1
|
Wang Y, Zhang H, Li Y, Yu H, Sun D, Yang Y, Zhang R, Yu L, Ma F, Aftab MN, Peng L, Wang Y. Effective xylan integration for remodeling biochar uniformity and porosity to enhance chemical elimination and CO 2 adsorption. Int J Biol Macromol 2024; 291:138865. [PMID: 39694357 DOI: 10.1016/j.ijbiomac.2024.138865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Although plant evolution has offered diverse biomass resources, the production of high-quality biochar from desirable lignocelluloses remains unexplored. In this study, distinct lignocellulose substrates derived from eight representative plant species were employed to prepare biochar samples under three different temperature treatments. Correlation analysis showed that only hemicellulose was a consistently positive factor of lignocellulose substrates to account for the dye-adsorption capacities of diverse biochar samples. Furthermore, we integrated exo-xylan, a major hemicellulose in higher plants, into lignin-disassociated lignocelluloses to produce the desirable biochar with a uniform and symmetrical structure, resulting in a 5.2-fold increase in surface area (51 to 317 m2/g) and a 5.0-fold increase in total pore volume (0.02 to 0.11 cm3/g micropore, 0.02 to 0.12 cm3/g mesopore). This consequently improved the adsorption capacities of the remodeled biochar, with an increase of 26 % for dual-industry dyes, 90 % for 1579 organic compounds, and 14 % for CO2. Based on the fluorescence observation of xylan-cellulose co-localization and physical-chemical characterization of the remodeled biochar, a novel hypothetical model was proposed to explain how xylan plays an integral role in desired biochar production, providing insights into effective lignocellulose reconstruction and efficient thermochemical catalysis as an integrative strategy to maximize biochar adsorption capacity.
Collapse
Affiliation(s)
- Yongtai Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dan Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Ran Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College University, Lahore 54000, Pakistan
| | - Liangcai Peng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Liu P, Wang Y, Kang H, Wang Y, Yu H, Peng H, He B, Xu C, Jia KZ, Liu S, Xia T, Peng L. Upgraded cellulose and xylan digestions for synergistic enhancements of biomass enzymatic saccharification and bioethanol conversion using engineered Trichoderma reesei strains overproducing mushroom LeGH7 enzyme. Int J Biol Macromol 2024; 278:134524. [PMID: 39111488 DOI: 10.1016/j.ijbiomac.2024.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Crop straws provide enormous lignocellulose resources transformable for sustainable biofuels and valuable bioproducts. However, lignocellulose recalcitrance basically restricts essential biomass enzymatic saccharification at large scale. In this study, the mushroom-derived cellobiohydrolase (LeGH7) was introduced into Trichoderma reesei (Rut-C30) to generate two desirable strains, namely GH7-5 and GH7-6. Compared to the Rut-C30 strain, both engineered strains exhibited significantly enhanced enzymatic activities, with β-glucosidases, endocellulases, cellobiohydrolases, and xylanase activities increasing by 113 %, 140 %, 241 %, and 196 %, respectively. By performing steam explosion and mild alkali pretreatments with mature straws of five bioenergy crops, diverse lignocellulose substrates were effectively digested by the crude enzymes secreted from the engineered strains, leading to the high-yield hexoses released for bioethanol production. Notably, the LeGH7 enzyme purified from engineered strain enabled to act as multiple cellulases and xylanase at higher activities, interpreting how synergistic enhancement of enzymatic saccharification was achieved for distinct lignocellulose substrates in major bioenergy crops. Therefore, this study has identified a novel enzyme that is active for simultaneous hydrolyses of cellulose and xylan, providing an applicable strategy for high biomass enzymatic saccharification and bioethanol conversion in bioenergy crops.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yihong Wang
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Hao Peng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boyang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengbao Xu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Xia
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Li T, Peng H, He B, Hu C, Zhang H, Li Y, Yang Y, Wang Y, Bakr MMA, Zhou M, Peng L, Kang H. Cellulose de-polymerization is selective for bioethanol refinery and multi-functional biochar assembly using brittle stalk of corn mutant. Int J Biol Macromol 2024; 264:130448. [PMID: 38428756 DOI: 10.1016/j.ijbiomac.2024.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.
Collapse
Affiliation(s)
- Tianqi Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Boyang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud M A Bakr
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Zhao H, Wang S, Yang R, Yang D, Zhao Y, Kuang J, Chen L, Zhang R, Hu H. Side chain of confined xylan affects cellulose integrity leading to bending stem with reduced mechanical strength in ornamental plants. Carbohydr Polym 2024; 329:121787. [PMID: 38286554 DOI: 10.1016/j.carbpol.2024.121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
The stem support for fresh-cut flowers exerts a profound influence on the display of their blossoms. During vase insertion, bending stems significantly affect the ornamental value, but much remains unclear about the underlying reasons. In this study, six pairs of ornamental plants were screened for the contrast of bending and straight stems. The bending stems have weakened mechanical force and biomass recalcitrance compared with the straight ones. Meanwhile, cells in the bending stems became more loosely packed, along with a decrease in cell wall thickness and cellulose levels. Furthermore, wall properties characterizations show bending stems have decreased lignocellulosic CrI and cellulose DP, and enhanced the branching ratio of hemicellulose which is trapped in the cellulose. Given the distinct cell wall factors in different species, all data are grouped in standardized to eliminate the variations among plant species. The principal composition analysis and correlation analysis of the processed dataset strongly suggest that cellulose association factors determine the stem mechanical force and recalcitrance. Based on our results, we propose a model for how branches of confined hemicellulose interacted with cellulose to modulate stem strength support for the straight or bending phenotype in cut flowers.
Collapse
Affiliation(s)
- Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Runjie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianhua Kuang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming 650091, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
5
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Palliprath S, Poolakkalody NJ, Ramesh K, Mangalan SM, Kabekkodu SP, Santiago R, Manisseri C. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116571. [DOI: 10.1016/j.indcrop.2023.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
7
|
Zhang Y, Yi Teah H, Xu F, Zhou T, Guo Z, Jiang L. Selective saccharification of crude glycerol pretreated sugarcane bagasse via fast pyrolysis: reaction kinetics and life cycle assessment. BIORESOURCE TECHNOLOGY 2023; 382:129166. [PMID: 37210033 DOI: 10.1016/j.biortech.2023.129166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Saccharification is a pivotal step in the conversion of lignocellulose to biofuels and chemicals. In this study, crude glycerol derived from biodiesel production was used in pretreatment to facilitate efficient and clean pyrolytic saccharification of sugarcane bagasse. Delignification, demineralization, destruction of lignin-carbohydrate complex structure, and cellulose crystallinity improvement in crude glycerol pretreated biomass could enhance levoglucosan producing reactions against competitive reactions, and therefore facilitate a kinetically controlled pyrolysis with apparent activation energy increased by 2-fold. Accordingly, selective levoglucosan production (44.4%) was promoted by 6-fold whilst light oxygenates and lignin monomers were limited to <25% in bio-oil. Owing to the high-efficiency saccharification, life cycle assessment suggested that the environmental impacts of the integrated process were less than those of typical acid pretreatment and petroleum-based processes, especially on the acidification (8-fold less) and global warming potential. This study provides an environmentally benign approach to efficient biorefinery and waste management.
Collapse
Affiliation(s)
- Yingchuan Zhang
- Guangdong Engineering Laboratory of Biomass High-value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Heng Yi Teah
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Tokyo 169-8555, Japan
| | - Feixiang Xu
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tao Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengxiao Guo
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Liqun Jiang
- Guangdong Engineering Laboratory of Biomass High-value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| |
Collapse
|
8
|
Casanova F, Freixo R, Pereira CF, Ribeiro AB, Costa EM, Pintado ME, Ramos ÓL. Comparative Study of Green and Traditional Routes for Cellulose Extraction from a Sugarcane By-Product. Polymers (Basel) 2023; 15:1251. [PMID: 36904494 PMCID: PMC10007196 DOI: 10.3390/polym15051251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Sugarcane bagasse (SCB) is the main residue of the sugarcane industry and a promising renewable and sustainable lignocellulosic material. The cellulose component of SCB, present at 40-50%, can be used to produce value-added products for various applications. Herein, we present a comprehensive and comparative study of green and traditional approaches for cellulose extraction from the by-product SCB. Green methods of extraction (deep eutectic solvents, organosolv, and hydrothermal processing) were compared to traditional methods (acid and alkaline hydrolyses). The impact of the treatments was evaluated by considering the extract yield, chemical profile, and structural properties. In addition, an evaluation of the sustainability aspects of the most promising cellulose extraction methods was performed. Among the proposed methods, autohydrolysis was the most promising approach in cellulose extraction, yielding 63.5% of a solid fraction with ca. 70% cellulose. The solid fraction showed a crystallinity index of 60.4% and typical cellulose functional groups. This approach was demonstrated to be environmentally friendly, as indicated by the green metrics assessed (E(nvironmental)-factor = 0.30 and Process Mass Intensity (PMI) = 20.5). Autohydrolysis was shown to be the most cost-effective and sustainable approach for the extraction of a cellulose-rich extract from SCB, which is extremely relevant for aiming the valorization of the most abundant by-product of the sugarcane industry.
Collapse
Affiliation(s)
| | | | - Carla F. Pereira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | | | | | | |
Collapse
|
9
|
Zhu Z, Huang R, Yao S, Liu Y, Zhang Q, Zhou X, Jiang K. An integrated process for co-producing fermentable sugars and xylonate from sugarcane bagasse based on xylonic acid assisted pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128464. [PMID: 36509308 DOI: 10.1016/j.biortech.2022.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, a renewable organic acid (xylonic acid), which can be prepared by the biooxidation of xylose, is used for pretreating sugarcane bagasse. The effects of reaction temperature and time on the release of fermentable xylose and glucose were investigated. On the basis of guaranteeing the good enzymatic hydrolysis efficiency and minimizing the effects of inhibitors, the pretreatment with 1 % xylnoic acid at 190 °C for 30 min was selected after optimization. In this case, 70 % xylose was released, while enzymatic hydrolysis yield was also up to 86.5 %. Meanwhile, the pretreated hydrolysate liquor was proved that it could be used for producing xylonate by biooxidation of Gluconobacter oxydans. Finally, the sequential process of the xylonic acid pretreatment and saccharification also clear the path for recycling the lignin as value-added bioproducts. Overall, this study presents a green-like strategy for fully exploiting sugarcane bagasse.
Collapse
Affiliation(s)
- Zhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiruo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qibo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
10
|
Pretreatment of Wheat Straw Lignocelluloses by Deep Eutectic Solvent for Lignin Extraction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227955. [PMID: 36432056 PMCID: PMC9697946 DOI: 10.3390/molecules27227955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In order to increase the fractionation efficiency of the wheat straw, a deep eutectic solvent (DES) system consisting of chlorine/lactic acid was used in this study for wheat straw pretreatment. The outcomes exhibited that DES pretreatment significantly enhanced the capability to extract lignin, retain cellulose, and remove hemicellulose. The best condition for the pretreatment of wheat straw was 150 °C for 6 h. The process retained most cellulose in the pretreated biomass (49.94-73.60%), and the enzymatic digestibility of the pretreatment residue reached 89.98%. Further characterization of lignin showed that the high yield (81.54%) and the high purity (91.33%) resulted from the ether bond cleavage in lignin and the connection between hemicellulose and lignin. As for application, the enzymatic hydrolysis of the best condition reached 89.98%, and the lignin also had suitable stability. The investigation exhibited that DES pretreatment has the potential to realize an efficient fractionation of lignocellulosic biomass into high-applicability cellulose and lignin of high-quality.
Collapse
|
11
|
Effects of Biochar and Nitrogen Application on Rice Biomass Saccharification, Bioethanol Yield and Cell Wall Polymers Features. Int J Mol Sci 2022; 23:ijms232113635. [DOI: 10.3390/ijms232113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rice is a major food crop that produces abundant biomass wastes for biofuels. To improve rice biomass and yield, nitrogen (N) fertilizer is excessively used, which is not eco-friendly. Alternatively, biochar (B) application is favored to improve rice biomass and yield under low chemical fertilizers. To minimize the reliance on N fertilizer, we applied four B levels (0, 10, 20, and 30 t B ha−1) combined with two N rates (low-135 and high-180 kg ha−1) to improve biomass yield. Results showed that compared to control, the combined B at 20–30 t ha−1 with low N application significantly improved plant dry matter and arabinose (Ara%), while decreasing cellulose crystallinity (Crl), degree of polymerization (DP), and the ratio of xylose/arabinose (Xyl/Ara), resulting in high hexoses (% cellulose) and bioethanol yield (% dry matter). We concluded that B coupled with N can alter cell wall polymer features in paddy rice resulting in high biomass saccharification and bioethanol production.
Collapse
|
12
|
Energy Crops and Methane: Process Optimization of Ca(OH) 2 Assisted Thermal Pretreatment and Modeling of Methane Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206891. [PMID: 36296483 PMCID: PMC9607449 DOI: 10.3390/molecules27206891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
Switchgrass earned its place globally as a significant energy crop by possessing essential properties such as being able to control erosion, low cost of production, biomass richness, and appeal for biofuel production. In this study, the impact of a Ca(OH)2-assisted thermal pretreatment process on the switchgrass variety Shawnee for methane fuel production was investigated. The Ca(OH)2-assisted thermal pretreatment process was optimized to enhance the methane production potential of switchgrass. Solid loading (3-7%), Ca(OH)2 concentration (0-2%), reaction temperature (50-100 °C), and reaction time (6-16 h) were selected as independent variables for the optimization. Methane production was obtained as 248.7 mL CH4 gVS-1 under the optimized pretreatment conditions. Specifically, a reaction temperature of 100 °C, a reaction time of 6 h, 0% Ca(OH)2, and 3% solid loading. Compared to raw switchgrass, methane production was enhanced by 14.5%. Additionally, the changes in surface properties and bond structure, along with the kinetic parameters from first order, cone, reaction curve, and modified Gompertz modeling revealed the importance of optimization.
Collapse
|
13
|
Decreasing the degree of polymerization of microcrystalline cellulose by mechanical impact and acid hydrolysis. Carbohydr Polym 2022; 294:119764. [DOI: 10.1016/j.carbpol.2022.119764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
|
14
|
Wu L, Zhang M, Zhang R, Yu H, Wang H, Li J, Wang Y, Hu Z, Wang Y, Luo Z, Li L, Wang L, Peng L, Xia T. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:245. [PMID: 34961560 PMCID: PMC8713402 DOI: 10.1186/s13068-021-02093-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND As a major component of plant cell walls, cellulose provides the most abundant biomass resource convertible for biofuels. Since cellulose crystallinity and polymerization have been characterized as two major features accounting for lignocellulose recalcitrance against biomass enzymatic saccharification, genetic engineering of cellulose biosynthesis is increasingly considered as a promising solution in bioenergy crops. Although several transcription factors have been identified to regulate cellulose biosynthesis and plant cell wall formation, much remains unknown about its potential roles for genetic improvement of lignocellulose recalcitrance. RESULTS In this study, we identified a novel rice mutant (Osfc9/myb103) encoded a R2R3-MYB transcription factor, and meanwhile generated OsMYB103L-RNAi-silenced transgenic lines. We determined significantly reduced cellulose levels with other major wall polymers (hemicellulose, lignin) slightly altered in mature rice straws of the myb103 mutant and RNAi line, compared to their wild type (NPB). Notably, the rice mutant and RNAi line were of significantly reduced cellulose features (crystalline index/CrI, degree of polymerization/DP) and distinct cellulose nanofibers assembly. These alterations consequently improved lignocellulose recalcitrance for significantly enhanced biomass enzymatic saccharification by 10-28% at p < 0.01 levels (n = 3) after liquid hot water and chemical (1% H2SO4, 1% NaOH) pretreatments with mature rice straws. In addition, integrated RNA sequencing with DNA affinity purification sequencing (DAP-seq) analyses revealed that the OsMYB103L might specifically mediate cellulose biosynthesis and deposition by regulating OsCesAs and other genes associated with microfibril assembly. CONCLUSIONS This study has demonstrated that down-regulation of OsMYB103L could specifically improve cellulose features and cellulose nanofibers assembly to significantly enhance biomass enzymatic saccharification under green-like and mild chemical pretreatments in rice. It has not only indicated a powerful strategy for genetic modification of plant cell walls in bioenergy crops, but also provided insights into transcriptional regulation of cellulose biosynthesis in plants.
Collapse
Affiliation(s)
- Leiming Wu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingliang Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Haizhong Yu
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Hailang Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Jingyang Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China
| | - Youmei Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Zhen Hu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Tao Xia
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Madadi M, Zhao K, Wang Y, Wang Y, Tang SW, Xia T, Jin N, Xu Z, Li G, Qi Z, Peng L, Xiong Z. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohydr Polym 2021; 265:118070. [PMID: 33966834 DOI: 10.1016/j.carbpol.2021.118070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
Potato is a major food crop with enormous biomass straw, but lignocellulose recalcitrance causes a costly bioethanol conversion. Here, we selected the cytochimera (Cyt) potato samples showing significantly-modified lignocellulose and much increased soluble sugars and starch by 2-4 folds in mature straws. Under two pretreatments (8 min liquid hot water; 5% CaO) at minimized conditions, the potato Cyt straw showed complete enzymatic saccharification. Further performing yeast fermentation with all hexoses released from soluble sugars, starch and lignocellulose in the Cyt straw, this study achieved a maximum bioethanol yield of 24 % (% dry matter), being higher than those of other bioenergy crops as previously reported. Hence, this study has proposed a novel mechanism model on the reduction of major lignocellulose recalcitrance and regulation of carbon assimilation to achieve cost-effective bioethanol production under optimal pretreatments. This work also provides a sustainable strategy for utilization of potato straws with minimum waste release.
Collapse
Affiliation(s)
- Meysam Madadi
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Kanglu Zhao
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Youmei Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yanting Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Tao Xia
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Nengzhou Jin
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Zhijun Xu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Guanhua Li
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Zhi Qi
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Zhiyong Xiong
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| |
Collapse
|
16
|
Li J, Liu F, Yu H, Li Y, Zhou S, Ai Y, Zhou X, Wang Y, Wang L, Peng L, Wang Y. Diverse Banana Pseudostems and Rachis Are Distinctive for Edible Carbohydrates and Lignocellulose Saccharification towards High Bioethanol Production under Chemical and Liquid Hot Water Pretreatments. Molecules 2021; 26:molecules26133870. [PMID: 34202856 PMCID: PMC8270323 DOI: 10.3390/molecules26133870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Banana is a major fruit crop throughout the world with abundant lignocellulose in the pseudostem and rachis residues for biofuel production. In this study, we collected a total of 11 pseudostems and rachis samples that were originally derived from different genetic types and ecological locations of banana crops and then examined largely varied edible carbohydrates (soluble sugars, starch) and lignocellulose compositions. By performing chemical (H2SO4, NaOH) and liquid hot water (LHW) pretreatments, we also found a remarkable variation in biomass enzymatic saccharification and bioethanol production among all banana samples examined. Consequently, this study identified a desirable banana (Refen1, subgroup Pisang Awak) crop containing large amounts of edible carbohydrates and completely digestible lignocellulose, which could be combined to achieve the highest bioethanol yields of 31–38% (% dry matter), compared with previously reported ones in other bioenergy crops. Chemical analysis further indicated that the cellulose CrI and lignin G-monomer should be two major recalcitrant factors affecting biomass enzymatic saccharification in banana pseudostems and rachis. Therefore, this study not only examined rich edible carbohydrates for food in the banana pseudostems but also detected digestible lignocellulose for bioethanol production in rachis tissue, providing a strategy applicable for genetic breeding and biomass processing in banana crops.
Collapse
Affiliation(s)
- Jingyang Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Fei Liu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Hua Yu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yuqi Li
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Shiguang Zhou
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yuanhang Ai
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Xinyu Zhou
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Youmei Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Lingqiang Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530000, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
- Correspondence:
| |
Collapse
|
17
|
Xie J, Chen J, Cheng Z, Zhu S, Xu J. Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction. Carbohydr Polym 2021; 269:118321. [PMID: 34294333 DOI: 10.1016/j.carbpol.2021.118321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the process intensification strategies for the pretreatment of Radiata Pine with the green deep eutectic solvent (DES) system composed of benzyltrimethylammonium chloride/formic acid (BTMAC/FA). The results showed that DES pretreatment drastically improved the delignification and hemicelluloses-removal capacity. The conducted process acceptably remained most of the cellulose in pretreated biomass (88.3%-91.8%). Benefiting from the overcoming of recalcitrance, the enzymatic digestibility of pretreated residues reached 92.4%. The efficient conversion was mainly ascribed to the lignin and hemicelluloses co-extraction. Meanwhile, the lignin yield and enzymatic saccharification was still largely maintained after five reuses. Further structural characteristics of lignin nanoparticles revealed that the lignin possessed high purity (95.19-97.51%), medium molecular weight (9600 to 6495 g/mol), and low polydispersity (ca 2.0), which was attributed to cleavage of ether bonds in lignin as well as linkages between lignin and hemicelluloses. Overall, this study illustrated that DES pretreatment was promising to achieve an efficient fractionation of woody biomass into fermentable glucose and high-quality lignin.
Collapse
Affiliation(s)
- Junxian Xie
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, South China University of Technology, Guangzhou, CN 510640, China
| | - Junjun Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, South China University of Technology, Guangzhou, CN 510640, China
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, South China University of Technology, Guangzhou, CN 510640, China.; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, South China University of Technology, Guangzhou, CN 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, South China University of Technology, Guangzhou, CN 510640, China..
| |
Collapse
|
18
|
Vaid S, Sharma S, Bajaj BK. Chemo-enzymatic approaches for consolidated bioconversion of Saccharum spontaneum biomass to ethanol-biofuel. BIORESOURCE TECHNOLOGY 2021; 329:124898. [PMID: 33691204 DOI: 10.1016/j.biortech.2021.124898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
A novel strategy involving sodium dodecylsulfate (SDS) (SDS assisted tris (2-hydroxyethyl) methyl- ammonium methyl sulphate ([TMA][MeSO4], ionic liquid) pretreatment of Saccharum spontaneum biomass (SSB) following its enzymatic saccharification, and conversion into ethanol-biofuel in a consolidated bioprocess (CBP) was developed. Ionic liquid stable enzyme preparation developed from Bacillus subtilis G2 was used for saccharification. Optimized pretreatment and saccharification variables enhanced the sugar yield (2.35-fold), which was fermented to ethanol content of 104.42 mg/g biomass with an efficiency of 35.73%. The pretreated biomass was examined for textural/ultrastructural alterations by scanning electron microscopy (SEM), 1H/13C nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), surface area measurements, water retention value, and cellulase adsorption isotherms. The combined [TMA][MeSO4] and SDS pretreatment disrupted the lignocellulosic microfibrils, and increased the porosity and surface area. The study provides new mechanistic insights on combined IL and surfactant pretreatment of biomass for its efficient conversion to biofuel.
Collapse
Affiliation(s)
- Surbhi Vaid
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Surbhi Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
19
|
Madadi M, Wang Y, Xu C, Liu P, Wang Y, Xia T, Tu Y, Lin X, Song B, Yang X, Zhu W, Duanmu D, Tang SW, Peng L. Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124727. [PMID: 33310336 DOI: 10.1016/j.jhazmat.2020.124727] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Improving biomass enzymatic saccharification is effective for crop straw utilization, whereas phytoremediation is efficient for trace metal elimination from polluted agricultural soil. Here, we found that the green proteins extracted from Amaranthus leaf tissue could act as active biosurfactant to remarkably enhance lignocellulose enzymatic saccharification for high bioethanol production examined in eight grassy and woody plants after mild chemical and green-like pretreatments were performed. Notably, this study estimated that total green proteins supply collected from one-hectare-land Amaranth plants could even lead to additional 6400-12,400 tons of bioethanol, being over 10-fold bioethanol yield higher than those of soybean seed proteins and chemical surfactant. Meanwhile, the Amaranth green proteins were characterized as a dominated biosorbent for multiple trace metals (Cd, Pb, As) adsorption, being 2.9-6 folds higher than those of its lignocellulose. The Amaranth plants were also assessed to accumulate much more trace metals than all other plants as previously examined from large-scale contaminated soils. Furthermore, the Amaranth green proteins not only effectively block lignin to release active cellulases for the mostly enhanced biomass hydrolyzes, but also efficiently involve in multiple chemical bindings with Cd, which should thus address critical issues of high-costly biomass waste utilization and low-efficient trace metal remediation.
Collapse
Affiliation(s)
- Meysam Madadi
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Youmei Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengbao Xu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Peng Liu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Yanting Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Tao Xia
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Xinchun Lin
- State Key Lab Subtrop Silviculture, College of Forestry & Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Bo Song
- College of Environmental Science & Engineering, Guilin University of Technology, Guangxi, China
| | - Xiaoe Yang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wanbin Zhu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Deqiang Duanmu
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| |
Collapse
|
20
|
Enhanced Hydrolysis of Cellulose to Reducing Sugars on Kaolinte Clay Activated by Mineral Acid. Catal Letters 2021. [DOI: 10.1007/s10562-020-03497-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Fu H, Mo W, Shen X, Li B. Impact of centrifugation treatment on enzymatic hydrolysis of cellulose and xylan in poplar fibers with high lignin content. BIORESOURCE TECHNOLOGY 2020; 316:123866. [PMID: 32745999 DOI: 10.1016/j.biortech.2020.123866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Centrifugation is very common in the production and treatment of lignocellulose for applications like pretreatment for enzymatic hydrolysis, but it is not certain whether it affects applications of lignocellulose and almost no one realizes this problem. This study investigated the effects of centrifugation on the characteristics and enzymatic hydrolysis of poplar fibers with high lignin content. The results showed that centrifugation inhibited the enzymatic hydrolysis of fiber, but fiber characteristics and enzymatic digestibility fluctuated with increasing centrifugation time. Centrifugation for about 15 min had the least effect on fiber properties while centrifugation for 30 min had the least effect on enzymatic hydrolysis. The water retention value was closely related to the enzymatic digestibility, but the pore characteristics and crystallinity index could not reflect the enzymatic accessibility of the fiber. This article will provide useful references for the enzymatic hydrolysis of lignocellulose and other high-value applications to improve production efficiency furtherly.
Collapse
Affiliation(s)
- Hongkang Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Wenxuan Mo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoning Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Bo Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
22
|
Wu Y, Wang M, Yu L, Tang SW, Xia T, Kang H, Xu C, Gao H, Madadi M, Alam A, Cheng L, Peng L. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135096. [PMID: 31806312 DOI: 10.1016/j.scitotenv.2019.135096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is one of the most hazardous trace metals, and rapeseed is a major oil crop over the world with considerable lignocellulose residues applicable for trace metal phytoremediation and cellulosic ethanol co-production. In this study, we examined that two distinct rapeseed cultivars could accumulate Cd at 72.48 and 43.70 ug/g dry stalk, being the highest Cd accumulation among all major agricultural food crops as previously reported. The Cd accumulation significantly increased pectin deposition as a major factor for trace metal association with lignocellulose. Meanwhile, the Cd-accumulated rapeseed stalks contained much reduced wall polymers (hemicellulose, lignin) and cellulose degree of polymerization, leading to improved lignocellulose enzymatic hydrolysis. Notably, three optimal chemical pretreatments were performed for enhanced biomass enzymatic saccharification and bioethanol production by significantly increasing cellulose accessibility and lignocellulose porosity, along with a complete Cd release for collection and recycling. Hence, this study proposed a mechanism model interpreting why rapeseed stalks are able to accumulate much Cd and how the Cd-accumulated stalks are of enhanced biomass saccharification. It has also provided a powerful technology for both cost-effective Cd phytoremediation and value-added bioethanol co-production with minimum waste release.
Collapse
Affiliation(s)
- Yue Wu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Meiling Wang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops and Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Tao Xia
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Chengbao Xu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Meysam Madadi
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Alam
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Cheng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
23
|
Fan C, Yu H, Qin S, Li Y, Alam A, Xu C, Fan D, Zhang Q, Wang Y, Zhu W, Peng L, Luo K. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:9. [PMID: 31988661 PMCID: PMC6969456 DOI: 10.1186/s13068-020-1652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND As a leading biomass feedstock, poplar plants provide enormous lignocellulose resource convertible for biofuels and bio-chemicals. However, lignocellulose recalcitrance particularly in wood plants, basically causes a costly bioethanol production unacceptable for commercial marketing with potential secondary pollution to the environment. Therefore, it becomes important to reduce lignocellulose recalcitrance by genetic modification of plant cell walls, and meanwhile to establish advanced biomass process technology in woody plants. Brassinosteroids, plant-specific steroid hormones, are considered to participate in plant growth and development for biomass production, but little has been reported about brassinosteroids roles in plant cell wall assembly and modification. In this study, we generated transgenic poplar plant that overexpressed DEETIOLATED2 gene for brassinosteroids overproduction. We then detected cell wall feature alteration and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments. RESULTS Compared with wild type, the PtoDET2 overexpressed transgenic plants contained much higher brassinosteroids levels. The transgenic poplar also exhibited significantly enhanced plant growth rate and biomass yield by increasing xylem development and cell wall polymer deposition. Meanwhile, the transgenic plants showed significantly improved lignocellulose features such as reduced cellulose crystalline index and degree of polymerization values and decreased hemicellulose xylose/arabinose ratio for raised biomass porosity and accessibility, which led to integrated enhancement on biomass enzymatic saccharification and bioethanol yield under various chemical pretreatments. In contrast, the CRISPR/Cas9-generated mutation of PtoDET2 showed significantly lower brassinosteroids level for reduced biomass saccharification and bioethanol yield, compared to the wild type. Notably, the optimal green-like pretreatment could even achieve the highest bioethanol yield by effective lignin extraction in the transgenic plant. Hence, this study proposed a mechanistic model elucidating how brassinosteroid regulates cell wall modification for reduced lignocellulose recalcitrance and increased biomass porosity and accessibility for high bioethanol production. CONCLUSIONS This study has demonstrated a powerful strategy to enhance cellulosic bioethanol production by regulating brassinosteroid biosynthesis for reducing lignocellulose recalcitrance in the transgenic poplar plants. It has also provided a green-like process for biomass pretreatment and enzymatic saccharification in poplar and beyond.
Collapse
Affiliation(s)
- Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Hua Yu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shifei Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Yongli Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Aftab Alam
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changzhen Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Qingwei Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanbin Zhu
- College of Biomass Sciences and Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- College of Biomass Sciences and Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
24
|
Fan C, Wang G, Wu L, Liu P, Huang J, Jin X, Zhang G, He Y, Peng L, Luo K, Feng S. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr Polym 2019; 232:115448. [PMID: 31952577 DOI: 10.1016/j.carbpol.2019.115448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023]
Abstract
Genetic modification of plant cell walls is an effective approach to reduce lignocellulose recalcitrance in biofuel production, but it may affect plant stress response. Hence, it remains a challenge to reduce biomass recalcitrance and simultaneously enhance stress resistance. In this study, the OsSUS3-transgenic plants exhibited increased cell wall polysaccharides deposition and reduced cellulose crystallinity and xylose/arabinose proportion of hemicellulose, resulting in largely enhanced biomass saccharification and bioethanol production. Additionally, strengthening of the cell wall also contributed to plant biotic resistance. Notably, the transgenic plants increased stress-induced callose accumulation, and promoted the activation of innate immunity, leading to greatly improved multiple resistances to the most destructive diseases and a major pest. Hence, this study demonstrates a significant improvement both in bioethanol production and biotic stress resistance by regulating dynamic carbon partitioning for cellulose and callose biosynthesis in OsSUS3-transgenic plants. Meanwhile, it also provides a potential strategy for plant cell wall modification.
Collapse
Affiliation(s)
- Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangya Wang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peng Liu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiangfeng Huang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xiaohuan Jin
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guifeng Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yueping He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Electron Beam Irradiation Isolates Cellulose Nanofiber from Korea "Tall Goldenrod" Invasive Alien Plant Pulp. NANOMATERIALS 2019; 9:nano9101358. [PMID: 31546730 PMCID: PMC6835868 DOI: 10.3390/nano9101358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022]
Abstract
This work investigates the possibility of isolating cellulose nanofibers from pulps of tall goldenrod plant, which are invasive plants in Korea, by a convenient method, without strong acids or high-pressure homogenization, using electron beam irradiation (EBI). The obtained cellulose nanofibers were characterized by scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and in terms of their mechanical properties. SEM showed that the initially isolated 10-μm-diameter cellulose fibers became more finely separated with increasing EBI dose, and that cellulose fibers treated with 300 kGy of EBI were separated into long cellulose nanofibers of around 160 nm in diameter. In addition, the paper samples prepared from more finely separated fibers generated by using higher doses of EBI had enhanced UV-vis transmittance. Via the XRD analysis, we observed that cellulose I in the EBI-treated cellulose fibers were gradually converted into a different type of cellulose similar to cellulose type II, as the EBI dose increased. Meanwhile, the TGA demonstrated that the finely separated cellulose fibers observed after administering the high EBI dose had lowered thermal stability due to the reduction of cellulose I but higher char yield. In addition, tensile strengths of paper samples increased with decreasing the diameters of their constituent fibers that result from the different EBI doses used in the preparation of the paper pulp.
Collapse
|
26
|
de Souza WR, Pacheco TF, Duarte KE, Sampaio BL, de Oliveira Molinari PA, Martins PK, Santiago TR, Formighieri EF, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, Mitchell RAC, de Sousa Rodrigues Gambetta D, Molinari HBC. Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:111. [PMID: 31080518 PMCID: PMC6501328 DOI: 10.1186/s13068-019-1450-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. In this paper, we report an approach to improving saccharification of sugarcane straw by RNAi silencing of the recently discovered BAHD01 gene responsible for feruloylation of grass cell walls. RESULTS We identified six BAHD genes in the sugarcane genome (SacBAHDs) and generated five lines with substantially decreased SacBAHD01 expression. To find optimal conditions for determining saccharification of sugarcane straw, we tried multiple combinations of solvent and temperature pretreatment conditions, devising a predictive model for finding their effects on glucose release. Under optimal conditions, demonstrated by Organosolv pretreatment using 30% ethanol for 240 min, transgenic lines showed increases in saccharification efficiency of up to 24%. The three lines with improved saccharification efficiency had lower cell-wall ferulate content but unchanged monosaccharide and lignin compositions. CONCLUSIONS The silencing of SacBAHD01 gene and subsequent decrease of cell-wall ferulate contents indicate a promising novel biotechnological approach for improving the suitability of sugarcane residues for cellulosic ethanol production. In addition, the Organosolv pretreatment of the genetically modified biomass and the optimal conditions for the enzymatic hydrolysis presented here might be incorporated in the sugarcane industry for bioethanol production.
Collapse
Affiliation(s)
- Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP 09606-045 Brazil
| | - Thályta Fraga Pacheco
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Karoline Estefani Duarte
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Bruno Leite Sampaio
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Thaís Ribeiro Santiago
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | | | | |
Collapse
|