1
|
Rabinowitz ZM, Somers J, Wang Z, Cui L. Chemical toolbox to interrogate Heparanase-1 activity. Curr Opin Chem Biol 2024; 80:102452. [PMID: 38555836 DOI: 10.1016/j.cbpa.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The development of a robust chemical toolbox to interrogate the activity of heparanase-1 (HPSE-1), an endo-β-d-glucuronidase and the only known enzyme that cleaves heparan sulfate (HS), has become critically important. The primary function of HPSE-1, cleaving HS side chains from heparan sulfate proteoglycans (HSPGs), regulates the integrity of the extracellular matrix (ECM) and the bioavailability of active, heparan sulfate-binding partners such as enzymes, growth factors, chemokines, and cytokines. HPSE-1 enzymatic activity is strictly regulated and has been found to play fundamental roles in pathophysiological processes. HPSE-1 is significantly overexpressed under various conditions including cancer, metastasis, angiogenesis, and inflammation, making HPSE-1 a promising therapeutic and diagnostic target. Chemical tools that can detect and image HPSE-1 activity in vitro and/or in vivo can help drive the discovery of novel and efficacious anti-HPSE-1 drugs, investigate the basic biology of HPSE-1, and help serve as a diagnostic tool in clinical applications. Here, we will give an overview of the common chemical tools to detect HPSE-1 activity and highlight the novel heparanase probes recently developed in our lab.
Collapse
Affiliation(s)
- Zachary M Rabinowitz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Johnathan Somers
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Zhang Y, Cui L. Discovery and development of small-molecule heparanase inhibitors. Bioorg Med Chem 2023; 90:117335. [PMID: 37257254 PMCID: PMC10884955 DOI: 10.1016/j.bmc.2023.117335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Heparanase-1 (HPSE) is a promising yet challenging therapeutic target. It is the only known enzyme that is responsible for cleavage of heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs), and is the key enzyme involved in the remodeling and degradation of the extracellular matrix (ECM). Overexpression of HPSE is found in various types of diseases, including cancers, inflammations, diabetes, and viral infections. Inhibiting HPSE can restore ECM functions and integrity, making the development of HPSE inhibitors a highly sought-after topic. So far, all HPSE inhibitors that have entered clinical trials belong to the category of HS mimetics, and no small-molecule or drug-like HPSE inhibitors have made similar progress. None of the HS mimetics have been approved as drugs, with some clinical trials discontinued due to poor bioavailability, side effects, and unfavorable pharmacokinetics characteristics. Small-molecule HPSE inhibitors are, therefore, particularly appealing due to their drug-like characteristics. Advances in the chemical spaces and drug design technologies, including the increasing use of in vitro and in silico screening methods, have provided new opportunities in drug discovery. This article aims to review the discovery and development of small-molecule HPSE inhibitors via screening strategies to shed light on the future endeavors in the development of novel HPSE inhibitors.
Collapse
Affiliation(s)
- Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Gu Y, Peng L, Ding W, Wang Y, Zeng X. An ultrasensitive FRET-based fluorescent low molecular weight heparin nanoprobe for quantifying heparanase activity. Talanta 2023; 254:124207. [PMID: 36549136 DOI: 10.1016/j.talanta.2022.124207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Heparanase (HPA) is a multifaceted endo-β-glucuronidase, and its dysregulation facilitates cancer metastasis. Developing techniques for fast and sensitively monitoring HPA enzymatic activity is crucial for searching for molecular therapies targeting HPA. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based nanoprobe AuNCs-LMWH-AuNRs, with AuNCs@GSH-cys and AuNRs/end-NH2/side-SiO2 attached to the non-reducing terminus and reducing terminus of low molecular weight heparin (LMWH), respectively. AuNCs@GSH-cys exhibited an absolute quantum yield of 1.1%. The absorption spectra of AuNRs/end-NH2/side-SiO2 (825 nm for maximum longitudinal absorption) and the emission spectra of AuNCs@GSH-cys (824 nm for maximum emission) were precisely overlapping, further enhancing the efficiency of FRET. In the presence of HPA, the LMWH nanoprobe exhibited an ultrasensitive response with excitation/emission wavelength (lambda (ex) = 560 nm, lambda (em) = 824 nm). The probe presented a wide linear dynamic detection range (LDR) of 0.125 ng/μL - 0.01 μg/μL in vitro with a limit of detection (LODs) of 82.15 pM (0.43 pg/μL). The excellent selectivity and good fluorescence turn-on efficiency of the probe made it possible for one-step detection of cellular heparanase activity. High throughput screening of HPA inhibitors also can be accomplished using the highly efficient LMWH nanoprobe.
Collapse
Affiliation(s)
- Yayun Gu
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Lizhong Peng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Weihua Ding
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong Province, 518172, China
| | - Xuhui Zeng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
4
|
Schleyer KA, Liu J, Chen Z, Wang Z, Zhang Y, Zuo J, Ybargollin AJ, Guo H, Cui L. A Universal and Modular Scaffold for Heparanase Activatable Probes and Drugs. Bioconjug Chem 2022; 33:2290-2298. [PMID: 36346913 PMCID: PMC10897860 DOI: 10.1021/acs.bioconjchem.2c00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparanase (HPSE) is an endo-β-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Jun Liu
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zixin Chen
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alberto Jimenez Ybargollin
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Ma X, Wang X, Liu C, Ge B, He H, Dai Q, Zhang Z, Yu J, Nau WM, Huang F. Self-assembled theranostic microcarrier targeting tumor cells with high metastatic potential. MATERIALS & DESIGN 2021; 212:110196. [DOI: 10.1016/j.matdes.2021.110196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Queisser KA, Mellema RA, Middleton EA, Portier I, Manne BK, Denorme F, Beswick EJ, Rondina MT, Campbell RA, Petrey AC. COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight 2021; 6:147472. [PMID: 34314391 PMCID: PMC8492325 DOI: 10.1172/jci.insight.147472] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury has emerged as a complication contributing to morbidity in coronavirus disease 2019 (COVID-19). The glycosaminoglycan hyaluronan (HA) is a major component of the glycocalyx, a protective layer of glycoconjugates that lines the vascular lumen and regulates key endothelial cell functions. During critical illness, as in the case of sepsis, enzymes degrade the glycocalyx, releasing fragments with pathologic activities into circulation and thereby exacerbating disease. Here, we analyzed levels of circulating glycosaminoglycans in 46 patients with COVID-19 ranging from moderate to severe clinical severity and measured activities of corresponding degradative enzymes. This report provides evidence that the glycocalyx becomes significantly damaged in patients with COVID-19 and corresponds with severity of disease. Circulating HA fragments and hyaluronidase, 2 signatures of glycocalyx injury, strongly associate with sequential organ failure assessment scores and with increased inflammatory cytokine levels in patients with COVID-19. Pulmonary microvascular endothelial cells exposed to COVID-19 milieu show dysregulated HA biosynthesis and degradation, leading to production of pathological HA fragments that are released into circulation. Finally, we show that HA fragments present at high levels in COVID-19 patient plasma can directly induce endothelial barrier dysfunction in a ROCK- and CD44-dependent manner, indicating a role for HA in the vascular pathology of COVID-19.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Middleton
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Bhanu Kanth Manne
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Ellen J. Beswick
- Department of Pathology and
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Pathology and
- Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Geriatric Research, Education, and Clinical Center and
- Department of Internal Medicine, George E. Wahlen Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Aaron C. Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Pathology and
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Eustes AS, Campbell RA, Middleton EA, Tolley ND, Manne BK, Montenont E, Rowley JW, Krauel K, Blair A, Guo L, Kosaka Y, Medeiros-de-Moraes IM, Lacerda M, Hottz ED, Neto HCF, Zimmerman GA, Weyrich AS, Petrey A, Rondina MT. Heparanase expression and activity are increased in platelets during clinical sepsis. J Thromb Haemost 2021; 19:1319-1330. [PMID: 33587773 PMCID: PMC8218538 DOI: 10.1111/jth.15266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.
Collapse
Affiliation(s)
- Alicia S Eustes
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Hospitals and Clinics Pathology, Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert A Campbell
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth A Middleton
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Neal D Tolley
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Bhanu K Manne
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Emilie Montenont
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jesse W Rowley
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Krystin Krauel
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Antoinette Blair
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Li Guo
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Yasuhiro Kosaka
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Isabel M Medeiros-de-Moraes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro and Manaus, Brazil
| | - Marcus Lacerda
- Fundacao de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD) and Fiocruz Manaus, Manaus, Brazil
| | - Eugenio D Hottz
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro and Manaus, Brazil
- Immunothrombosis Laboratory, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Hugo Castro Faria Neto
- Fundacao de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD) and Fiocruz Manaus, Manaus, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Andrew S Weyrich
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Aaron Petrey
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine and GRECC, George E. Wahlen VAMC, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Crawford CJ, Wear MP, Smith DFQ, d'Errico C, McConnell SA, Casadevall A, Oscarson S. A glycan FRET assay for detection and characterization of catalytic antibodies to the Cryptococcus neoformans capsule. Proc Natl Acad Sci U S A 2021; 118:e2016198118. [PMID: 33514659 PMCID: PMC7865134 DOI: 10.1073/pnas.2016198118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Classic antibody functions include opsonization, complement activation, and enhancement of cellular antimicrobial function. Antibodies can also have catalytic activity, although the contribution of catalysis to their biological functions has been more difficult to establish. With the ubiquity of catalytic antibodies against glycans virtually unknown, we sought to advance this knowledge. The use of a glycan microarray allowed epitope mapping of several monoclonal antibodies (mAbs) against the capsule of Cryptococcus neoformans From this, we designed and synthesized two glycan-based FRET probes, which we used to discover antibodies with innate glycosidase activity and analyze their enzyme kinetics, including mAb 2H1, the most efficient identified to date. The validity of the FRET assay was confirmed by demonstrating that the mAbs mediate glycosidase activity on intact cryptococcal capsules, as observed by a reduction in capsule diameter. Furthermore, the mAb 18B7, a glycosidase hydrolase, resulted in the appearance of reducing ends in the capsule as labeled by a hydroxylamine-armed fluorescent (HAAF) probe. Finally, we demonstrate that exposing C. neoformans cells to catalytic antibodies results in changes in complement deposition and increased phagocytosis by macrophages, suggesting that the antiphagocytic properties of the capsule have been impaired. Our results raise questions over the ubiquity of antibodies with catalytic activity against glycans and establish the utility of glycan-based FRET and HAAF probes as tools for investigating this activity.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Daniel F Q Smith
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Clotilde d'Errico
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Scott A McConnell
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland;
| |
Collapse
|
9
|
Liu J, Schleyer KA, Bryan TL, Xie C, Seabra G, Xu Y, Kafle A, Cui C, Wang Y, Yin K, Fetrow B, Henderson PKP, Fatland PZ, Liu J, Li C, Guo H, Cui L. Ultrasensitive small molecule fluorogenic probe for human heparanase. Chem Sci 2020; 12:239-246. [PMID: 34163592 PMCID: PMC8178809 DOI: 10.1039/d0sc04872k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
Heparanase (HPA) is a critical enzyme involved in the remodeling of the extracellular matrix (ECM), and its elevated expression has been linked with diseases such as various types of cancer and inflammation. The detection of heparanase enzymatic activity holds tremendous value in the study of the cellular microenvironment, and search of molecular therapeutics targeting heparanase, however, no structurally defined probes are available for the detection of heparanase activity. Here we present the development of the first ultrasensitive fluorogenic small-molecule probe for heparanase enzymatic activity via tuning the electronic effect of the substrate. The probe exhibits a 756-fold fluorescence turn-on response in the presence of human heparanase, allowing one-step detection of heparanase activity in real-time with a picomolar detection limit. The high sensitivity and robustness of the probe are exemplified in a high-throughput screening assay for heparanase inhibitors.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Kelton A Schleyer
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Tyrel L Bryan
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Arjun Kafle
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Chao Cui
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Ying Wang
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Kunlun Yin
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Benjamin Fetrow
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Paul K P Henderson
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Peter Z Fatland
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Lina Cui
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
10
|
Glycosaminoglycan / gold nanocluster hybrid nanoparticles as a new sensing platform: Metastatic potential assessment of cancer cells. Carbohydr Polym 2020; 230:115654. [DOI: 10.1016/j.carbpol.2019.115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
|
11
|
Singh M, Watkinson M, Scanlan EM, Miller GJ. Illuminating glycoscience: synthetic strategies for FRET-enabled carbohydrate active enzyme probes. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00134a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates are synthesised, refined and degraded by carbohydrate active enzymes. FRET is emerging as a powerful tool to monitor and quantify their activity as well as to test inhibitors as new drug candidates and monitor disease.
Collapse
Affiliation(s)
- Meenakshi Singh
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| | - Michael Watkinson
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Gavin J. Miller
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| |
Collapse
|
12
|
Jin H, Cui M. New Advances of Heparanase in Human Diseases. Mini Rev Med Chem 2019; 20:90-95. [PMID: 31518222 DOI: 10.2174/1389557519666190913150959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/05/2019] [Accepted: 06/23/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase. PATIENTS AND METHODS The relevant data were searched by using keywords "heparanase" "function", "diseases" and "inhibitors" in "PubMed", "Web of Science" and "China Knowledge Resource Integrated databases (CNKI)", and a hand-search was done to acquire peer-reviewed articles and reports about heparanase. RESULTS Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT). CONCLUSION It could be concluded that heparanase would be a potential and valuable therapy target.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| |
Collapse
|
13
|
Chao L, Jongkees S. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019; 58:12750-12760. [PMID: 30913359 PMCID: PMC6771893 DOI: 10.1002/anie.201900055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Indexed: 01/13/2023]
Abstract
Carbohydrates are attached and removed in living systems through the action of carbohydrate-active enzymes such as glycosyl transferases and glycoside hydrolases. The molecules resulting from these enzymes have many important roles in organisms, such as cellular communication, structural support, and energy metabolism. In general, each carbohydrate transformation requires a separate catalyst, and so these enzyme families are extremely diverse. To make this diversity manageable, high-throughput approaches look at many enzymes at once. Similarly, high-throughput approaches can be a powerful way of finding inhibitors that can be used to tune the reactivity of these enzymes, either in an industrial, a laboratory, or a medicinal setting. In this review, we provide an overview of how these enzymes and inhibitors can be sought using techniques such as high-throughput natural product and combinatorial library screening, phage and mRNA display of (glyco)peptides, fluorescence-activated cell sorting, and metagenomics.
Collapse
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| |
Collapse
|
14
|
Sistla JC, Desai UR. A Robust, One-step FRET Assay for Human Heparanase. Bio Protoc 2019; 9:e3356. [PMID: 33654855 DOI: 10.21769/bioprotoc.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Heparanase, an endo-β-D-glucuronidase, cleaves cell surface and extracellular matrix heparan sulfate (HS) chains at distinct sites and plays important biological roles including modulation of cell growth and metastasis. Although a number of different types of heparanase assays have been reported to date, most are labor intensive, complex and/or expensive to carry out. We reasoned that a simpler heparanase assay could be developed using heparin labeled with Dabcyl and EDANS as donor and acceptor fluorophores so as to generate a FRET signal. Our results show that a more robust heparanase assay could be developed based on the principle studied herein and more homogeneous preparation of heparin. Yet, the assay in its current form could be used for routine screening of potential inhibitors in a high-throughput manner as well as for studying heparanase activity expressed in tumors as well as biological fluids like plasma.
Collapse
Affiliation(s)
- Jyothi C Sistla
- Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
15
|
Chao L, Jongkees S. High‐Throughput Approaches in Carbohydrate‐Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| |
Collapse
|
16
|
Morla S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int J Mol Sci 2019; 20:ijms20081963. [PMID: 31013618 PMCID: PMC6514582 DOI: 10.3390/ijms20081963] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer’s disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
17
|
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer's disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
|
18
|
The Development of Assays for Heparanase Enzymatic Activity: Towards a Gold Standard. Molecules 2018; 23:molecules23112971. [PMID: 30441818 PMCID: PMC6278452 DOI: 10.3390/molecules23112971] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
The enzyme heparanase, an endo-β-glucuronidase, degrades heparan sulfate (HS) chains on the cell surface and in the extracellular matrix. Heparanase regulates numerous biological processes that drive tumour growth, metastasis and angiogenesis. In addition to its key role in cancer progression, it has also been implicated in an ever-growing number of other diseases, particularly those associated with inflammation. The importance of heparanase in biology has led to numerous efforts over the years to develop assays to monitor its activity and to screen for new inhibitors as potential drug candidates. Despite these efforts and the commercialization of a few kits, most heparanase assays are still complex, labour intensive, costly or have limited application. Herein we review the various methods for assaying heparanase enzymatic activity, focusing on recent developments towards new assays that hold the promise of accelerating research into this important enzyme.
Collapse
|