1
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
2
|
Wang P, Hong S, Cao C, Guo S, Wang C, Chen X, Wang X, Song P, Li N, Xu R. Ethosomes-mediated tryptanthrin delivery as efficient anti-psoriatic nanotherapy by enhancing topical drug absorption and lipid homeostasis. J Nanobiotechnology 2024; 22:584. [PMID: 39334378 PMCID: PMC11438247 DOI: 10.1186/s12951-024-02860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Psoriasis is a chronic, relapsing, and refractory immune-mediated skin disease with the etiology and pharmaceutical targets remaining unsatisfactorily addressed. Topical herbal-derived compounds, such as tryptanthrin (Tryp), have been considered as an alternative therapy for psoriasis due to their lower costs and fewer side effects compared to other therapies. However, the effectiveness of topically administered drugs is substantially limited by the thickened pathological skin barrier and the low bioavailability of drugs in the deeper layers of the lesion. Ethosomes, being a novel phospholipid-based vesicle system with high content of ethanol, have been implicated in enhancing topical drug absorption and restoring psoriatic lesions. In this study, taking advantages of ethosomes as a soft and malleable drug carrier, we constructed the Tryp-loaded ethosome (Tryp-ES) through a one-step microfluidics-based technique. The optimal formulation of Tryp-ES was achieved by adding amino-acid-derived surfactant sodium lauroyl glutamate, and Tryp-ES exhibited homogeneous particle size and favorable stability at room temperature. In vitro evaluations showed that Tryp of Tryp-ES could be easily internalized into cells and accumulated in cell nuclei, hence inhibited the abnormally proliferated keratinocytes by inducing apoptosis. In vivo and in vitro assessment using psoritic skin of mice revealed that Tryp-ES had preferred skin retention and permeation of loaded drugs within the initial 1 h of topical administration, which could be attributed to transient disintegrations of cell membranes by ethosomes, thus improved cellular fluidity and permeability. Notably, a synergistic effect of ethosomes and Tryp was found in psoriatic mice. Tryp-ES-treated mice showed substantially ameliorated symptoms of psoriasis and reduced pathological alterations due to hyperplasia, inflammation and angiogenesis, without detectable local or systemic toxicities. Interestingly, lipidomics analysis confirmed that the supplementation of phospholipids, as in the form of ethosome vehicles, was an alterantive strategy to relieve psoriatic pathologies. Taken together, this study provides a novel impact for ethosomal topical delivery of Tryp and underlines their potential as an effective therapy for the management of psoriasis.
Collapse
Affiliation(s)
- Pengyu Wang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shihao Hong
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Can Cao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xi Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinnan Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Zhang X, Yang G, Jiang Q, Fan J, Wang S, Chen J. Carboxymethyl cellulose-based photothermal film: A sustainable packaging with high barrier and tensile strength for food long-term antibacterial protection. Int J Biol Macromol 2024; 276:133910. [PMID: 39029837 DOI: 10.1016/j.ijbiomac.2024.133910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Traditional packaging materials feed the growing global food protection. However, these packaging materials are not conducive to environment and have not the ability to kill bacteria. Herein, a green and simple strategy is reported for food packaging protection and long-term antibacterial using carboxymethylcellulose-based photothermal film (CMC@CuS NPs/PVA) that consists of carboxymethyl cellulose (CMC) immobilized copper sulfide nanoparticles (CuS NPs) and polyvinyl alcohol (PVA). With satisfied oxygen transmittance (0.03 cc/m2/day) and water vapor transmittance (163.3 g/m2/day), the tensile strength, tear strength and burst strength reached to 3401.2 N/m, 845.7 mN and 363.6 kPa, respectively, which could lift 4.5 L of water. The composite film had excellent photothermal conversion efficiency and photothermal stability. Under the irradiation of near infrared (NIR), it can rapidly heated up to 197 °C within 25 s. The antibacterial analysis showed that the inhibition rate of composite film against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) could all reach >99 %. Furthermore, the synthesized CuS NPs was well immobilized and the residual rate of copper kept 98.7 % after 10 days. Noticeably, the composite film can preserve freshness of strawberries for up to 6 days. Therefore, the composite film has potential application for food antibacterial protection.
Collapse
Affiliation(s)
- Xv Zhang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Guihua Yang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Qimeng Jiang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Jiaming Fan
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Shaoguang Wang
- Asia Symbol (Shan Dong) Pulp and Paper Co., Ltd., Rizhao 276800, China
| | - Jiachuan Chen
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
4
|
Chen G, Ma F, Li J, Yang P, Wang Y, Li Z, Meng Y. Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. Int J Biol Macromol 2024; 268:131735. [PMID: 38653424 DOI: 10.1016/j.ijbiomac.2024.131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.
Collapse
Affiliation(s)
- Guangxu Chen
- School of Environmental Science and Engineering, China
| | - Feng Ma
- School of Environmental Science and Engineering, China; School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Junying Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yi Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yi Meng
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
5
|
Lu G, Li B, Lin L, Li X, Ban J. Mechanical strength affecting the penetration in microneedles and PLGA nanoparticle-assisted drug delivery: Importance of preparation and formulation. Biomed Pharmacother 2024; 173:116339. [PMID: 38428314 DOI: 10.1016/j.biopha.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Microneedles (MNs) prepared from polymeric materials are painless and minimally invasive, safe and efficient, but they hindered by low mechanical strength and single diverse drug release pattern. Due to the distinctive mechanical strength and dimensions of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), the integration of nano-technology with microneedles can effectively improve penetration and delivery efficiency through the stratum corneum. We herein designed a simple paroxetine (PAX)-loaded PLGA nanoparticles-integrated dissolving microneedles system (PAX-NPs-DMNs), aiming to improve the bioavailability of PAX through the synergistic permeation-enhancing effect of dissolving microneedles (DMNs) and NPs. PAX-NPs-DMNs had a complete tips molding rate (Neff) of (94.06 ± 2.16) %, a 15×15 quadrangular-conical microneedle array and an overall fracture force of 301.10 N, which were improved nearly 0.50 times compared with the blank microneedles (HA-DMNs) and PAX microneedles (PAX-DMNs). PAX-NPs-DMNs could extend the release duration of PAX from 1 h to 24 h and the cumulative permeability per unit area (Qn) was 47.66 times and 7.37 times higher than the PAX and the PAX-DMNs groups. PAX-NPs-DMNs could be rapidly dissolved within 10 min without hindering skin healing or causing adverse reactions. This study confirmed that PAX-NPs-DMNs can effectively improve the bioavailability of PAX and the mechanical strength of DMNs, which can easily penetrate the skin to provide sustained and painless delivery without causing adverse effects, thus offering a more convenient and effective method for central nervous diseases.
Collapse
Affiliation(s)
- Geng Lu
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Baohua Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Luping Lin
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiaofang Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Xia M, Cui Z, Zeng T, Lu L, Sheng L, Cai Z. pH-responsive multi-network composite cellulose-based hydrogels for stable delivery of oral IgY-Fab fragments. Food Chem 2024; 435:137567. [PMID: 37778256 DOI: 10.1016/j.foodchem.2023.137567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Yolk immunoglobulin (IgY) is perfect supplement to mammalian immunoglobulin G in passive immune protection but with poor delivery stability. This work succeeded in pH-responsive oral delivery of IgY-Fab fragments with cellulose based multi-network composite hydrogels. Data displayed that the hydrogel 2 showed superior mechanical properties and load performance (encapsulation efficiency of 99.25% and loading capacity of 45.11 mg/100 mg). The stability of the released Fab was confirmed by HPLC with Fab purity up to 79.65% at the end of digestion. The FTIR spectra revealed the potential interactions between Fab and the hydrogel matrix of the formation of hydrogen bonds or electrostatic interactions between the groups of -OH, -CH2, and -COO-. The excellent rehydration of the hydrogels wouldn't be impacted by low-temperature freeze drying. In sum, this work is of great significance to the development of Fab-themed health-care food, intensive processing of poultry eggs and the economic construction of related industries.
Collapse
Affiliation(s)
- Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhaoyu Cui
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - LiZhi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China.
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
7
|
Wu S, Liu G, Shao P, Lin X, Yu J, Chen H, Li H, Feng S. Transdermal Sustained Release Properties and Anti-Photoaging Efficacy of Liposome-Thermosensitive Hydrogel System. Adv Healthc Mater 2024; 13:e2301933. [PMID: 37607774 DOI: 10.1002/adhm.202301933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Drug delivery systems have become a research priority in the biomedical field. The incorporation of liposomes to hydrogels further forms more robust multifunctional systems for more effective and sustained topical drug delivery. In this study, carboxymethyl-modified chitosan/hyaluronic acid (CMC/HA, CMH) thermosensitive hydrogel is developed for sustained transdermal delivery of liposomes. Hydrogels are crosslinked by hydrogen bonding, hydrophobic interaction and electrostatic interaction. The gel properties can be regulated by substitution degree (DS), and when DS = 18.20 ± 0.67% (CMH2), the gel temperature is 37.8 °C, allowing rapid gelation at body temperature (315 s). Moreover, CMH2 hydrogel has suitable spreadability (17.7-57.2 cm2 ), viscosity (2133.4 mPa s) and porous structure, which facilitated its adhesion and application on the skin and liposomes delivery. The hydrogel can retard the liposomes release, and the release rate of ascorbyl glucoside (AA2G) is 33.92-49.35% in 24 h. Hydrogel avoids the rapid clearance of liposomes from the skin and improved the skin retention, achieving the long-term release of bioactive components. Liposome-hydrogel system more efficiently promotes the anti-photoaging effect of AA2G on skin, reducing epidermal thickness, melanin deposition and lipid oxidative damage and increasing collagen density. Therefore, liposome-hydrogel systems are proposed as multifunctional delivery systems for sustained transdermal delivery.
Collapse
Affiliation(s)
- Sijie Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Gaodan Liu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jiahao Yu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| | - Hanchi Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huiliang Li
- Zhejiang Yige Beauty Group, Hangzhou, 310000, China
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
8
|
Jiang Z, Song Z, Cao C, Yan M, Liu Z, Cheng X, Wang H, Wang Q, Liu H, Chen S. Multiple Natural Polymers in Drug and Gene Delivery Systems. Curr Med Chem 2024; 31:1691-1715. [PMID: 36927424 DOI: 10.2174/0929867330666230316094540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhendong Liu
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Xingbo Cheng
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Hongbo Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Qingnan Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, 450003, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
9
|
Ganesh P, Suresh V, Narasimhan MK, Sabarathinam S. A narrative review on Naringin and Naringenin as a possible bioenhancer in various drug-delivery formulations. Ther Deliv 2023; 14:763-774. [PMID: 38088094 DOI: 10.4155/tde-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Naringenin exhibits lipid-lowering and insulin-like characteristics and is used to treat osteoporosis, cancer and cardiovascular disorders. Their incorporation into drug formulations offers several advantages, including enhanced solubility, improved bioavailability and targeted delivery. Naringin-based formulations are beneficial in cancer, for example controlling breast and prostate cancer by inhibition of CYP19. Naringin suppresses the PI3K/AKT signalling pathway, it triggers autophagy, which effectively halts the proliferation of gastric cancer cells. Naringin and naringenin co-administration or pre-administration has enhanced the target drug's potency and produced a synergistic effect. This published study demonstrates the potential applications of Naringin and Naringenin as recognized bio-enhancers.
Collapse
Affiliation(s)
- Pradeepti Ganesh
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Vanishree Suresh
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian system of Medicine (IIISM), SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| |
Collapse
|
10
|
Li MF, Cui HL, Lou WY. Millettia speciosa Champ cellulose-based hydrogel as a novel delivery system for Lactobacillus paracasei: Its relationship to structure, encapsulation and controlled release. Carbohydr Polym 2023; 316:121034. [PMID: 37321729 DOI: 10.1016/j.carbpol.2023.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
We report for the first time the usage of Millettia speciosa Champ cellulose (MSCC) and carboxymethylcellulose (MSCCMC) for the fabrication of 3D-network hydrogel as delivery system for probiotics. The structural features, swelling behavior and pH-responsiveness of MSCC-MSCCMC hydrogels and their encapsulation and controlled-release behavior for Lactobacillus paracasei BY2 (L. paracasei BY2) were mainly studied. Structural analyses demonstrated that MSCC-MSCCMC hydrogels with porous and network structures were successfully synthesized through the crosslinking of -OH groups between MSCC and MSCCMC molecules. An increasing concentration of MSCCMC significantly improved the pH-responsiveness and swelling ability of the MSCC-MSCCMC hydrogel toward neutral solvent. Besides, the encapsulation efficiency (50.38-88.91 %) and release (42.88-92.86 %) of L. paracasei BY2 were positively correlated with the concentration of MSCCMC. The higher the encapsulation efficiency was, the higher the release in the target intestine. However, due to the existence of bile salts, controlled-release behavior decreased the survivor rate and physiological state (degrading cholesterol) of encapsulating L. paracasei BY2. Even so, the number of viable cells encapsulated by hydrogels still reached the minimum effective concentration in the target intestine. This study provides an available reference for the practical application of hydrogels fabricated from the cellulose of the Millettia speciosa Champ plant for probiotic delivery.
Collapse
Affiliation(s)
- Meng-Fan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hua-Ling Cui
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
11
|
Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Mir Najib Ullah SN, Rahman M. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels 2023; 9:671. [PMID: 37623126 PMCID: PMC10453850 DOI: 10.3390/gels9080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.
Collapse
Affiliation(s)
- Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India;
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| |
Collapse
|
12
|
Han W, Liu F, Li Y, Liu G, Li H, Xu Y, Sun S. Advances in Natural Polymer-Based Transdermal Drug Delivery Systems for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301670. [PMID: 37098629 DOI: 10.1002/smll.202301670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116023, P. R. China
| | - Yuyao Li
- Nursing College of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| |
Collapse
|
13
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
14
|
Laura SO, Anel LRJ, Maricela VI, Estela JLB, de Los Ángeles HPM, Perla CPV, de Oca Roel GM. Structural Analysis of Chemically Cross-linked Carboxymethylcellulose Hydrogels added with Phytosynthesized Zinc Oxide Nanoparticles. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1257-1258. [PMID: 37613657 DOI: 10.1093/micmic/ozad067.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Subervier-Ortiz Laura
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| | - Lara-Rodríguez Jenny Anel
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| | - Villanueva-Ibáñez Maricela
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| | - Jaramillo-Loranca Blanca Estela
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| | | | - Camargo-Pérez Victoria Perla
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| | - González-Montes de Oca Roel
- Laboratory of Nanotechnology, Biological Systems and Industrial Applications, Polytechnic University of Pachuca, Zempoala, Hidalgo, Mexico
| |
Collapse
|
15
|
Başyiğit B, Altun G, Yücetepe M, Karaaslan A, Karaaslan M. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. Int J Biol Macromol 2023; 231:123352. [PMID: 36681221 DOI: 10.1016/j.ijbiomac.2023.123352] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The current study concentrated on designing soy protein (SP)-based natural hydrogels in the presence of locust bean gum (LBG). For this, the gums were recovered from the kernel of the relevant plant and incorporated into SP gel models. Three more hydrogels were fabricated using commercial carbohydrates (gum Arabic (GA), maltodextrin (MD), and pectin (PC)) to decipher exactly the ability of LBG in these models. The chemical and morphological structures of the samples were elaborated by FTIR and SEM analyses. The coexistence of protein and carbohydrates led to an enhancement in functional (water holding capacity (WHC), swelling ratio, protein leachability, volumetric gel index (VGI)) and mechanical (textural and rheological behavior) features of natural gels compared to SP alone (control) but the quality of hydrogels was impressed by the carbohydrate type. Hydrogels designed with LBG came to the fore in terms of these attributes. Additionally, these gel models created awareness for phenolic delivery.
Collapse
Affiliation(s)
- Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Gülbahar Altun
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, 63200 Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey.
| |
Collapse
|
16
|
Su M, Ruan L, Dong X, Tian S, Lang W, Wu M, Chen Y, Lv Q, Lei L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int J Biol Macromol 2023; 227:472-492. [PMID: 36549612 DOI: 10.1016/j.ijbiomac.2022.12.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Because intelligent hydrogels have good biocompatibility, a rapid response, and good degradability as well as a stimulus response mode that is rich, hydrophilic, and similar to the softness and elasticity of living tissue, they have received widespread attention and are widely used in biomedical engineering. In this article, we conduct a systematic review of the use of smart hydrogels in biomedical engineering. First, we introduce the properties and applications of hydrogels and compare the similarities and differences between traditional hydrogels and smart hydrogels. Secondly, we summarize the intelligent hydrogel types, the mechanisms of action used by different hydrogels, and the materials for preparing different types of hydrogels, such as the materials for the preparation of temperature-responsive hydrogels, which mainly include gelatin, carrageenan, agarose, amylose, etc.; summarize the morphologies of different hydrogels, such as films, fibers and microspheres; and summarize the application of smart hydrogels in biomedical engineering, such as for the delivery of proteins, antibiotics, deoxyribonucleic acid, etc. Finally, we summarize the shortcomings of current research and present future prospects for smart hydrogels. The purpose of this paper is to provide researchers engaged in related fields with a systematic review of the application of intelligent hydrogels in biomedical engineering. We hope that they will get some inspiration from this work to provide new directions for the development of related fields.
Collapse
Affiliation(s)
- Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiaoyu Dong
- Institute of Medicine Nursing, Hubei University of Medicine, Shiyan 442000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Lanjie Lei
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| |
Collapse
|
17
|
Shah SA, Sohail M, Karperien M, Johnbosco C, Mahmood A, Kousar M. Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair. Int J Biol Macromol 2023; 227:1203-1220. [PMID: 36473525 DOI: 10.1016/j.ijbiomac.2022.11.307] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Biopolymer-based thermoresponsive injectable hydrogels with multifunctional tunable characteristics containing anti-oxidative, biocompatibility, anti-infection, tissue regeneration, and/or anti-bacterial are of abundant interest to proficiently stimulate diabetic wound regeneration and are considered as a potential candidate for diversified biomedical application but the development of such hydrogels remains a challenge. In this study, the Chitosan-CMC-g-PF127 injectable hydrogels are developed using solvent casting. The Curcumin (Cur) Chitosan-CMC-g-PF127 injectable hydrogels possess viscoelastic behavior, good swelling properties, and a controlled release profile. The degree of substitution (% DS), thermal stability, morphological behavior, and crystalline characteristics of the developed injectable hydrogels is confirmed using nuclear magnetic resonance (1H NMR), thermogravimetric analysis, scanning electron microscopy (SEM), and x-ray diffraction analysis (XRD), respectively. The controlled release of cur-micelles from the hydrogel is evaluated by drug release studies and pharmacokinetic profile (PK) using high-performance liquid chromatography (HPLC). Furthermore, compared to cur micelles the Cur-laden injectable hydrogel shows a significant increase in half-life (t1/2) up to 5.92 ± 0.7 h, mean residence time (MRT) was 15.75 ± 0.76 h, and area under the first moment curve (AUMC) is 3195.62 ± 547.99 μg/mL*(h)2 which reveals the controlled release behavior. Cytocompatibility analysis of Chitosan-CMC-g-PF127 hydrogels using 3T3-L1 fibroblasts cells and in vivo toxicity by subcutaneous injection followed by histological examination confirmed good biocompatibility of Cur-micelles loaded hydrogels. The histological results revealed the promising tissue regenerative ability and shows enhancement of fibroblasts, keratinocytes, and collagen deposition, which stimulates the epidermal junction. Interestingly, the Chitosan-CMC-g-PF127 injectable hydrogels ladened Cur exhibited a swift wound repair potential by up-surging the cell migration and proliferation at the site of injury and providing a sustained drug delivery platform for hydrophobic moieties.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Pakistan; Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus.
| | - Marcel Karperien
- Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Castro Johnbosco
- Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
18
|
Hu Y, Shin Y, Park S, Jeong JP, Kim Y, Jung S. Multifunctional Oxidized Succinoglycan/Poly(N-isopropylacrylamide-co-acrylamide) Hydrogels for Drug Delivery. Polymers (Basel) 2022; 15:polym15010122. [PMID: 36616471 PMCID: PMC9824477 DOI: 10.3390/polym15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
We prepared the self-healing and temperature/pH-responsive hydrogels using oxidized succinoglycan (OSG) and a poly (N-isopropyl acrylamide-co-acrylamide) [P(NIPAM-AM)] copolymer. OSG was synthesized by periodate oxidation of succinoglycan (SG) isolated directly from soil microorganisms, Sinorhizobium meliloti Rm1021. The OSG/P(NIPAM-AM) hydrogels were obtained by introducing OSG into P(NIPAM-AM) networks. The chemical structure and physical properties of these hydrogels were characterized by ATR-FTIR, XRD, TGA, and FE-SEM. The OSG/P(NIPAM-AM) hydrogels showed improved elasticity, increased thermal stability, new self-healing ability, and 4-fold enhanced tensile strength compared with the P(NIPAM-AM) hydrogels. Furthermore, the 5-FU-loaded OSG/P(NIPAM-AM) hydrogels exhibited effective temperature/pH-responsive drug release. Cytotoxicity experiments showed that the OSG/P(NIPAM-AM) hydrogels were non-toxic, suggesting that OSG/P(NIPAM-AM) hydrogels could have the potential for biomedical applications, such as stimuli-responsive drug delivery systems, wound healing, smart scaffolds, and tissue engineering.
Collapse
Affiliation(s)
- Yiluo Hu
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Yohan Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk Univesity, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-3520
| |
Collapse
|
19
|
Sabaghi M, Tavasoli S, Taheri A, Jamali SN, Faridi Esfanjani A. Controlling release patterns of the bioactive compound by structural and environmental conditions: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Improved piezoelectricity of porous cellulose material via flexible polarization-initiate bridge for self-powered sensor. Carbohydr Polym 2022; 298:120099. [DOI: 10.1016/j.carbpol.2022.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
21
|
Quintão WSC, Silva-Carvalho AE, Hilgert LA, Gratieri T, Cunha-Filho M, Saldanha-Araújo F, Gelfuso GM. Anti-inflammatory effect evaluation of naringenin and its incorporation into a chitosan-based film for transdermal delivery. Int J Pharm 2022; 627:122231. [PMID: 36167188 DOI: 10.1016/j.ijpharm.2022.122231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Naringenin is a bioflavonoid mainly found in citrus fruits. It presents many pharmacological benefits, including a remarkable anti-inflammatory activity, but its oral bioavailability is poor. To overcome this drawback, this work proposes a transdermal administration of such bioflavonoid, considering its use in the chronic treatment of inflammatory conditions. For this, it aims to develop a chitosan-based film that guarantees a consistent transdermal delivery of the drug. First, naringenin's in vitro anti-inflammatory effect on T-cell proliferation was evaluated, followed by research on the modulation of gene expression for inflammatory factors in peripheral blood mononuclear cells. Chitosan films were then prepared and characterized. Afterward, naringenin release profile from a selected film was determined as well as the drug permeation across porcine skin provided by the film. Naringenin induced the expression of the anti-inflammatory factors IL-10 and TGF-β1 while inhibiting the expression of the pro-inflammatory cytokine IL-1β and limiting T-cell proliferation. The chitosan film was successfully developed, and the drug was progressively released to the physiological media following both first order and Korsmeyer-Peppas kinetics. When topically applied, the chitosan film guaranteed a constant and continuous diffusion of naringenin across the skin over 72 h. Indeed, the permeation flux of naringenin was 0.30 ± 0.01 µg/cm2/h, which means a concentration in the receptor solution 14-fold (p < 0.05) higher than that provided by the drug solution. Thus, the chitosan film represents a promising transdermal alternative for the long-term treatment of inflammatory conditions using naringenin.
Collapse
Affiliation(s)
- Wanessa S C Quintão
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Amandda E Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Leandro A Hilgert
- Department of Dentistry, School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil.
| |
Collapse
|
22
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
23
|
Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022; 307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
Recent advances in emerging nanocarriers and stimuli-responsive (SR) delivery systems have brought about a revolution in the food and pharmaceutical industries. SR carriers are able to release the encapsulated bioactive compounds (bioactives) upon an external trigger. The potential of releasing the loaded bioactives in site-specific is of great importance for the pharmaceutical industry and medicine that can deliver the cargo in an appropriate condition. For the food industry, release of encapsulated bioactives is considerably important in processing or storage of food products and can be used in their formulation or packaging. There are various stimuli to control the favorite release of bioactives. In this review, we will shed light on the effect of different stimuli such as temperature, humidity, pH, light, enzymatic hydrolysis, redox, and also multiple stimuli on the release of encapsulated cargo and their potential applications in the food and pharmaceutical industries. An overview of cargo release mechanisms is also discussed. Furthermore, various alternatives to manipulate the controlled release of bioactives from carriers and the perspective of more progress in these SR carriers are highlighted.
Collapse
Affiliation(s)
- Atefe Rezaei
- Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Fatemeh Rafieian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
24
|
Bonetti L, Fiorati A, D’Agostino A, Pelacani CM, Chiesa R, Farè S, De Nardo L. Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles. Gels 2022; 8:298. [PMID: 35621596 PMCID: PMC9140787 DOI: 10.3390/gels8050298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Infection is a severe complication in chronic wounds, often leading to morbidity or mortality. Current treatments rely on dressings, which frequently contain silver as a broad-spectrum antibacterial agent, although improper dosing can result in severe side effects. This work proposes a novel methylcellulose (MC)-based hydrogel designed for the topical release of silver nanoparticles (AgNPs) via an intelligent mechanism activated by the pH variations in infected wounds. A preliminary optimization of the physicochemical and rheological properties of MC hydrogels allowed defining the optimal processing conditions in terms of crosslinker (citric acid) concentration, crosslinking time, and temperature. MC/AgNPs nanocomposite hydrogels were obtained via an in situ synthesis process, exploiting MC both as a capping and reducing agent. AgNPs with a 12.2 ± 2.8 nm diameter were obtained. MC hydrogels showed a dependence of the swelling and degradation behavior on both pH and temperature and a noteworthy pH-triggered release of AgNPs (release ~10 times higher at pH 12 than pH 4). 1H-NMR analysis revealed the role of alkaline hydrolysis of the ester bonds (i.e., crosslinks) in governing the pH-responsive behavior. Overall, MC/AgNPs hydrogels represent an innovative platform for the pH-triggered release of AgNPs in an alkaline milieu.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Agnese D’Agostino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Carlo Maria Pelacani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| |
Collapse
|
25
|
Development of Gelatin Thin Film Reinforced by Modified Gellan Gum and Naringenin-Loaded Zein Nanoparticle as a Wound Dressing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Janarthanan G, Kim JH, Kim IG, Lee C, Chung EJ, Noh I. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Biofabrication 2022; 14. [PMID: 35504259 DOI: 10.1088/1758-5090/ac6c4c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
3D bioprinting of self-supporting stable tissue and organ structure is critically important in extrusion-based bioprinting system, especially for tissue engineering and regenerative medicine applications. However, the development of self-standing bioinks with desired crosslinking density, biocompatibility, tunable mechanical strength and other properties like self-healing, in situ gelation, drug or protein incorporation is still a challenge. In this study, we report a hydrogel bioink prepared from alginate (Alg) and hyaluronic acid (HA) crosslinked through multiple crosslinking mechanisms, i.e., acyl-hydrazone, hydrazide interactions and calcium ions. These Alg-HA gels were highly dynamic and shear-thinning with exceptional biocompatibility and tunable mechanical properties. The increased dynamic nature of the gels is mainly chemically attributed to the presence of acyl-hydrazone bonds formed between the amine groups of the acyl-hydrazide of alginate and the monoaldehyde of the hyaluronic acid. Among the different combinations of Alg-HA gel compositions prepared, the A5H5 (Alginate-acyl-hydrazide: HA-monoaldehyde, ratio 50:50) one showed a gelation time of ~60 s, viscosity of ~400 Pa.s (at zero shear rate), high stability in various pH solutions and increased degradation time (>50 days) than the other samples. The A5H5 gels showed high printability with increased post-printing stability as observed from the 3D printed structures (e.g., hollow tube (~100 layers), porous cube (~50 layers), star, heart-in, meniscus and lattice). The scanning electron microscopy analysis of the 3D constructs and hydrogels showed the interconnected pores (~181 µm) and crosslinked networks. Further, the gels showed sustained release of 5-amino salicylic acid and bovine serum albumin. Also, the mechanical properties were tuned by secondary crosslinking via different calcium concentrations. In vitro assays confirmed the cytocompatibility of these gels, where the 3D bioprinted lattice and tubular (~70 layers) constructs demonstrated high cell viability under fluorescence analysis. In in vivo studies, Alg-HA gel showed high biocompatibility (>90%) and increased angiogenesis (3 folds) and reduced macrophage infiltration (2-fold decrease), demonstrating the promising potential of these hydrogels in 3D bioprinting applications for tissue engineering and regenerative medicine with tunable properties.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Dept of chemical and biomolecular engineering, Seoul National University of Science and Technology, Seoul National University of Science and Technology (Seoul Tech), 223-1, 6-Chungun Hall, Gongneung-ro 232, Nowon-Gu, Seoul 01811, Nowon-gu, 01811, Korea (the Republic of)
| | - Jung Hyun Kim
- Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Chung Hall 223-1, Nowon-gu, Seoul, 01811, Korea (the Republic of)
| | - In-Gul Kim
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Chibum Lee
- Mechanical System Design Engineering, Seoul National University of Science and Technology, Frontier Bldg, RM904, 232 Gongreung-Ro, Nowon-Gu, Seoul, 01811, Korea (the Republic of)
| | - Eun-Jae Chung
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Jongno-gu, 03080, Korea (the Republic of)
| | - Insup Noh
- Department of Chemical Engineering, Seoul National University of Science and Technology, 172 Gongnung-dong,, Nowon-gu, Seoul, 139-743, Korea, Nowon-gu, 01811, Korea (the Republic of)
| |
Collapse
|
27
|
Development of a Sericin Hydrogel to Deliver Anthocyanins from Purple Waxy Corn Cob (Zea mays L.) Extract and In Vitro Evaluation of Anti-Inflammatory Effects. Pharmaceutics 2022; 14:pharmaceutics14030577. [PMID: 35335953 PMCID: PMC8951468 DOI: 10.3390/pharmaceutics14030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sericin-alginate hydrogel formulations with purple waxy corn (Zea mays L.) cob extract (PWCC) for topical anti-inflammatory application are developed and evaluated. The physical properties such as viscosity, pH, and anthocyanin release are examined and in vitro anti-inflammatory activities, such as NO inhibition and IL-6, IL-1β, TNF-α, iNOS, and COX-2 expression, are evaluated in LPS-stimulated RAW 264.7 murine macrophages. The sericin-alginate hydrogel is prepared by physical crosslinking through the ionic interaction of the polymers combined with anthocyanin from PWCC at pH 6.5. The hydrogel formulation with 2.00% w/v sericin, 0.20% w/v alginate, and 0.15% w/v PWCC (SN6) shows a suitable viscosity for topical treatment, the highest nitric oxide inhibition (79.43%), no cytotoxicity, and reduced expression of IL-6, IL-1β, and TNF-α mediators. Moreover, the SN6 formulation displays a sustained anthocyanin release over 8–12 h, which correlates with the Korsmeyer–Peppas model. The FT-IR spectrum of SN6 confirmed interaction of the sericin polymer with anthocyanins from PWCC via H-bonding by the shifted peak of amide I and amide III. In addition, the anthocyanin is stable in sericin hydrogels under heating-cooling storage conditions. Therefore, we suggest that this hydrogel formulation has potential as an anti-inflammatory agent. The formulation will be further investigated for in vivo studies and clinical trials in the future.
Collapse
|
28
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
29
|
Zong S, Wen H, Lv H, Li T, Tang R, Liu L, Jiang J, Wang S, Duan J. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr Polym 2022; 278:118943. [PMID: 34973761 DOI: 10.1016/j.carbpol.2021.118943] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023]
Abstract
The purpose of this study is to develop a hydrogel with temperature and redox response to control drug delivery. However, the strength of temperature sensitive N-isopropylacrylamide (NIPAM) hydrogel is weak. Therefore, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofiber (CNF) is introduced to improve this problem. The compressive strength of hydrogels increased by 360% after CNF addition. Meanwhile, N,N'-bis(acryloyl)cystamine (BACy) is introduced into the hydrogels as a cross-linker, imparting redox responsive properties to the hydrogels. Tumor therapeutic drugs are used as model drugs for in vitro release studies. The drug release rate of hydrogel is regulated by temperature and reducing environment. The maximum cumulative release rate of doxorubicin (DOX) is 39.56%, and the Berberine (BBR) is 99.50% after 60 h. The swelling and transparency of hydrogels showed dramatic changes in the range of 30-40 °C. Cytotoxicity experiments demonstrated that the hydrogel had almost no cytotoxicity.
Collapse
Affiliation(s)
- Shiyu Zong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hankang Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hui Lv
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Tong Li
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ruilin Tang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
30
|
Wiwatsamphan P, Chirachanchai S. Persistently Reversible pH-/Thermo-responsive Chitosan/Poly (N-isopropyl acrylamide) Hydrogel through Clickable Crosslinked Interpenetrating Network. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Parhi R, Sahoo SK, Das A. Applications of polysaccharides in topical and transdermal drug delivery: A recent update of literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Anik Das
- GITAM Deemed to be University, India
| |
Collapse
|
32
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Palomino K, Magaña H, Bucio E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021; 7:182. [PMID: 34842654 PMCID: PMC8628675 DOI: 10.3390/gels7040182] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. These biomaterials can be sorted out according to the internal structure and by their response to external factors. In this case, the internal interaction can be reversible when the internal chains are led by physicochemical interactions. These physical hydrogels can be synthesized through several techniques such as crystallization, amphiphilic copolymers, charge interactions, hydrogen bonds, stereo-complexing, and protein interactions. In contrast, the internal interaction can be irreversible through covalent cross-linking. Synthesized hydrogels by chemical interactions present a high cross-linking density and are employed using graft copolymerization, reactive functional groups, and enzymatic methods. Moreover, specific smart hydrogels have also been denoted by their external response, pH, temperature, electric, light, and enzyme. This review deeply details the type of hydrogel, either the internal structure or the external response. Furthermore, we detail some of the main applications of these hydrogels in the biomedicine field, such as drug delivery systems, scaffolds for tissue engineering, actuators, biosensors, and many other applications.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
33
|
Shishir MRI, Gowd V, Suo H, Wang M, Wang Q, Chen F, Cheng KW. Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Compr Rev Food Sci Food Saf 2021; 20:5449-5488. [PMID: 34668321 DOI: 10.1111/1541-4337.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Safitri EA, Mahendra IP, Putra AE, Ghifari MA, Yanti DD, Yusnaidar Y, Ariwahjoedi B, Mendez JA. Multicolor PEGDA/LCNF Hydrogel in the Presence of Red Cabbage Anthocyanin Extract. Gels 2021; 7:gels7040160. [PMID: 34698158 PMCID: PMC8544528 DOI: 10.3390/gels7040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Colorimetric indicator gels were developed by incorporating anthocyanin (AC) obtained from red cabbage into poly (ethylene glycol) diacrylate (PEGDA)-based hydrogel containing lignocellulose nanofiber (LCNF). The PEGDA-based hydrogel was prepared by mixing all of the mentioned components at the specific composition, and the hydrogels were cured under UV light (245 nm) for 1 min. The pH-response, UV absorption, swelling ratio, and mechanical properties of PEGDA/LCNF were determined. It was further found that PEGDA and LCNF mount play an important role in adjusting the mechanical properties of PEGDA/LCNF. In general, the presence of LCNF improved the mechanical properties and swelling ratio of PEGDA. The incorporation of red cabbage anthocyanin into the PEGDA/LCNF film showed multicolor response when specific pH buffers were introduced. Based on the multicolor response of PEGDA/LCNF/CA, this gel film indicator can be developed as a food freshness indicator that focuses on the detection of ammonia and amine compound.
Collapse
Affiliation(s)
- Erlin Arda Safitri
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - I Putu Mahendra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
- Pusat Riset dan Inovasi Sanitasi dan Kesehatan Lingkungan, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
- Correspondence:
| | - Anggi Eka Putra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - M Alvien Ghifari
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - Demi Dama Yanti
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - Yusnaidar Yusnaidar
- Program Studi Pendidikan Kimia, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Jambi, Jambi 36361, Indonesia;
| | - Bambang Ariwahjoedi
- Program Studi Teknik Material, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia;
| | - Jose Alberto Mendez
- Enginyeria Quimica, Universitat de Girona, 17003 Girona, Spain;
- Laboratori d’Enginyeria Paperera i Materials Polimers, Universitat de Girona, 17003 Girona, Spain
| |
Collapse
|
35
|
Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021; 13:3015. [PMID: 34503054 PMCID: PMC8433665 DOI: 10.3390/polym13173015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Natural and synthetic polymers have been explored for many years in the field of tissue engineering and regeneration. Researchers have developed many new strategies to design successful advanced polymeric biomaterials. In this review, we summarized the recent notable advancements in the preparation of smart polymeric biomaterials with self-healing and shape memory properties. We also discussed novel approaches used to develop different forms of polymeric biomaterials such as films, hydrogels and 3D printable biomaterials. In each part, the applications of the biomaterials in soft and hard tissue engineering with their in vitro and in vivo effects are underlined. The future direction of the polymeric biomaterials that could pave a path towards successful clinical implications is also underlined in this review.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| |
Collapse
|
36
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
37
|
Al-Rajabi MM, Teow YH. Green Synthesis of Thermo-Responsive Hydrogel from Oil Palm Empty Fruit Bunches Cellulose for Sustained Drug Delivery. Polymers (Basel) 2021; 13:2153. [PMID: 34210003 PMCID: PMC8271751 DOI: 10.3390/polym13132153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Drug delivery is a difficult task in the field of dermal therapeutics, particularly in the treatment of burns, wounds, and skin diseases. Conventional drug delivery mediums have some limitations, including poor retention on skin/wound, inconvenience in administration, and uncontrolled drug release profile. Hydrogels able to absorb large amount of water and give a spontaneous response to stimuli imposed on them are an attractive solution to overcome the limitations of conventional drug delivery media. The objective of this study is to explore a green synthesis method for the development of thermo-responsive cellulose hydrogel using cellulose extracted from oil palm empty fruit bunches (OPEFB). A cold method was employed to prepare thermo-responsive cellulose hydrogels by incorporating OPEFB-extracted cellulose and Pluronic F127 (PF127) polymer. The performance of the synthesized thermo-responsive cellulose hydrogels were evaluated in terms of their swelling ratio, percentage of degradation, and in-vitro silver sulfadiazine (SSD) drug release. H8 thermo-responsive cellulose hydrogel with 20 w/v% PF127 and 3 w/v% OPEFB extracted cellulose content was the best formulation, given its high storage modulus and complex viscosity (81 kPa and 9.6 kPa.s, respectively), high swelling ratio (4.22 ± 0.70), and low degradation rate (31.3 ± 5.9%), in addition to high t50% value of 24 h in SSD in-vitro drug release to accomplish sustained drug release. The exploration of thermo-responsive cellulose hydrogel from OPEFB would promote cost-effective and sustainable drug delivery system with using abundantly available agricultural biomass.
Collapse
Affiliation(s)
- Maha Mohammad Al-Rajabi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
38
|
Zhao Y, Fu T, Meng G, Qiao F, Hou Y, Liu Y, Yang J. Characterization of Cepharanthin Nanosuspensions and Evaluation of Their In Vitro Activity for the HepG2 Hepatocellular Carcinoma Cell Line. Anticancer Agents Med Chem 2021; 20:2293-2303. [PMID: 32748761 DOI: 10.2174/1871520620999200730170844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional cancer therapeutics has enormous toxicity and severe side effects that generate multi-drug resistance. Therefore, an urgent need exists for new alternative therapeutic agents for cancer treatment. Cepharanthin (CEP) has anti-cancer potential but has poor aqueous solubility, which limits its clinical use. Nanosuspensions (NS) are attractive as insoluble drug delivery systems. OBJECTIVES In this study, we used D-alpha Tocopherol acid Polyethylene Glycol Succinate (TPGS), Polyvinylpyrrolidone (PVP) VA64, and Croscamellose Sodium (CCS) as stabilizers to produce TPGS-CEP-NS, PVP VA64-CEP-NS, and CCS-CEP-NS by wet-milling technology, and then characterized the NS and evaluated their functional activities in vitro. METHODS CEP Nanosuspensions (CEP-NS) were prepared by the wet-milling method. The prepared NS were characterized by particle size distribution, zeta potential, morphology, surface properties, and molecular interactions. The NS were evaluated for their effects on HepG2 cells in vitro. The evaluations included assessment of cellular cytotoxicity, cellular apoptosis, NS uptake by cells, and mitochondrial membrane potential changes. RESULTS CEP-NS showed an appropriate particle size and were physically stable. All CEP-NS exhibited HepG2 enhanced anti-proliferative effects by reducing cell viability, enhanced cellular uptake, induced cellular apoptosis, and mitochondrial membrane potential loss. CONCLUSIONS CEP-NS may be effective therapeutic agents for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Tingting Fu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Gaoke Meng
- Department of Gastroenterology, the General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan, 750004, China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| |
Collapse
|
39
|
Barbosa AI, Torres T, Lima SAC, Reis S. Hydrogels: A Promising Vehicle for the Topical Management of Atopic Dermatitis. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Isabel Barbosa
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| | - Tiago Torres
- Serviço de Dermatologia do Centro Hospitalar e Universitário do Porto Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto Rua D. Manuel II, s/n Porto 4099‐001 Portugal
| | - Sofia A. Costa Lima
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| | - Salette Reis
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| |
Collapse
|
40
|
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers (Basel) 2021; 13:1285. [PMID: 33920816 PMCID: PMC8071137 DOI: 10.3390/polym13081285] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Collapse
Affiliation(s)
| | | | | | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (I.C.); (C.G.)
| |
Collapse
|
41
|
Effects of a complex mixture prepared from agrimonia, houttuynia, licorice, peony, and phellodendron on human skin cells. Sci Rep 2020; 10:22132. [PMID: 33335246 PMCID: PMC7746697 DOI: 10.1038/s41598-020-79301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Active ingredients derived from natural sources are widely utilized in many industries. Cosmetic active ingredients are largely derived from various plants. In this study, we examined whether a mixture of plant extracts obtained from agrimonia, houttuynia, licorice, peony, and phellodendron (hereafter AHLPP), which are well-known for their effects on skin, could affect skin barrier function, inflammation, and aging in human skin cells. We also determined whether AHLPP extracts sterilized using γ-irradiation (to avoid preservatives) retained their skin cell regulating activity. The AHLPP mixture could downregulate representative pro-inflammatory cytokines including IL 1-β and IL 7. Procollagen peptide synthesis was also increased by AHLPP treatment along with mRNA upregulation of barrier proteins such as filaggrin and desmoplakin. The AHLPP mixture showed an anti-aging effect by significantly upregulating telomerase activity in human keratinocytes. We further observed TERT upregulation and CDKN1B downregulation, implying a weakening of pro-aging signal transduction. Co-cultivation of a hydrogel polymer containing the AHLPP mixture with human skin cells showed an alteration in skin-significant genes such as FLG, which encodes filaggrin. Thus, the AHLPP mixture with or without γ-irradiation can be utilized for skin protection as it alters the expression of some significant genes in human skin cells.
Collapse
|
42
|
Hu X, Yan L, Wang Y, Xu M. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int J Biol Macromol 2020; 161:1431-1439. [DOI: 10.1016/j.ijbiomac.2020.07.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022]
|
43
|
Su C, Liu J, Yang Z, Jiang L, Liu X, Shao W. UV-mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. Int J Biol Macromol 2020; 161:1140-1148. [DOI: 10.1016/j.ijbiomac.2020.06.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
|
44
|
Janarthanan G, Shin HS, Kim IG, Ji P, Chung EJ, Lee C, Noh I. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 2020; 12:045026. [PMID: 32629438 DOI: 10.1088/1758-5090/aba2f7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the primary challenges in extrusion-based 3D bioprinting is the ability to print self-supported multilayered constructs with biocompatible hydrogels. The bioinks should have sufficient post-printing mechanical stability for soft tissue and organ regeneration. Here, we report on the synthesis, characterization and 3D printability of hyaluronic acid (HA)-carboxymethylcellulose (CMC) hydrogels cross-linked through N-acyl-hydrazone bonding. The hydrogel's hydrolytic stability was acquired by the effects of both the prevention of the oxidation of the six-membered rings of HA, and the stabilization of acyl-hydrazone bonds. The shear-thinning and self-healing properties of the hydrogel allowed us to print different 3D constructs (lattice, cubic and tube) of up to 50 layers with superior precision and high post-printing stability without support materials or post-processing depending on their compositions (H7:C3, H5:C5 and H3:C7). Morphological analyses of different zones of the 3D-printed constructs were undertaken for verification of the interconnection of pores. Texture profile analysis (TPA) (hardness (strength), elastic recovery, etc) and cyclic compression studies of the 3D-printed constructs demonstrated exceptional elastic properties and fast recovery after 50% strain, respectively, which have been attributed to the addition of CMC into HA. A model drug quercetin was released in a sustained manner from hydrogels and 3D constructs. In vitro cytotoxicity studies confirmed the excellent cyto-compatibility of these gels. In vivo mice studies prove that these biocompatible hydrogels enhance angiogenesis. The results indicate that controlling the key properties (e.g. self-crosslinking capacity, composition) can lead to the generation of multilayered constructs from 3D-bioprintable HA-CMC hydrogels capable of being leveraged for soft tissue engineering applications.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Amir F, Li X, Gruschka MC, Colley ND, Li L, Li R, Linder HR, Sell SA, Barnes JC. Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network. Chem Sci 2020; 11:10910-10920. [PMID: 34094340 PMCID: PMC8162415 DOI: 10.1039/d0sc04287k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators - crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) - were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young's modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.
Collapse
Affiliation(s)
- Faheem Amir
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Xuesong Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Max C Gruschka
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Nathan D Colley
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Lei Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Ruihan Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Houston R Linder
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| |
Collapse
|
46
|
Sampath U. Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Nai-Shang L. pH-responsive poly(lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Micale N, Citarella A, Molonia MS, Speciale A, Cimino F, Saija A, Cristani M. Hydrogels for the Delivery of Plant-Derived (Poly)Phenols. Molecules 2020; 25:E3254. [PMID: 32708833 PMCID: PMC7397257 DOI: 10.3390/molecules25143254] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
This review deals with hydrogels as soft and biocompatible vehicles for the delivery of plant-derived (poly)phenols, compounds with low general toxicity and an extraordinary and partially unexplored wide range of biological properties, whose use presents some major issues due to their poor bioavailability and water solubility. Hydrogels are composed of polymeric networks which are able to absorb large amounts of water or biological fluids while retaining their three-dimensional structure. Apart from this primary swelling capacity, hydrogels may be easily tailored in their properties according to the chemical structure of the polymeric component in order to obtain smart delivery systems that can be responsive to various internal/external stimuli. The functionalization of the polymeric component of hydrogels may also be widely exploited to facilitate the incorporation of bioactive compounds with different physicochemical properties into the system. Several prototype hydrogel systems have been designed for effective polyphenol delivery and potential employment in the treatment of human diseases. Therefore, the inherent features of hydrogels have been the focus of considerable research efforts over the past few decades. Herein, we review the most recent advances in (poly)phenol-loaded hydrogels by analyzing them primarily from the therapeutic perspective and highlighting the innovative aspects in terms of design and chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (A.C.); (M.S.M.); (A.S.); (F.C.); (M.C.)
| | | |
Collapse
|
48
|
Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 2020; 163:824-832. [PMID: 32653370 DOI: 10.1016/j.ijbiomac.2020.07.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Abstract
In this study, multifunctional hydrogels containing host-guest complex formation between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and β-cyclodextrin (CD) dimers connected by disulfide bonds with agarose for structural support were prepared. The obtained hydrogels exhibited self-healing properties by host-guest complexation as well as gel-sol phase transition in response to ultraviolet (UV) light and reducing agents. Photo-switchable properties of the hydrogels depend on changes in the complex formation of CD-dimers through the trans(450 nm) to cis(365 nm) photo-isomerization of azobenzene. The tensile and strain sweep tests confirmed that the hydrogel's self-healing ability was 79.44% and 81.59%, respectively. In addition, drug release from the hydrogels was controlled to accelerate to 80% in 3 h using UV light or reducing agent. Since the suggested photo-switchable, reduction-responsive, and self-healable hydrogels are non-cytotoxic, they can be potentially applied as biomedical materials in the development of hydrogel-based drug release systems.
Collapse
|
49
|
Su Y, Li X, Lam KL, Cheung PCK. pH-sensitive PEG-coated hyper-branched β-d-glucan derivative as carrier for CpG oligodeoxynucleotide delivery. Carbohydr Polym 2020; 246:116621. [PMID: 32747260 DOI: 10.1016/j.carbpol.2020.116621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
β-d-glucan is a natural non-digestible polysaccharide that can be selectively recognized by recognition receptors such as Dectin-1 receptors, resulting in an emerging interest on exploring its capacity for carrying biological information to desired organs or cells. CpG oligodeoxynucleotide (ODN) has the potentiality to initiate an immune-stimulatory cascade via activating B cells inducing proinflammatory cytokines, which is conducive to immunotherapy and nucleic acid vaccine. Herein, we developed a pH-sensitive delivery system loading with CpG ODN by introducing poly-ethylenimine (PEI) to a hyperbranched β-d-glucan (HBB) and coating with poly-ethylene glycol (PEG) shell via acidic liable Schiff bond. This delivery system exhibited a favorable biocompatibility and facilitated the cellular uptake of CpG ODN at pH 6.8 with the possibility of having higher accumulation in acidic cancer microenvironment. Furthermore, this carrier together with class B CpG ODN could enhance the secretion of cytokines including interleukin-6 and interferon-α as well as capable of interferon-α induction.
Collapse
Affiliation(s)
- Yuting Su
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Ka Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
50
|
Chitosan/carboxymethylcellulose-stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers. Carbohydr Polym 2020; 242:116417. [PMID: 32564826 DOI: 10.1016/j.carbpol.2020.116417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) colloidal particles stabilized by complexes of two oppositely charged polysaccharides, chitosan (cationic, CS) and sodium carboxymethylcellulose (anionic, NaCMC), were fabricated. Dichloromethane containing dissolved PLGA was first emulsified in an aqueous phase containing mixtures of CS and NaCMC. Evaporation of dichloromethane from the resulting emulsion led to CS/NaCMC-covered-PLGA particles. CS and NaCMC contents affected the short-term stability of PLGA particles and also their intrinsic characteristics. The particles displayed pH-dependent characteristic. Zeta potential varied from +54 to -50 mV when pH was varied from 3 to 10. CS/NaCMC-covered-PLGA particles showed colloidal stability, over a wider pH range as compared to CS-covered-PLGA particles. Curcumin, a model hydrophobic drug, was encapsulated into the particles up to 10 wt% of PLGA. The CS/NaCMC-covered-PLGA particles loaded with curcumin showed delayed release in mildly acidic conditions and faster release in neutral and basic conditions. Cytotoxicity experiments were carried out with human colorectal carcinoma cells.
Collapse
|