1
|
Cheng Y, Guo Q, Cheng Y, Wang D, Sun L, Liang T, Wang J, Wu H, Peng Z, Zhang G. Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway. Stem Cells Transl Med 2024:szae079. [PMID: 39589222 DOI: 10.1093/stcltm/szae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Qiuyan Guo
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yulei Cheng
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
| | - Dejun Wang
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Tian Liang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Han Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zhibin Peng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
2
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Li Y, Hou H, Liu Z, Tang W, Wang J, Lu L, Fu J, Gao D, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. CD44 targeting nanodrug based on chondroitin sulfate for melanoma therapy by inducing mitochondrial apoptosis pathways. Carbohydr Polym 2023; 320:121255. [PMID: 37659829 DOI: 10.1016/j.carbpol.2023.121255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Neovascularization is crucial to the occurrence and progression of tumors, and the development of antiangiogenic drugs has essential theoretical value and clinical significance. However, antiangiogenesis therapy alone cannot meet the needs of tumor therapy. Meanwhile, polysaccharides are ideal drug carriers with promising applications in drug modification and delivery. In this research, we developed a novel redox and acid sensitive nanodrug (CDDP-CS-Cys-EA, CCEA) composed of chondroitin sulfate (CS), antiangiogenic peptide (endostatin2-alft1, EA) and chemotherapeutic drug (cisplatin, CDDP). CCEA exhibited redox and acid responsiveness, better blood hemocompatibility (hemolysis rate < 5 %), the ability to target tumors (CD44-mediated endocytosis), and strong antiangiogenesis and antitumor characteristics in vitro. Moreover, CCEA showed excellent antitumor activity and low toxicity in B16 xenograft mice. It also has been confirmed that CCEA induced tumor cell apoptosis through promoting the expression of Bax, suppressing the expression of Bcl-2, decreasing mitochondrial membrane potential, releasing cytochrome C (Cyto C), and enhancing the activities of Caspase 9 and Caspase 3. The results of this paper provided a theoretical basis and insight for the development of antitumor drugs.
Collapse
Affiliation(s)
- Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - XinQing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Sun F, Hou H, Li Y, Tang W, Wang J, Lu L, Fu J, Liu Z, Gao D, Zhao F, Gao X, Ling P, Wang F, Tan H. Glycol-Split Heparin-Linked Prodrug Nanoparticles Target the Mitochondrion Apparatus for Cancer Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206491. [PMID: 36965026 DOI: 10.1002/smll.202206491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The progression and metastasis of solid tumors rely strongly on neovascularization. However, angiogenesis inhibitors alone cannot meet the needs of tumor therapy. This study prepared a new drug conjugate (PTX-GSHP-CYS-ES2, PGCE) by combining polysaccharides (heparin without anticoagulant activity, GSHP), chemotherapeutic drugs (paclitaxel, PTX), and antiangiogenic drugs (ES2). Furthermore, a tumor-targeted prodrug nanoparticle delivery system is established. The nanoparticles appear to accumulate in the mitochondrial of tumor cells and achieve ES2 and PTX release under high glutathione and acidic environment. It has been confirmed that PGCE inhibited the expression of multiple metastasis-related proteins by targeting the tumor cell mitochondrial apparatus and disrupting their structure. Furthermore, PGCE nanoparticles inhibit migration, invasion, and angiogenesis in B16F10 tumor-bearing mice and suppress tumor growth and metastasis in vitro. Further in vitro and in vivo experiments show that PGCE has strong antitumor growth and metastatic effects and exhibits efficient anti-angiogenesis properties. This multi-targeted nanoparticle system potentially enhances the antitumor and anti-metastatic effects of combination chemotherapy and antiangiogenic drugs.
Collapse
Affiliation(s)
- Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
5
|
Banik N, Yang SB, Kang TB, Lim JH, Park J. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Int J Mol Sci 2021; 22:ijms221910524. [PMID: 34638867 PMCID: PMC8509054 DOI: 10.3390/ijms221910524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Collapse
Affiliation(s)
- Nipa Banik
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Seong-Bin Yang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Tae-Bong Kang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Ji-Hong Lim
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jooho Park
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence:
| |
Collapse
|
6
|
Jia SX, Chi QN, Zhang Y, Liu T, Kou X, Wang F, Qi YK, Du SS, Xing XH. Binding ability of methylene blue with heparin dependent on its sulfate level rather than its sulfation location or basic saccharide structure. Glycoconj J 2021; 38:551-560. [PMID: 34515908 DOI: 10.1007/s10719-021-10010-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Methylene blue (MB) is one of the most common cationic dyes to detect heparin. As the sulfate residue presented in heparin was the main contributor to bind with MB, the UV performance of the MB with selectively desulfated heparin derivatives was investigated. It was found that the sulfate residue in different heparin analogues did not show the equal ability to attract MB binding. The stoichiometry of sulfate with MB among the heparin and derivatives was verified as a non-constant number. For the two selectively desulfated heparin derivatives: sulfate elimination at 6-O (6-OdeS) and N-acetylated heparin (N-deS-Acetyl), the MB to sulfate ratios were significantly higher than for heparin. For the not fully diminished sulfate at 2-O heparin derivative (2-OdeS), the MB-SO3- ratio of 2-OdeS was between 6-OdeS, N-deS-Acetlyl and heparin. Although in a distinct sulfation position, the MB-SO3- ratio of 6-OdeS and N-deS-Acetyl was almost equal, which agreed with the comparable total desulfation degree between 6-OdeS and N-deS-Acetyl. In addition, compared to heparin groups, the non-desulfated gs-HP showed no significantly different MB-SO3- ratio with heparin. The above results demonstrated that compared with the sulfate location and glycan composition of heparin, the content of sulfate was the most essential factor for the MB binding.
Collapse
Affiliation(s)
- Shi-Xi Jia
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiao-Na Chi
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Tao Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Analyses and testing center, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fanye Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yun-Kun Qi
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| | - Xin-Hui Xing
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,Centre for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Hou H, Wang J, Wang J, Tang W, Shaikh AS, Li Y, Fu J, Lu L, Wang F, Sun F, Tan H. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J Biomed Nanotechnol 2021; 16:1687-1718. [PMID: 33485398 DOI: 10.1166/jbn.2020.3001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the development and applications of protein drugs have attracted extensive attention from researchers. However, the shortcomings of protein drugs also limit their further development. Therefore, bioactive peptides isolated or simulated from protein polymers have broad application prospects in food, medicine, biotechnology, and other industries. Such peptides have a molecular weight distribution between 180 and 1000 Da. As a small molecule substance, bioactive peptide is usually degraded by various enzymes in the organism and have a short half-life. At the same time, such substances have poor stability and are difficult to produce and store. Therefore, these active peptides may be modified through phosphorylation, glycosylation, and acylation. Compared with other protein drugs, the modified active peptides are more easily absorbed by the body, have longer half-life, stronger targeting, and fewer side effects in addition to higher bioavailability. In the light of their functions, bioactive peptide can be divided into antimicrobial, anti-tumour, anti-angiogenic, antioxidant, anti-fatigue, and anti-hypertensive peptides. This article mainly focuses on the introduction of several promising biologically active peptides functioning as antimicrobial, anti-tumour, antiangiogenic, and antioxidant peptides from the three aspects modification, structural characteristics and mechanism of action.
Collapse
|
8
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
9
|
|
10
|
Liu Q, Wang J, Sun Y, Han S. Chondroitin sulfate from sturgeon bone protects chondrocytes via inhibiting apoptosis in osteoarthritis. Int J Biol Macromol 2019; 134:1113-1119. [DOI: 10.1016/j.ijbiomac.2019.05.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 01/07/2023]
|