1
|
Boonprab K, Chirapart A, Effendy WNA. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6987-7001. [PMID: 38619109 DOI: 10.1002/jsfa.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Conventional petroleum-based packaging films cause severe environmental problems. In the present study, bio-edible film was introduced as being safe to replace petroleum-based polymers. A food application for edible sachets and a composite edible film (EF) from marine algae, Gracilaria fisheri (GF) extract, were proposed. RESULTS Carbohydrates were the most prevalent component in fresh GF fronds. Under neutral conditions comprising 90 °C for 40 min, the structure of the extract was determined by Fourier transform infrared to be a carrageenan-like polysaccharide. Glycerol was the best plasticizer for EF formation because it had the highest tensile strength (TS). The integration of gelatin into the algal composite film with gelatin (CFG) was validated to be significant. The best casting temperatures for 2 h were 70 and 100 °C among the four tested temperatures (25, 60, 70 and 100 °C). Temperatures did not result in any significant (P ≤ 0.05) differences in any character (color values, TS, water vapor permeability, oxygen transmission, thickness and water activity), except elongation at break. Visually, the CFG had a slightly yellow appearance. The best-to-worst order of film stability in the three tested solvents was oil, distilled water (DW) and ethanol. Its stability in ethanol (0-100%), temperature of DW (30-100 °C) and pH (3-7 in DW) demonstrated inverse relationships with the concentration or different conditions, except for pH 8-10 in DW. All treatments were significantly (P ≤ 0.05) different. CONCLUSION The novel material made from polysaccharides from algae, G. fisheri, was used to improve EF. The edible sachet application is plausible from the EF. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Anong Chirapart
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Gülpınar M, Tomul F, Arslan Y, Tran HN. Chitosan-based film incorporated with silver-loaded organo-bentonite or organo-bentonite: Synthesis and characterization for potential food packaging material. Int J Biol Macromol 2024; 274:133197. [PMID: 38885862 DOI: 10.1016/j.ijbiomac.2024.133197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biopolymer-clay composite films were synthesized and characterized for food packaging material. The synthesis was conducted in two stages. Cetrimonium bromide-modified bentonite (CTAB-bentonite) was first exchanged with Ag ions to obtain Ag-CTAB-bentonite. Biopolymer-clay composite films were then performed by a solution-casting method between chitosan (biopolymer) and Ag-CTAB-bentonite or between chitosan and CTAB-bentonite. Different weights of CTAB-bentonite (3% and 5% wt.) and Ag-CTAB-bentonite (3% and 5% wt.) were used during the second stage. The resultant films were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscope coupled with energy dispersive X-ray spectroscopy, atomic force microscopes, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, optical measurement, and others (moisture content, swelling behavior, water solubility, antibacterial, shredded carrot preservation, and biodegradability). Results indicated that the properties (thermal stability, thermomechanical ability, UV-visible light barrier, shredded carrot preservation) of the chitosan-based film incorporated with the synthesized composites were enhanced compared to those of the CS film. The CS/(CTAB-bentonite)-3% and CS/(Ag-CTAB-bentonite)-3% films exhibited antibacterial properties against Escherichia coli, Salmonella enterica subp. enterica, Staphylococcus aureus, and Listeria monocytogenes. The chitosan-based film reinforced with the two prepared composites can be potential for food preservation and packaging.
Collapse
Affiliation(s)
- Muhittin Gülpınar
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, Burdur, Turkey
| | - Fatma Tomul
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, Burdur, Turkey
| | - Yasin Arslan
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Nanoscience and Nanotechnology Department, Burdur, Turkey
| | - Hai Nguyen Tran
- Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh 70000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam.
| |
Collapse
|
3
|
Khadsai S, Janmanee R, Sam-Ang P, Nuanchawee Y, Rakitikul W, Mankhong W, Likittrakulwong W, Ninjiaranai P. Influence of Crosslinking Concentration on the Properties of Biodegradable Modified Cassava Starch-Based Films for Packaging Applications. Polymers (Basel) 2024; 16:1647. [PMID: 38931996 PMCID: PMC11207420 DOI: 10.3390/polym16121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan/modified cassava starch/curcumin (CS/S/Cur) films with a crosslinker were developed via the solvent casting technique for the application of food packaging. The effects of citric acid (CA) as a natural crosslinker were assessed at different concentrations (0-10.0%, w/w, on a dry base on CS and S content). To measure the most favorable film, chemical structure and physical, mechanical, and thermal properties were investigated. Successful crosslinking between CS and S was seen clearly in the Fourier Transform Infrared (FTIR) spectra. The properties of the water resistance of the CS/S/Cur films crosslinked with CA were enhanced when compared to those without CA. Furthermore, it was found that the addition of CA crosslinking would improve the mechanical properties of composite films to some extent. It had been reported that the CA crosslinking level of 7.5 wt% of CS/S/Cur film demonstrated high performance in terms of physical properties. The tensile strength of the crosslinked film increased from 8 ± 1 MPa to 12 ± 1 MPa with the increasing content of CA, while water vapor permeability (WVP), swelling degree (SD), and water solubility (WS) decreased. An effective antioxidant scavenging activity of the CS/S/Cur film decreased with an increase in CA concentrations. This study provides an effective pathway for the development of active films based on polysaccharide-based film for food packaging applications.
Collapse
Affiliation(s)
- Sudarat Khadsai
- Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15000, Thailand;
| | - Rapiphun Janmanee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Pornpat Sam-Ang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Yossawat Nuanchawee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Waleepan Rakitikul
- Program of Chemical Technology, Faculty of Science and Technology, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand;
| | - Wilawan Mankhong
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Wirot Likittrakulwong
- Program of Animal Science, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand;
| | - Padarat Ninjiaranai
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| |
Collapse
|
4
|
Sanchez Armengol E, Hock N, Saribal S, To D, Summonte S, Veider F, Kali G, Bernkop-Schnürch A, Laffleur F. Unveiling the potential of biomaterials and their synergistic fusion in tissue engineering. Eur J Pharm Sci 2024; 196:106761. [PMID: 38580169 DOI: 10.1016/j.ejps.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ITM Isotope Technologies Munich SE, Walther-von-Dyck Str. 4, 85748, Garching bei Munich, Germany
| | - Sila Saribal
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Simona Summonte
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ThioMatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Florina Veider
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Sandoz, Biochemiestraße 10, 6250, Kundl, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Cabrera-Barjas G, Albornoz K, Belchi MDL, Giordano A, Bravo-Arrepol G, Moya-Elizondo E, Martin JS, Valdes O, Nesic A. Influence of chitin nanofibers and gallic acid on physical-chemical and biological performances of chitosan-based films. Int J Biol Macromol 2024; 263:130159. [PMID: 38368972 DOI: 10.1016/j.ijbiomac.2024.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Maria Dolores Lopez Belchi
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Ady Giordano
- Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| | - Gaston Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7810000, Chile.
| | - Ernesto Moya-Elizondo
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Juan San Martin
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.
| | - Aleksandra Nesic
- University of Belgrade, Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Serbia.
| |
Collapse
|
6
|
Siddiqui SA, Yang X, Deshmukh RK, Gaikwad KK, Bahmid NA, Castro-Muñoz R. Recent advances in reinforced bioplastics for food packaging - A critical review. Int J Biol Macromol 2024; 263:130399. [PMID: 38403219 DOI: 10.1016/j.ijbiomac.2024.130399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Recently, diversifying the material, method, and application in food packaging has been massively developed to find more environment-friendly materials. However, the mechanical and barrier properties of the bioplastics are major hurdles to expansion in commercial realization. The compositional variation with the inclusion of different fillers could resolve the lacking performance of the bioplastic. This review summarizes the various reinforcement fillers and their effect on bioplastic development. In this review, we first discussed the status of bioplastics and their definition, advantages, and limitations regarding their performance in the food packaging application. Further, the overview of different fillers and development methods has been discussed thoroughly. The application of reinforced bioplastic for food packaging and its effect on food quality and shelf life are highlighted. The environmental issues, health concerns, and future perspectives of the reinforced bioplastic are also discussed at the end of the manuscript. Adding different fillers into the bioplastic improves physical, mechanical, barrier, and active properties, which render the required protective functions to replace conventional plastic for food packaging applications. Various fillers, such as natural and chemically synthesized, could be incorporated into the bioplastic, and their overall properties improve significantly for the food packaging application.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan.
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| |
Collapse
|
7
|
Meedecha P, Srisang N, Eawsakul K, Ongtanasup T, Tambunlertchai S, Sokjabok S, Chungcharoen T, Srisang S, Limmun W. Preparation and evaluation of blend polymer films for wound dressing using vancomycin-loaded polycaprolactone and carboxymethyl cellulose via crosslinking methods: Effect of mechanical strength, antibacterial activity, and cytotoxicity. J Mech Behav Biomed Mater 2024; 151:106339. [PMID: 38184930 DOI: 10.1016/j.jmbbm.2023.106339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Polycaprolactone (PCL) and carboxymethyl cellulose (CMC) are two materials with beneficial properties for wound healing applications. Here, the simple preparation of PCL/CMC polymer films via the crosslinking method was demonstrated for the first time. The polymer films represented the suitable properties of liquid absorption and tensile strength to be used as a wound dressing. The blend polymer films can also load the vancomycin, which prolongs the drug release for effectiveness against S. aureus. The trifluoroethanol showed less toxicity in comparison with other crosslinking agents. This process can also be applied further in other medical devices and wound healing applications.
Collapse
Affiliation(s)
- Paweena Meedecha
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Naruebodee Srisang
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Supreeda Tambunlertchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwakon Sokjabok
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Thatchapol Chungcharoen
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Siriwan Srisang
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand.
| | - Warunee Limmun
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| |
Collapse
|
8
|
Moreno-Ricardo MA, Gómez-Contreras P, González-Delgado ÁD, Hernández-Fernández J, Ortega-Toro R. Development of films based on chitosan, gelatin and collagen extracted from bocachico scales ( Prochilodus magdalenae). Heliyon 2024; 10:e25194. [PMID: 38317954 PMCID: PMC10839984 DOI: 10.1016/j.heliyon.2024.e25194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Biodegradable biopolymers from species of the animal kingdom or their byproducts are sustainable as ecological materials due to their abundant supply and compatibility with the environment. The research aims to obtain a biodegradable active material from chitosan, gelatin, and collagen from bocachico scales (Prochilodus magdalenae). Regarding the methodology, films were developed from gelatin, chitosan, and collagen from bocachico scales (Prochilodus magdalenae) at different concentrations using glycerol as a plasticizer and citric acid as a cross-linker. The films were obtained with the hydrated mass processed by compression molding and characterized according to humidity, water solubility, contact angle, mechanical properties, and structural properties. The results of the films showed a hydrophobic characteristic. First, the chitosan-collagen (CS/CO) films showed a yellowish color, while the gelatin-collagen (Gel/CO) films were transparent and less soluble than the gelatin-collagen (Gel/CO) films. Concerning mechanical properties, gelatin films showed higher stiffness and tensile strength than chitosan films. Furthermore, in the morphological analysis, more homogeneous chitosan films were obtained by increasing the concentration of citric acid. In general, chitosan, gelatin, and collagen extracted from the scales of the bocachico (Prochilodus magdalenae) are an alternative in the application of films in the food industry.
Collapse
Affiliation(s)
- María A. Moreno-Ricardo
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| | - Paula Gómez-Contreras
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| | - Ángel Darío González-Delgado
- Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias, 130015, Colombia
| | - Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena, 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco, 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, 30300, Colombia
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| |
Collapse
|
9
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
10
|
Ertan K, Sahin S, Sumnu G. Effects of alkaline pH and gallic acid enrichment on the physicochemical properties of sesame protein and common vetch starch-based composite films. Int J Biol Macromol 2024; 257:128743. [PMID: 38100960 DOI: 10.1016/j.ijbiomac.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
In this study, sesame (Sesamum indicum L.) meal protein and common vetch (Vicia sativa L.) starch were extracted and used to obtain biodegradable composite films at different pH values (7, 9, and 11). Films were plasticized with glycerol (2.5 %) and enriched with gallic acid (0.25 %). Increasing pH promoted mechanical properties of the films with the developed barrier and thermal characteristics. Gallic acid addition at pH 7 resulted in lower tensile strength and higher elongation by reducing intermolecular forces, and a shift of diffraction peaks through lower angles due to crystal lattice expansion, as compared to neutral films without gallic acid. On the other hand, gallic acid-enriched films at neutral pH exhibited superior antioxidant properties. The mild alkalinity with gallic acid provided the lowest water vapor permeability, high thermal stability, improved mechanical properties and light barrier property due to deprotonation and subsequent interactions with biopolymers. The FTIR spectrum confirmed intense interactions, such as crosslinking and covalent bonding, promoted by mild alkalinity. Therefore, sesame protein and common vetch starch-based composite film with gallic acid incorporation at pH 9 can be recommended to be used in biodegradable active food packaging applications.
Collapse
Affiliation(s)
- Kubra Ertan
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey; Department of Food Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Istiklal Campus, 15030 Burdur, Turkey
| | - Serpil Sahin
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey.
| | - Gulum Sumnu
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
11
|
Salimbahrami SN, Ghorbani-HasanSaraei A, Tahermansouri H, Shahidi SA. Synthesis, optimization via response surface methodology, and structural properties of carboxymethylcellulose/curcumin/graphene oxide biocomposite films/coatings for the shelf-life extension of shrimp. Int J Biol Macromol 2023; 253:126724. [PMID: 37673155 DOI: 10.1016/j.ijbiomac.2023.126724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
In this study, carboxymethylcellulose (CMC), curcumin (Cur), and graphene oxide (GO) were used to prepare a novel biocomposite film (CMC-Cur-GO). A central composite design under response surface methodology was employed to optimize the films in terms of water vapor permeability (WVP) and swelling percentage (SP). Under the optimum conditions, which the rates of CMC, GO and curcumin were found to be 1350 mg, 29.99 mg, and 0.302 g, respectively, WVP and SP of CMC-Cur-GO were obtained 0.902 × 10-8 (g/m·h·Pa) and 13.62 %, respectively. The biocomposite films (CMC, CMC-Cur, CMC-GO and CMC-Cur-GO) were characterized by Fourier transform infrared spectroscopy, field-emission scanning electron microscope, thermal gravimetric analysis, X-ray diffraction analysis, ultraviolet-vis light transmittance, moisture content, and mechanical properties. Compared with pure CMC film, the tensile strength, elongation at break and Young's modulus of CMC-Cur-GO were significantly improved by up to 75 %, 41 % and 23 %, respectively (p < 0.05). Then, CMC-Cur-GO was applied as a coating solution for the shrimps. The coated shrimps with the CMC-Cur-GO significantly (p < 0.05) showed a noteworthy improvement in microbial quality (total and psychrotrophic bacterial count), chemical deterioration and lipid oxidation (pH and total volatile basic nitrogen, peroxide value and thiobarbituric acid) and physical characteristic (weight loss) as compared to other samples. The CMC-Cur-GO coating could increase the shelf life of shrimp under refrigerated storage.
Collapse
Affiliation(s)
| | | | - Hasan Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
12
|
Malka E, Margel S. Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels 2023; 9:895. [PMID: 37998985 PMCID: PMC10671072 DOI: 10.3390/gels9110895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Hydrogels have gained significant popularity in agricultural applications in terms of minimizing waste and mitigating the negative environmental impact of agrochemicals. This review specifically examines the utilization of environmentally friendly, shapable hydrogels composed of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) in various casings for crop protection against different pests, fertilizing, and watering. To activate their effectiveness, PVA/PVP hydrogels were loaded with both hydrophilic and hydrophobic environmentally friendly pesticides, namely hydrogen peroxide (HP), the essential oil thymol, and urea as a fertilizer, either separately or in combination. This review covers various physical and chemical approaches used for loading, shaping, and controlling the release profiles of pesticides and fertilizers. Additionally, it explores the evaluation of the chemical composition, structure, classification, rheology, and morphology of the hydrogels as well as their impact on the thermal stability of the encapsulated pesticides and fertilizer, followed by biological tests. These hydrogels significantly contribute to the stabilization and controlled release of essential nutrients and biocides for plants, while maintaining excellent biocidal and fertilizing properties as well as sustainability characteristics. By shedding light on the latest insights into the concepts, applications, and results of these hydrogels, this review demonstrates their immense potential for widespread future use in agriculture.
Collapse
Affiliation(s)
| | - Shlomo Margel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
13
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
14
|
Zając A, Sąsiadek W, Dymińska L, Ropuszyńska-Robak P, Hanuza J, Ptak M, Smółka S, Lisiecki R, Skrzypczak K. Chitosan and Its Carboxymethyl-Based Membranes Produced by Crosslinking with Magnesium Phytate. Molecules 2023; 28:5987. [PMID: 37630242 PMCID: PMC10459599 DOI: 10.3390/molecules28165987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Membranes produced by crosslinking chitosan with magnesium phytate were prepared using highly deacetylated chitosan and its N-carboxymethyl, O-carboxymethyl and N,O-carboxymethyl derivatives. The conditions of the membrane production were described. IR, Raman, electron absorption and emission spectra were measured and analyzed for all the substrates. It was found that O-carboxymethyl chitosan derivative is the most effectively crosslinked by magnesium phytate, and the films formed on this substrate exhibit good mechanical parameters of strength, resistance and stability. Strong O-H···O hydrogen bonds proved to be responsible for an effective crosslinking process. Newly discovered membrane types produced from chitosan and magnesium phytate were characterized as morphologically homogenous and uniform by scanning electron microscopy (SEM) and IR measurements. Due to their good covering properties, they do not have pores or channels and are proposed as packaging materials.
Collapse
Affiliation(s)
- Adam Zając
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Wojciech Sąsiadek
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Paulina Ropuszyńska-Robak
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Szymon Smółka
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Radosław Lisiecki
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Katarzyna Skrzypczak
- Faculty of Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| |
Collapse
|
15
|
Varamesh A, Abraham BD, Wang H, Berton P, Zhao H, Gourlay K, Minhas G, Lu Q, Bryant SL, Hu J. Multifunctional fully biobased aerogels for water remediation: Applications for dye and heavy metal adsorption and oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131824. [PMID: 37327610 DOI: 10.1016/j.jhazmat.2023.131824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Water ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m3 kg-1 specific Young's modulus and ∼111 kJ/m3 energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS. The addition of CS and CA increased the variety of functional groups (carboxylic acid, hydroxyl and amines) on the materials' surface, resulting in super-high dye and heavy metal adsorption capacities (619 mg/g and 206 mg/g for methylene blue and copper, respectively). Further modification of FBAs with a simple approach using methyltrimethoxysilane endowed aerogel oleophilic and hydrophobic properties. The developed FBAs showed a fast performance in water and oil/organic solvents separation with more than 96% efficiency. Besides, the FBA sorbents could be regenerated and reused for multiple cycles without any significant impact on their performance. Moreover, thanks to the presence of amine groups by addition of CS, FBAs also displayed antibacterial properties by preventing the growth of Escherichia coli on their surface. This work demonstrates the preparation of FBAs from abundant, sustainable, and inexpensive natural resources for applications in wastewater purification.
Collapse
Affiliation(s)
- Amir Varamesh
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Brett David Abraham
- Department of Biomedical Engineering, University of Calgary, Calgary T2N 1N4, Canada; Pharmaceutical Production Research Facility, University of Calgary, Calgary T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Paula Berton
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Keith Gourlay
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Gurminder Minhas
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
16
|
Shinu KP, John H, Gopalakrishnan J. Chitin/deacetylated chitin nanocomposite film for effective adsorption of organic pollutant from aqueous solution. Int J Biol Macromol 2023:125038. [PMID: 37245754 DOI: 10.1016/j.ijbiomac.2023.125038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Cross-linked chitin/deacetylated chitin nanocomposite films can be considered as a potential industrial adsorbent for the removal of organic pollutants for water purification. Chitin (C) and deacetylated chitin (dC) nanofibers were extracted from raw chitin and characterized using FTIR, XRD and TGA techniques. The TEM image confirmed the formation of chitin nanofibers with a diameter range of 10-45 nm. The deacetylated chitin nanofibers (DDA-46 %) having 30 nm diameter was evidenced using FESEM. Further, the C/dC nanofibers were prepared at different ratios (80/20, 70/30, 60/40 & 50/50 ratios) and cross-linked. The highest tensile strength of 40 MPa and Young's modulus of 3872 MPa was exhibited by 50/50C/dC. The DMA studies revealed that the storage modulus enhanced by 86 % for 50/50C/dC (9.06 GPa) in comparison to 80/20C/dC nanocomposite. Further, the 50/50C/dC exhibited a maximum adsorption capacity of 30.8 mg/g at pH = 4 in 30 mg/L of Methyl Orange (MO) dye within 120 min. The experimental data agreed with pseudo-second-order model indicating chemisorption process. The adsorption isotherm data was best described by Freundlich model. The nanocomposite film is an effective adsorbent can be regenerated and recycled for five adsorption-desorption cycle.
Collapse
Affiliation(s)
| | - Honey John
- Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India; Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi 22, India
| | - Jayalatha Gopalakrishnan
- Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India; Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi 22, India.
| |
Collapse
|
17
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
18
|
Boda R, Lázár I, Keczánné-Üveges A, Bakó J, Tóth F, Trencsényi G, Kálmán-Szabó I, Béresová M, Sajtos Z, D Tóth E, Deák Á, Tóth A, Horváth D, Gaál B, Daróczi L, Dezső B, Ducza L, Hegedűs C. β-Tricalcium Phosphate-Modified Aerogel Containing PVA/Chitosan Hybrid Nanospun Scaffolds for Bone Regeneration. Int J Mol Sci 2023; 24:ijms24087562. [PMID: 37108742 PMCID: PMC10141662 DOI: 10.3390/ijms24087562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Electrospinning has recently been recognized as a potential method for use in biomedical applications such as nanofiber-based drug delivery or tissue engineering scaffolds. The present study aimed to demonstrate the electrospinning preparation and suitability of β-tricalcium phosphate-modified aerogel containing polyvinyl alcohol/chitosan fibrous meshes (BTCP-AE-FMs) for bone regeneration under in vitro and in vivo conditions. The mesh physicochemical properties included a 147 ± 50 nm fibrous structure, in aqueous media the contact angles were 64.1 ± 1.7°, and it released Ca, P, and Si. The viability of dental pulp stem cells on the BTCP-AE-FM was proven by an alamarBlue assay and with a scanning electron microscope. Critical-size calvarial defects in rats were performed as in vivo experiments to investigate the influence of meshes on bone regeneration. PET imaging using 18F-sodium fluoride standardized uptake values (SUVs) detected 7.40 ± 1.03 using polyvinyl alcohol/chitosan fibrous meshes (FMs) while 10.72 ± 1.11 with BTCP-AE-FMs after 6 months. New bone formations were confirmed by histological analysis. Despite a slight change in the morphology of the mesh because of cross-linking, the BTCP-AE-FM basically retained its fibrous, porous structure and hydrophilic and biocompatible character. Our experiments proved that hybrid nanospun scaffold composite mesh could be a new experimental bone substitute bioactive material in future medical practice.
Collapse
Affiliation(s)
- Róbert Boda
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - István Lázár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Keczánné-Üveges
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - József Bakó
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Tóth
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ibolya Kálmán-Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Monika Béresová
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Etelka D Tóth
- Department of Dentoalveolar Surgery, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrienn Tóth
- Department of Dentoalveolar Surgery, University of Debrecen, 4032 Debrecen, Hungary
| | - Dóra Horváth
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Daróczi
- Department of Solid State Physics, University of Debrecen, 4002 Debrecen, Hungary
| | - Balázs Dezső
- Department of Oral Pathology and Microbiology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Yu J, Liu X, Xu S, Shao P, Li J, Chen Z, Wang X, Lin Y, Renard CMGC. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr Rev Food Sci Food Saf 2023; 22:1030-1057. [PMID: 36579838 DOI: 10.1111/1541-4337.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/30/2022]
Abstract
The problems with plastic materials and the good film-forming properties of polysaccharides motivated research in the development of polysaccharide-based films. In the last 5 years, there has been an explosion of publications on using green solvents, including ionic liquids (ILs), and deep eutectic solvents (DESs) as candidates to substitute the conventional solvents/plasticizers for preparations of desired polysaccharide-based films. This review summarizes related properties and recovery of ILs and DESs, a series of green preparation strategies (including pretreatment solvents/reaction media, ILs/DESs as components, extraction solvents of bioactive compounds added into films), and inherent properties of polysaccharide-based films with/without ILs and DESs. Major reported advantages of these new solvents are high dissolving capacity of certain ILs/DESs for polysaccharides (i.e., up to 30 wt% for cellulose) and better plasticizing ability than traditional plasticizers. In addition, they frequently display intrinsic antioxidant and antibacterial activities that facilitate ILs/DESs applications in the processing of polysaccharide-based films (especially active food packaging films). ILs/DESs in the film could also be further recycled by water or ethanol/methanol treatment followed by drying/evaporation. One particularly promising approach is to use bioactive cholinium-based ILs and DESs with good safety and plasticizing ability to improve the functional properties of prepared films. Whole extracts by ILs/DESs from various byproducts can also be directly used in films without separation/polishing of compounds from the extracting agents. Scaling-up, including costs and environmental footprint, as well as the safety and applications in real foods of polysaccharide-based film with ILs/DESs (extracts) deserves more studies.
Collapse
Affiliation(s)
- Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang NHU Co., Ltd, Xinchang, China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shanlin Xu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ping Shao
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | - Zhirong Chen
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, China
| | - Yang Lin
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
20
|
Zhang W, Roy S, Assadpour E, Cong X, Jafari SM. Cross-linked biopolymeric films by citric acid for food packaging and preservation. Adv Colloid Interface Sci 2023; 314:102886. [PMID: 37002960 DOI: 10.1016/j.cis.2023.102886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
There is a growing interest in the development of degradable and biopolymeric food packaging films (BFPFs) based on green ingredients and strategies due to their biocompatibility, sustainability, and renewable nature of bio-materials. The performance of BFPFs can be improved either by modifying the biopolymer molecules or by combining them with various additives, including nanomaterials, cross-linkers, bioactive compounds and other polymers. Among them, green cross-linking technology is considered as an effective method to improve the performance of BFPFs; citric acid (CA) is widely used as a natural green cross-linker in different BFPFs. In this study, after an overview on CA chemistry, different types of BFPFs cross-linked by CA have been discussed. In addition, this work summarizes the application of CA cross-linked BFPFs/coatings for food preservation in recent years. The role of CA as a cross-linking agent differs in various types of biopolymers, i.e. polysaccharide-based, protein-based and biopolyester-based biopolymers. Moreover, the cross-linking of CA with different biopolymer molecules is mainly related to the CA content and reaction state; the cross-linking process is significantly influenced by conditions such as temperature and pH. In conclusion, this work shows that CA as a natural green cross-linking agent could improve the performance of different BFPFs and enhance their food preservation capacity.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Solan 173229, India
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran..
| |
Collapse
|
21
|
Selected Biopolymers' Processing and Their Applications: A Review. Polymers (Basel) 2023; 15:polym15030641. [PMID: 36771942 PMCID: PMC9919854 DOI: 10.3390/polym15030641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.
Collapse
|
22
|
Yildiz E, Emir AA, Sumnu G, Kahyaoglu LN. Citric acid cross-linked curcumin/chitosan/chickpea flour film: An active packaging for chicken breast storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Mahaninia MH, Yan N. Catalyst-free pH-responsive chitosan-based dynamic covalent framework materials. Carbohydr Polym 2022; 301:120332. [DOI: 10.1016/j.carbpol.2022.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
24
|
Material and Environmental Properties of Natural Polymers and Their Composites for Packaging Applications—A Review. Polymers (Basel) 2022; 14:polym14194033. [PMID: 36235981 PMCID: PMC9573536 DOI: 10.3390/polym14194033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
The current trend of using plastic material in the manufacturing of packaging products raises serious environmental concerns due to waste disposal on land and in oceans and other environmental pollution. Natural polymers such as cellulose, starch, chitosan, and protein extracted from renewable resources are extensively explored as alternatives to plastics due to their biodegradability, biocompatibility, nontoxic properties, and abundant availability. The tensile and water vapor barrier properties and the environmental impacts of natural polymers played key roles in determining the eligibility of these materials for packaging applications. The brittle behavior and hydrophilic nature of natural polymers reduced the tensile and water vapor barrier properties. However, the addition of plasticizer, crosslinker, and reinforcement agents substantially improved the mechanical and water vapor resistance properties. The dispersion abilities and strong interfacial adhesion of nanocellulose with natural polymers improved the tensile strength and water vapor barrier properties of natural polymer-based packaging films. The maximum tensile stress of these composite films was about 38 to 200% more than that of films without reinforcement. The water vapor barrier properties of composite films also reduced up to 60% with nanocellulose reinforcement. The strong hydrogen bonding between natural polymer and nanocellulose reduced the polymer chain movement and decreased the percent elongation at break up to 100%. This review aims to present an overview of the mechanical and water vapor barrier properties of natural polymers and their composites along with the life cycle environmental impacts to elucidate their potential for packaging applications.
Collapse
|
25
|
Silvestre WP, Duarte J, Tessaro IC, Baldasso C. Non-Supported and PET-Supported Chitosan Membranes for Pervaporation: Production, Characterization, and Performance. MEMBRANES 2022; 12:930. [PMID: 36295689 PMCID: PMC9607258 DOI: 10.3390/membranes12100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to develop non-supported and PET-supported chitosan membranes that were cross-linked with glutaraldehyde, then evaluate their physical-chemical, morphological, and mechanical properties, and evaluate their performance in the separation of ethanol/water and limonene/linalool synthetic mixtures by hydrophilic and target-organophilic pervaporation, respectively. The presence of a PET layer did not affect most of the physical-chemical parameters of the membranes, but the mechanical properties were enhanced, especially the Young modulus (76 MPa to 398 MPa), tensile strength (16 MPa to 27 MPa), and elongation at break (7% to 26%), rendering the supported membrane more resistant. Regarding the pervaporation tests, no permeate was obtained in target-organophilic pervaporation tests, regardless of membrane type. The support layer influenced the hydrophilic pervaporation parameters of the supported membrane, especially in reducing transmembrane flux (0.397 kg∙m-2∙h-1 to 0.121 kg∙m-2∙h-1) and increasing membrane selectivity (611 to 1974). However, the pervaporation separation index has not differed between membranes (228 for the non-supported and 218 for the PET-supported membrane), indicating that, overall, both membranes had a similar performance. Thus, the applicability of each membrane is linked to specific applications that require a more resistant membrane, greater transmembrane fluxes, and higher selectivity.
Collapse
Affiliation(s)
- Wendel Paulo Silvestre
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Jocelei Duarte
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Isabel Cristina Tessaro
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Camila Baldasso
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
26
|
Chitosan Na-montmorillonite films incorporated with citric acid for prolonging cherry tomatoes shelf life. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
29
|
Yao S, Wang BJ, Weng YM. Preparation and characterization of mung bean starch edible films using citric acid as cross-linking agent. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int J Biol Macromol 2022; 209:2009-2019. [PMID: 35513101 DOI: 10.1016/j.ijbiomac.2022.04.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
In this paper we present a novel strategy to easily prepare biodegradable chitosan derived films as new packaging systems. Combination of chitosan, adipic acid and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) allowed to obtain high-performing cross-linked films. Biobased glycerol was employed as plasticizer. An in-depth study was performed on ten different samples in order to evaluate the role of DMTMM as cross-linking agent. Experimental data showed that 15 wt% of DMTMM enhanced moisture content and moisture uptake (10.42% and 11.11%), water vapor permeability (0.13 10-7 g m-1 h-1 Pa-1) and good UV barrier properties. Additionally, 30 wt% of DMTMM significantly increased the tensile strength of films up to 83 MPa and elongation at break values reached 39.7%. Thermogravimetric, IR, XRD and SEM analysis confirmed that physical-mechanical properties of the obtained films were considerably improved, due to cross-linking by DMTMM, demonstrating promising properties for packaging applications.
Collapse
|
31
|
Janik W, Nowotarski M, Shyntum DY, Banaś A, Krukiewicz K, Kudła S, Dudek G. Antibacterial and Biodegradable Polysaccharide-Based Films for Food Packaging Applications: Comparative Study. MATERIALS 2022; 15:ma15093236. [PMID: 35591570 PMCID: PMC9103775 DOI: 10.3390/ma15093236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
One of the major objectives of food industry is to develop low-cost biodegradable food packaging films with optimal physicochemical properties, allowing for their large-scale production and providing a variety of applications. To meet the expectations of food industry, we have fabricated a series of solution-cast films based on common biodegradable polysaccharides (starch, chitosan and alginate) to be used in food packaging applications. Selected biopolymers were modified by the addition of glycerol and oxidized sucrose (starch), glycerol (chitosan), and glycerol and calcium chloride (alginate), as well as being used to form blends (starch/chitosan and starch/alginate, respectively). A chestnut extract was used to provide antibacterial properties to the preformed materials. The results of our studies showed that each modification reduced the hydrophilic nature of the polymers, making them more suitable for food packaging applications. In addition, all films exhibited much higher barrier properties to oxygen and carbon dioxide than commercially available films, such as polylactic acid, as well as exhibiting antimicrobial properties against model Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis, respectively), as well as yeast (Candida albicans).
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network—The Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, 2a Akademicka Str., 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-77-487-31-87
| | - Michał Nowotarski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Divine Yutefar Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Angelika Banaś
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Stanisław Kudła
- Łukasiewicz Research Network—The Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| |
Collapse
|
32
|
Bezerra MC, Duarte GA, Talabi SI, Lucas AA. Microstructure and properties of thermomechanically processed chitosan citrate-based materials. Carbohydr Polym 2022; 278:118984. [PMID: 34973791 DOI: 10.1016/j.carbpol.2021.118984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022]
Abstract
The traditional solvent casting method for preparing chitosan-based materials has limited productivity relative to the productivity of thermomechanical processing. Consequently, the thermomechanical processing technique was evaluated as a way to increase chitosan production. The role of citric acid (CA) as a destructuring and crosslinking agent during such processing was examined. SEM images revealed robust fibers that were associated with a superior mechanical strength (145%), which were produced after thermomechanical processing of chitosan in the presence of CA. Based on articles reviewed, this is the first time that this structure has been closely observed in the microstructure of chitosan-based materials. FTIR and XRD characterization showed the occurrence of chemical crosslinking and the successful destructuring of chitosan powder by CA during processing. Compared to acetic acid, the use of CA led to the development of materials with a homogeneous morphology and good physicochemical and mechanical properties that are suitable for biomedical applications.
Collapse
Affiliation(s)
- Maria C Bezerra
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil; Federal University of Paraiba, Department of Chemical Engineering, 58059-900 João Pessoa, PB, Brazil.
| | - Gustavo A Duarte
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil
| | - Segun I Talabi
- University of Ilorin, Materials and Metallurgical Engineering Department (MME), PMB 1515 Ilorin, Nigeria
| | - Alessandra A Lucas
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
33
|
Development and Characterization of Antimicrobial Textiles from Chitosan-Based Compounds: Possible Biomaterials Against SARS-CoV-2 Viruses. J Inorg Organomet Polym Mater 2022; 32:1473-1486. [PMID: 35106063 PMCID: PMC8794601 DOI: 10.1007/s10904-021-02192-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Novel antiviral cotton fabrics impregnated with different formulations based on Chitosan (CH), citric acid (CA), and Copper (Cu) were developed. CA was selected as a CH crosslinker agent and Cu salts as enhancers of the polymer antimicrobial activity. The characterization of the polymeric-inorganic formulations was assessed by using atomic absorption spectroscopy, X-ray diffraction, Fourier transform infrared and UV–Vis spectroscopy, as well as thermogravimetric analysis. The achieved data revealed that CuO nanoparticles were formed by means of chitosan and citric acid in the reaction media. The antiviral activity of CH-based formulations against bovine alphaherpesvirus and bovine betacoronavirus was analyzed. Cotton fabrics were impregnated with the selected formulations and the antiviral properties of such textiles were examined before and after 5 to 10 washing cycles. Herpes simplex virus type 1 was selected to analyze the antiviral activities of the functionalized cotton fabrics. The resulting impregnated textiles exhibited integrated properties of good adhesion without substantially modifying their appearance and antiviral efficacy (~ 100%), which enabling to serve as a scalable biocidal layer in protective equipment’s by providing contact killing against pathogens. Thus, the results revealed a viable contribution to the design of functional-active materials based on a natural polymer such as chitosan. This proposal may be considered as a potential tool to inhibit the propagation and dissemination of enveloped viruses, including SARS-CoV-2.
Collapse
|
34
|
Semlali Aouragh Hassani FZ, Salim MH, Kassab Z, Sehaqui H, Ablouh EH, Bouhfid R, Qaiss AEK, El Achaby M. Crosslinked starch-coated cellulosic papers as alternative food-packaging materials. RSC Adv 2022; 12:8536-8546. [PMID: 35424799 PMCID: PMC8985150 DOI: 10.1039/d2ra00536k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 01/16/2023] Open
Abstract
In general, during the production of cellulosic materials for food-packaging applications, lignin and other amorphous components are usually removed via the pulping and multilevel bleaching process to entirely separate them from the fiber.
Collapse
Affiliation(s)
- Fatima-Zahra Semlali Aouragh Hassani
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Mohamed Hamid Salim
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Houssine Sehaqui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150, Morocco
| |
Collapse
|
35
|
Alizadeh N, Nazari F. Thymol essential oil/ β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Khajavian M, Vatanpour V, Castro-Muñoz R, Boczkaj G. Chitin and derivative chitosan-based structures - Preparation strategies aided by deep eutectic solvents: A review. Carbohydr Polym 2022; 275:118702. [PMID: 34742428 DOI: 10.1016/j.carbpol.2021.118702] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
The high molecular weight of chitin, as a biopolymer, challenges its extraction due to its insolubility in the solvents. Also, chitosan, as the N-deacetylated form of chitin, can be employed as a primary material for different industries. The low mechanical stability and poor plasticity of chitosan films, as a result of incompatible interaction between chitosan and the used solvent, have limited its industrialization. Deep eutectic solvents (DESs), as novel solvents, can solve the extraction difficulties of chitin, and the low mechanical stability and weak plasticity of chitosan films. Also, DESs can be considered for the different chitosan and chitin productions, including chitin nanocrystal and nanofiber, N,N,N-trimethyl-chitosan, chitosan-based imprinted structures, and DES-chitosan-based beads and monoliths. This review aims to focus on the preparation and characterization (chemistry and morphology) of DES-chitin-based and DES-chitosan-based structures to understand the influence of the incorporation of DESs into the chitin and chitosan structure.
Collapse
Affiliation(s)
- Mohammad Khajavian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran.
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; EcoTech Center, Gdańsk University of Technology, Gdańsk 80-233, Poland
| |
Collapse
|
37
|
Gong Y, Liu L, Wang F, Pei Y, Liu S, Lyu R, Luo X. Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Inthamat P, Boonsiriwit A, Lee YS, Siripatrawan U. Effects of genipin as natural crosslinker on barrier and mechanical properties of chitosan‐astaxanthin film. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Patthrare Inthamat
- Program in Biotechnology Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Athip Boonsiriwit
- Department of Packaging Yonsei University Wonju South Korea
- Rattanakosin International College of Creative Entrepreneurship (RICE) Rajamangala University of Technology Rattanakosin Nakhon Pathom Thailand
| | - Youn Suk Lee
- Department of Packaging Yonsei University Wonju South Korea
| | - Ubonrat Siripatrawan
- Department of Food Technology Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
39
|
Effect of sonication time and heat treatment on the structural and physical properties of chitosan/graphene oxide nanocomposite films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
41
|
Zarandona I, Minh NC, Trung TS, de la Caba K, Guerrero P. Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int J Biol Macromol 2021; 182:1331-1338. [PMID: 34000309 DOI: 10.1016/j.ijbiomac.2021.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Thermocompression was employed to prepare citric acid-crosslinked chitosan films with Aloe vera (AV) as bioactive compound. Films were easy to handle and mechanical properties did not change with the addition of AV up to 10 wt%, although both TS and EAB decreased for the films with 15 wt% AV, indicating that high AV contents would hinder intermolecular interactions among the formulation components. Maillard reaction occurred between chitosan and citric acid at the processing temperature used (115 °C), while physical interactions took place with AV, as shown by FTIR analysis. All films were insoluble but displayed hydration and limited swelling due to both physical and chemical interactions promoted by AV and citric acid, respectively. A slow AV release, governed by a Fickian diffusion controlled mechanism, and an increase of surface hydrophilicity, which favors cell adhesion, were observed.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nguyen Cong Minh
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Trang Si Trung
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
42
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Yuan Y, Zhang X, Pan Z, Xue Q, Wu Y, Li Y, Li B, Li L. Improving the properties of chitosan films by incorporating shellac nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Preparation and characterization of citric acid crosslinked konjac glucomannan/surface deacetylated chitin nanofibers bionanocomposite film. Int J Biol Macromol 2020; 164:2612-2621. [DOI: 10.1016/j.ijbiomac.2020.08.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023]
|
45
|
Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. J Control Release 2020; 327:477-499. [DOI: 10.1016/j.jconrel.2020.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
|
46
|
Silvestre WP, Baldasso C, Tessaro IC. Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr Polym 2020; 247:116676. [DOI: 10.1016/j.carbpol.2020.116676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
|
47
|
Park J, Nam J, Yun H, Jin HJ, Kwak HW. Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr Polym 2020; 254:117317. [PMID: 33357880 DOI: 10.1016/j.carbpol.2020.117317] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/04/2023]
Abstract
Fish-derived gelatin (FG), a raw material for edible films, has recently been spotlighted as an alternative source of mammalian gelatin. However, its low stability under moisture conditions and weak mechanical properties limit its application. In this study, a water-stable and mechanically robust FG film was prepared using alginate dialdehyde (ADA) as an eco-friendly crosslinking agent. The crosslinking process of FG with ADA was easily recognized by the change in the color of the FG/ADA composite film, and the browning index of the FG/ADA film could be correlated well with the actual crosslinking degree. The mechanical strength and Young's modulus of the FG/ADA composite film increased significantly with an increase in the content of the ADA crosslinker. In the case of FG/ADA10, the tensile strength and Young's modulus increased by 400 and 600 %, respectively, compared to those of FG. Remarkably, the FG-ADA crosslinking process greatly decreased the vulnerability of FG in moisture environments. Consequently, the FG/ADA10 film remained stable for 30 days under wet environment. In addition, the FG-ADA crosslinking process could enhance the antioxidative capacity of the FG/ADA edible film. According to this study, FG/ADA composite films fabricated in an effective manner using polymers derived from aquatic species like gelatin from fish and ADA from algae could have practical applications in the edible film-based packaging industry.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jeongmin Nam
- Program in Eco-Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Haesung Yun
- Corporate R&D, LG Chem., Ltd. Research Park, 104-1 Moonji-dong, Yuseong-gu, Daejeon 305-380, South Korea
| | - Hyoung-Joon Jin
- Program in Eco-Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
48
|
Raza ZA, Khalil S, Abid S. Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 2020; 160:77-100. [DOI: 10.1016/j.ijbiomac.2020.05.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
49
|
From Magneto-Dielectric Biocomposite Films to Microstrip Antenna Devices. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magneto-dielectric composites are interesting advanced materials principally due to their potential applications in electronic fields, such as in microstrip antennas substrates. In this work, we developed superparamagnetic polymer-based films using the biopolymeric matrices chitosan (Ch), cellulose (BC) and collagen (Col). For this proposal, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with polyethyleneimine with a cheap method using sonochemistry. Further, the SPIONs were dispersed into polymer matrices and the composites were evaluated regarding morphology, thermal, dielectric and magnetic properties and their application as microstrip antennas substrates. Microscopically, all tested films presented a uniform dispersion profile, principally due to polyethyleneimine coating. Under an operating frequency (fo) of 4.45 GHz, Ch, BC and Col-based SPION substrates showed moderate dielectric constant (ε′) values in the range of 5.2–8.3, 6.7–8.4 and 5.9–9.1, respectively. Furthermore, the prepared films showed no hysteresis loop, thereby providing evidence of superparamagnetism. The microstrip antennas showed considerable bandwidths (3.37–6.34%) and a return loss lower than −10 dB. Besides, the fo were modulated according to the addition of SPIONs, varying in the range of 4.69–5.55, 4.63–5.18 and 4.93–5.44 GHz, for Ch, BC and Col-based substrates, respectively. Moreover, considering best modulation of ε′ and fo, the Ch-based SPION film showed the most suitable profile as a microstrip antenna substrate.
Collapse
|
50
|
Shi X, Chen B, Tuo X, Gong Y, Guo J. Study on performance characteristics of fused deposition modeling
3D
‐printed composites by blending and lamination. J Appl Polym Sci 2020. [DOI: 10.1002/app.49926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinjian Shi
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Bicheng Chen
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| |
Collapse
|