ruiming Hu
- Huashan HospitalFudan University Shanghai 200040 China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai 200092 China
| |
Collapse
|