1
|
Xu L, Liang J, Xu H, Chen Q, Liu J, Luo W, Zhao Z, Wei Z, Chen L. Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin. Int J Biol Macromol 2024; 282:137288. [PMID: 39510478 DOI: 10.1016/j.ijbiomac.2024.137288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Exo-fructanase enzymes catalyze the hydrolysis of β-2,6 and β-2,1 linkages in levan and inulin fructans, respectively, yielding fructose. In this study, we identified a multidomain exo-fructanase, Mle3A, from Microbacterium sp. XL1. Mle3A is a 124.2 kDa protein comprising a GH32 N-terminal five-bladed β-propeller structure, a GH32 C-terminal β-sandwich module, and a fibronectin type 3 domain. The recombinant enzyme rMle3A exhibited peak activity at temperatures of 50-55 °C and a pH of 5.5, demonstrating hydrolytic capabilities towards levan, inulin, sucrose, and raffinose. The activity of rMle3A on inulin was enhanced in the presence of Mn2+, Ca2+, Ba2+, Sr2+, Co2+, and Mg2+ ions. Notably, 5 mM Mn2+ increased the inulin hydrolytic activity of rMle3A by over 187 %, and the enzyme's activity was unaffected by NaCl concentrations ranging from 0 to 3 M. Purified rMle3A was effectively utilized to produce high fructose syrup from inulin, achieving a maximum fructose concentration of 26.98 g/L and 71.9 % inulin hydrolysis under optimal conditions (85 rpm, 50 °C, pH 5.5) within 2.5 h. This study introduces a new salt-tolerant, multi-ion facilitated fructanase, rMle3A, for the conversion of inulin biomass into high fructose syrup and other high-value chemicals.
Collapse
Affiliation(s)
- Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| | - Jing Liang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Jiaqi Liu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Wei Luo
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Ziyan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| |
Collapse
|
2
|
Río IMD, González-Andrade M, Portillo FVL, Olvera-Carranza C. Exploring the role of the residues into catalytic cavity of inulosucrase from Leuconostoc citreum CW28. Int J Biol Macromol 2024; 279:135159. [PMID: 39214229 DOI: 10.1016/j.ijbiomac.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Inulosucrases are enzymes capable of synthesizing inulin polymers using sucrose as the main substrate. The enzymatic activity relies on the catalytic triad within the active site and residues responsible for substrate recognition and orientation, termed carbohydrate-binding subsites. This study investigates the role of specific residues within the catalytic cavity of a truncated version of IslA4 in enzymatic catalysis. Mutants at residues S425, L499, A602, R618, F619, Y676, Y692, and R696 were constructed and characterized. Characterization results, and in silico structural comparison with other fructansucrases, reveal these residues' functional significance in catalysis. Residue S425 belongs to subsite -1; residues R618 and Y692 are part of subsite +1, and residue R696 belongs to subsites +1 and +2. Residues L499 and A602 are support residues; the former favors the formation of the fructosyl-enzyme intermediate, while the latter stabilizes the acid/base catalyst during catalysis. Residues Y676 and F619 may participate in stabilizing residues at -1/+1 subsites. This study represents the first comprehensive exploration of the structural determinants essential for enzymatic function in the inulosucrase of Leuconostoc citreum, and proposes the identity of residues involved in the -1 to +2 subsites.
Collapse
Affiliation(s)
- Ingrid Mercado-Del Río
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, 04510, Mexico
| | - Francisco Vera-López Portillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Alishah Aratboni H, Martinez M, Olvera C, Ayala M. Thermostabilization of a fungal laccase by entrapment in enzymatically synthesized levan nanoparticles. PLoS One 2024; 19:e0304242. [PMID: 39024280 PMCID: PMC11257323 DOI: 10.1371/journal.pone.0304242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024] Open
Abstract
In this work, we present a comprehensive investigation of the entrapment of laccase, a biotechnologically relevant enzyme, into levan-based nanoparticles (LNPs). The entrapment of laccase was achieved concomitantly with the synthesis of LNP, catalyzed by a truncated version of a levansucrase from Leuconostoc mesenteroides. The study aimed to obtain a biocompatible nanomaterial, able to entrap functional laccase, and characterize its physicochemical, kinetic and thermal stability properties. The experimental findings demonstrated that a colloidal stable solution of spherically shaped LNP, with an average diameter of 68 nm, was obtained. An uniform particle size distribution was observed, according to the polydispersity index determined by DLS. When the LNPs synthesis was performed in the presence of laccase, biocatalytically active nanoparticles with a 1.25-fold larger diameter (85 nm) were obtained, and a maximum load of 243 μg laccase per g of nanoparticle was achieved. The catalytic efficiency was 972 and 103 (μM·min)-1, respectively, for free and entrapped laccase. A decrease in kcat values (from 7050 min-1 to 1823 min-1) and an increase in apparent Km (from 7.25 μM to 17.73 μM) was observed for entrapped laccase, compared to the free enzyme. The entrapped laccase exhibited improved thermal stability, retaining 40% activity after 1 h-incubation at 70°C, compared to complete inactivation of free laccase under the same conditions, thereby highlighting the potential of LNPs in preserving enzyme activity under elevated temperatures. The outcomes of this investigation significantly contribute to the field of nanobiotechnology by expanding the applications of laccase and presenting an innovative strategy for enhancing enzyme stability through the utilization of fructan-based nanoparticle entrapments.
Collapse
Affiliation(s)
- Hossein Alishah Aratboni
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Cuernavaca, Morelos, Mexico
| | - Maura Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Cuernavaca, Morelos, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Cuernavaca, Morelos, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Bavaro AR, Di Biase M, Linsalata V, D’Antuono I, Di Stefano V, Lonigro SL, Garbetta A, Valerio F, Melilli MG, Cardinali A. Potential Prebiotic Effect of Inulin-Enriched Pasta after In Vitro Gastrointestinal Digestion and Simulated Gut Fermentation. Foods 2024; 13:1815. [PMID: 38928756 PMCID: PMC11202534 DOI: 10.3390/foods13121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the current study, the prebiotic potential of an innovative functional pasta enriched with 12% (w/w) inulin was investigated. To this aim, pasta was subjected to in vitro gastrointestinal digestion followed by simulated gut fermentation compared to the control pasta (CTRL) not containing inulin. The incorporation of inulin positively (p < 0.05) affected some organoleptic traits and the cooking quality of the final product, giving an overall score significantly higher than CTRL. The resultant essential amino acid content was similar in both pasta samples while the total protein content was lower in inulin-enriched pasta for the polymer substitution to durum wheat flour. The prebiotic potential of chicory inulin was preliminarily tested in in vitro experiments using seven probiotic strains and among them Lacticaseibacillus paracasei IMPC2.1 was selected for the simulated gut fermentation studies. The positive prebiotic activity score registered with the probiotic strain suggested the suitability of the inulin-enriched pasta with respect to acting as a prebiotic source favoring the growth of the probiotic strain and short chain fatty acid (SCFA) production. The present study contributes to broadening knowledge on the prebiotic efficacy of inulin when incorporated into a complex food matrix.
Collapse
Affiliation(s)
- Anna Rita Bavaro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Mariaelena Di Biase
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vito Linsalata
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Isabella D’Antuono
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy;
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Antonella Garbetta
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Francesca Valerio
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Maria Grazia Melilli
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 95126 Catania, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| |
Collapse
|
5
|
Joseph S, Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Synthesis, characterization, and application of honey stabilized inulin nanoparticles as colon targeting drug delivery carrier. Int J Biol Macromol 2024; 263:130274. [PMID: 38373569 DOI: 10.1016/j.ijbiomac.2024.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Inulin (INU) is a versatile natural polysaccharide primarily derived from chicory roots. INU possesses the unique quality of evading digestion or fermentation in the early stages of the human digestive tract, instead reaching the lower colon directly. Exploiting on this distinctive attribute, INU finds application in the creation of targeted carrier systems for delivering drugs tailored to colon-related diseases. This study presents a novel method for synthesizing highly stable and non-aggregatory inulin nanoparticles (INU NPs) by ionotropic gelation method, using calcium chloride as crosslinker and natural honey as a stabilizing agent. Different formulation and process parameters were optimized for the synthesis of monodispersed INU NPs. These INU NPs efficiently encapsulated a hydrophilic drug irinotecan hydrochloride trihydrate (IHT) and drug loaded formulation (IINPs) demonstrated excellent colloidal and storage stabilities. Notably, these IINPs exhibited pH-dependent drug release, suggesting potential for colon-specific drug delivery. Anticancer activity of the NPs was found significantly higher in comparison to IHT through cytotoxicity and apoptosis studies against human colorectal carcinoma cells. Overall, this study revealed that the INU NPs synthesized by ionotropic gelation will be an efficient nanocarrier system for colon-targeted drug delivery due to their exceptional biocompatibility and stability in stomach and upper intestinal conditions.
Collapse
Affiliation(s)
- Subin Joseph
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
6
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
7
|
Akram W, Pandey V, Sharma R, Joshi R, Mishra N, Garud N, Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int J Biol Macromol 2024; 259:129131. [PMID: 38181920 DOI: 10.1016/j.ijbiomac.2023.129131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Vikas Pandey
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Rajeev Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Ramakant Joshi
- Department of Pharmaceutics, ShriRam college of Pharmacy, Banmore 476444, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior 474011, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India.
| |
Collapse
|
8
|
Castrejón-Carrillo S, Morales-Moreno LA, Rodríguez-Alegría ME, Zavala-Padilla GT, Bello-Pérez LA, Moreno-Zaragoza J, López Munguía A. Insights into the heterogeneity of levan polymers synthesized by levansucrase Bs-SacB from Bacillus subtilis 168. Carbohydr Polym 2024; 323:121439. [PMID: 37940304 DOI: 10.1016/j.carbpol.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Levan is an enzymatically synthesized fructose polymer with widely reported structural heterogeneity depending on the producing levansucrase, the reaction conditions employed for its synthesis and the characterization techniques. We studied here the specific properties of levan produced by recombinant levansucrase from B. subtilis 168 (Bs-SacB), often characterized as a bimodal distribution, that is, a mixture of low and high molecular weight levan. We found significant differences between both levans in terms of the already reported molecular weight, size and morphology using different analytical methods. The low molecular weight levan consists of a non-uniform polymer ranging from 50 to 230 kDa, synthesized through a non-processive mechanism that can spontaneously form spherical nanoparticles in the reaction medium. In contrast, high molecular weight levan is a uniform polymer, most probably synthesized through a processive mechanism, with an average molecular weight of 30,750 kDa and a poorly defined nano-structure. This is the first report exploring differences in morphology between low and high molecular weight levans. Our findings demonstrate that only the low molecular weight levan forms spherical nanoparticles in the reaction medium and that high molecular weight levan is mainly composed of a 33,000 kDa fraction with a microgel behavior.
Collapse
Affiliation(s)
- Sol Castrejón-Carrillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Alberto Morales-Moreno
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - María Elena Rodríguez-Alegría
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Guadalupe Trinidad Zavala-Padilla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Arturo Bello-Pérez
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Josué Moreno-Zaragoza
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Agustín López Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
9
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
10
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Ayala-Fuentes JC, Soleimani M, Magaña JJ, Gonzalez-Meljem JM, Chavez-Santoscoy RA. Novel Hybrid Inulin-Soy Protein Nanoparticles Simultaneously Loaded with (-)-Epicatechin and Quercetin and Their In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101615. [PMID: 37242034 DOI: 10.3390/nano13101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
(-)-Epicatechin and quercetin have attracted considerable attention for their potential therapeutic application in non-communicable chronic diseases. A novel hybrid inulin-soy protein nanoparticle formulation was simultaneously loaded with (-)-epicatechin and quercetin (NEQs) to improve the bioavailability of these flavonoids in the human body, and NEQs were synthesized by spray drying. After process optimization, the physicochemical and functional properties of NEQs were characterized including in vitro release, in vitro gastrointestinal digestion, and cell viability assays. Results showed that NEQs are an average size of 280.17 ± 13.42 nm and have a zeta potential of -18.267 ± 0.83 mV in the organic phase. Encapsulation efficiency of (-)-epicatechin and quercetin reached 97.04 ± 0.01 and 92.05 ± 1.95%, respectively. A 3.5% soy protein content conferred controlled release characteristics to the delivery system. Furthermore, NEQs presented inhibitory effects in Caco-2, but not in HepG-2 and HDFa cell lines. These results contribute to the design and fabrication of inulin-soy protein nanoparticles for improving the bioavailability of multiple bioactive compounds with beneficial properties.
Collapse
Affiliation(s)
- Jocelyn C Ayala-Fuentes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Maryam Soleimani
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Mexico City 14380, Mexico
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | | | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
12
|
Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P, Jha SK, Jha NK, Alkhanani MF, Singh V, Haque S. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol 2023; 388:110083. [PMID: 36708610 DOI: 10.1016/j.ijfoodmicro.2022.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
This is proven for a long that the incorporation of probiotics and prebiotics in diet exhibits beneficial effects on intestinal and intrinsic health. Nevertheless, this may encounter loss of vitality all along the absorption in the gastrointestinal tract, leading to meager intestinal delivery of probiotic active ingredients. In recent times, nanotechnology has been passionately used to escalate the bioavailability of active ingredients. Versatile forms of nanoparticles (NPs) are devised to be used with probiotics/prebiotics/synbiotics or their different combinations. The NPs currently in trend are constituted of distinctive organic compounds like carbohydrates, proteins, fats, or inorganics such as oxides of silver and titanium or magnesium etc. This review critically explicates the emerging relationship of nanotechnology with probiotics and prebiotics for different applications in neutraceuticals. Here in this review, formulations of nanoprobiotics and nanoprebiotics are discussed in detail, which behave as an effective drug delivery system. In addition, these formulations exhibit anti-cancerous, anti-microbial, anti-oxidant and photo-protective properties. Limited availability of scientific research on nanotechnology concerning probiotics and prebiotics implies dynamic research studies on the bioavailability of loaded active ingredients and the effective drug delivery system by including the safety issues of food and the environment.
Collapse
Affiliation(s)
- Priya Dangi
- Department of Food & Nutrition and Food Technology, University of Delhi, Institute of Home Economics, New Delhi, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Nagaur, Agriculture University, Jodhpur, Rajasthan, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amardeep Singh Virdi
- Department of Food Science and Technology, Amity University, Mohali, Punjab, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | | | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mustfa F Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafr Al Batin 31991, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226021, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
13
|
Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects: fabrication, structural characterization and property evaluation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Recent advances in oral delivery of bioactive molecules: Focus on prebiotic carbohydrates as vehicle matrices. Carbohydr Polym 2022; 298:120074. [DOI: 10.1016/j.carbpol.2022.120074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
16
|
Bhanja A, Sutar PP, Mishra M. Inulin-A polysaccharide: Review on its functional and prebiotic efficacy. J Food Biochem 2022; 46:e14386. [PMID: 36166490 DOI: 10.1111/jfbc.14386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
The intake of dietary fibers in the regular diet results in boosting the gut microbiome and health of the host in several ways. The misapprehension about such dietary fibers of being only an indigestible product has changed into indispensable ingredient that has to be included in every healthy diet. Inulin is considered to be an important naturally occurring fructan classified under such dietary fibers. The present review intends to provide a thorough knowledge on inulin in maintaining the gut microbiome of the human, supported by several studies conducted on the Drosophila melanogaster, mice, rat models as well as effect on human being. The extraction process of inulin has also been described in this review that would provide a brief knowledge about its stability and the conditions that have been optimized by the researchers in order to obtain a stable product. PRACTICAL APPLICATIONS: In order to meet the consumers demand, the food industries are trying to come up with new products that could eventually replace or lower the utilization of medically avail drugs and satisfy consumers by providing them with health benefits. The availability of functional food is the new trend that can improve health of the consumers with minimal use of the drugs. Therefore, inulin as a prebiotic can be utilized to produce several functional food products that could promote health benefits to the consumers. Apart from this, the review also justifies the efficacy of inulin as a fat replacer, stabilizer, and humectant in cosmetic industries. Research also suggests that inulin has also been used as nanoparticles in pharmaceutical industries. The overall review also depicts the different extraction process of inulin from different sources.
Collapse
Affiliation(s)
- Amrita Bhanja
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
17
|
Charoenwongpaiboon T, Wangpaiboon K, Septham P, Jiamvoraphong N, Issaragrisil S, Pichyangkura R, Lorthongpanich C. Production and bioactivities of nanoparticulated and ultrasonic-degraded levan generated by Erwinia tasmaniensis levansucrase in human osteosarcoma cells. Int J Biol Macromol 2022; 221:1121-1129. [PMID: 36115448 DOI: 10.1016/j.ijbiomac.2022.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Levan is a bioactive polysaccharide that can be synthesized by various microorganisms. In this study, the physicochemical properties and bioactivity of levan synthesized by recombinant levansucrase from Erwinia tasmaniensis were investigated. The synthesis conditions, including the enzyme concentration, substrate concentration, and temperature, were optimized. The obtained levan generally appeared as a cloudy suspension. However, it could transform into a hydrogel at concentrations exceeding 10 % (w/v). Then, ultrasonication was utilized to reduce the molecular weight and increase the bioavailability of levan. Dynamic light scattering (DLS) and gel permeation chromatography (GPC) indicated that the size of levan was significantly decreased by ultrasonication, whereas Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance, and X-ray powder diffraction revealed that the chemical structure of levan was not changed. Finally, the bioactivities of both levan forms were examined using human osteosarcoma (Saos-2) cells. The result clearly illustrated that sonicated levan had higher antiproliferative activity in Saos-2 cells than original levan. Sonicated levan also activated Toll-like receptor expression at the mRNA level. These findings suggested the important beneficial applications of sonicated levan for the development of cancer therapies.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapasri Septham
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
18
|
Ayala-Fuentes JC, Gallegos-Granados MZ, Villarreal-Gómez LJ, Antunes-Ricardo M, Grande D, Chavez-Santoscoy RA. Optimization of the Synthesis of Natural Polymeric Nanoparticles of Inulin Loaded with Quercetin: Characterization and Cytotoxicity Effect. Pharmaceutics 2022; 14:pharmaceutics14050888. [PMID: 35631474 PMCID: PMC9147723 DOI: 10.3390/pharmaceutics14050888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin is a bioactive component that is capable of having therapeutic potential in the prevention of different noncommunicable chronic diseases (NCDs). However, it presents instability in the gastrointestinal tract in addition to low bioavailability. One way to overcome the limitations of quercetin lies in using nanotechnology for the development of nanoparticles, based on biopolymers, that are capable of being ingestible. Inulin, a fructan-type polysaccharide, acts as a delivery system for the release of quercetin in a target cell, guaranteeing the stability of the molecule. Inulin-coated quercetin nanoparticles were synthesized by the spray dryer method, and four variables were evaluated, namely inulin concentration (5–10% w/v), feed temperature (40–60 °C), inlet temperature (100–200 °C) and outlet temperature (60–100 °C). The optimal conditions were obtained at 10% w/v inulin concentration, with 45 °C feed temperature, 120 °C inlet temperature and 60 °C outlet temperature, and the nanoparticle size was 289.75 ± 16.3 nm in water. Fluorescence microscopy indicated quercetin loading in the inulin nanoparticles, with an encapsulation efficiency of approximately 73.33 ± 7.86%. Inulin-coated quercetin nanoparticles presented effects of inhibition in Caco-2 and HepG2 cells, but not in HDFa cells. The experimental data showed the potential of inulin nanoparticles as transport materials for unstable molecules, in oral administration systems, for the encapsulation, protection and release of quercetin.
Collapse
Affiliation(s)
- Jocelyn C. Ayala-Fuentes
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Melissa Zulahi Gallegos-Granados
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (M.Z.G.-G.); (L.J.V.-G.)
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (M.Z.G.-G.); (L.J.V.-G.)
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22260, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Daniel Grande
- Univ Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), 2, rue Henri Du-nant, 94320 Thiais, France;
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
- Correspondence:
| |
Collapse
|
19
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
20
|
Ni D, Zhang S, Kırtel O, Xu W, Chen Q, Öner ET, Mu W. Improving the Thermostability and Catalytic Activity of an Inulosucrase by Rational Engineering for the Biosynthesis of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13125-13134. [PMID: 34618455 DOI: 10.1021/acs.jafc.1c04852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermostability and enzymatic activity are two vital indexes determining the application of an enzyme on an industrial scale. A truncated inulosucrase, Laga-ISΔ138-702, from Lactobacillus gasseri showed high catalysis activity. To further enhance its thermostability and activity, multiple sequence alignment (MSA) and rational design based on the modeled structure were performed. Variants A446E, S482A, I614M, and A627S were identified with an improved denaturation temperature (Tm) of more than 1 °C. A combinational mutation method was further carried out to explore the synergistic promotion effects of single-point mutants. Additionally, 33 residues at the N-terminus were truncated to construct mutant M4N-33. The half-life of M4N-33 at 55 °C increased by 120 times compared to that of Laga-ISΔ138-702, and the relative activity of M4N-33 increased up to 152% at the optimal pH and temperature (pH 5.5 and 60 °C). Molecular dynamics (MD) simulations illustrated the decreased b-factor of the surface loop of M4N-33.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Onur Kırtel
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ebru Toksoy Öner
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
21
|
Charoenwongpaiboon T, Wangpaiboon K, Pichyangkura R, Nepogodiev SA, Wonganan P, Mahalapbutr P, Field RA. Characterization of a nanoparticulate exopolysaccharide from Leuconostoc holzapfelii KM01 and its potential application in drug encapsulation. Int J Biol Macromol 2021; 187:690-698. [PMID: 34343579 DOI: 10.1016/j.ijbiomac.2021.07.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 11/21/2022]
Abstract
Fermentation of Lactic Acid Bacteria (LAB) is considered to be a sustainable approach for polysaccharide production. Herein, exopolysaccharide (EPS)-producing LAB strain KM01 was isolated from Thai fermented dessert, Khao Mak, which was then identified as Leuconostoc holzapfelii. High-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy suggested that the KM01 EPS comprises α-1,6-linked glucosides. The molecular weight of KM01 EPS was around 500 kDa, but it can form large aggregates formation (MW > 2000 kDa) in an aqueous solution, judged by transmission electron microscopy and dynamic light scattering to be around 150 nm in size. Furthermore, this KM01 EPS form highly viscous hydrogels at concentrations above 5% (w/v). The formation of hydrogels and nanoparticle of KM01 EPS was found to be reversible. Finally, the suitability of KM01 EPS for biomedical applications was demonstrated by its lack of cytotoxicity and its ability to form complexes with quercetin. Unlike the common α-1,6-linked dextran, KM01 EPS can enhance the solubility of quercetin significantly.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
22
|
Zhang S, Song Z, Shi L, Zhou L, Zhang J, Cui J, Li Y, Jin DQ, Ohizumi Y, Xu J, Guo Y. A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr Polym 2021; 270:118365. [PMID: 34364610 DOI: 10.1016/j.carbpol.2021.118365] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
In this study, an inulin fructan (TMP50-2) with moderate anti-tumor activity was obtained from dandelion. To further improve the anti-tumor activity of TMP50-2, a monodisperse and stable spherical nanoparticle (Tw-TMP-SeNP, 50 nm) was fabricated. Physico-chemical analysis revealed that TMP50-2 and Tween 80 were tightly wrapped on the surface of SeNPs by forming CO⋯Se bonds or through hydrogen bonding interaction (OH⋯Se). In vitro anti-tumor assay showed that Tw-TMP-SeNP treatment could significantly inhibit the proliferation of cancer cells (HepG2, A549, and HeLa) in a dose-dependent manner, while HepG2 cells were more susceptible to Tw-TMP-SeNP with an IC50 value of 46.8 μg/mL. The apoptosis induction of HepG2 cells by Tw-TMP-SeNP was evidenced by increasing the proportion of apoptotic cells ranging from 12.5% to 27.4%. Furthermore, in vivo zebrafish model confirmed the anti-tumor activity of Tw-TMP-SeNP by inhibiting the proliferation and migration of tumor cells as well as the angiogenesis of zebrafish embryos.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
23
|
Ashaolu TJ. Emerging applications of nanotechnologies to probiotics and prebiotics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang550000Vietnam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang550000Vietnam
| |
Collapse
|
24
|
Efficient production of inulin and oligosaccharides using thermostable inulosucrase from Lactobacillus jensenii. Int J Biol Macromol 2020; 165:1250-1257. [DOI: 10.1016/j.ijbiomac.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
|
25
|
Ramachandraiah K, Hong GP. Polymer Based Nanomaterials for Strategic Applications in Animal Food Value Chains. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1821212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
26
|
Evans KO, Skory C, Compton DL, Cormier R, Côté GL, Kim S, Appell M. Development and Physical Characterization of α-Glucan Nanoparticles. Molecules 2020; 25:E3807. [PMID: 32825708 PMCID: PMC7503850 DOI: 10.3390/molecules25173807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
α-Glucans that were enzymatically synthesized from sucrose using glucansucrase cloned from Leuconostoc mesenteroides NRRL B-1118 were found to have a glass transition temperature of approximately 80 °C. Using high-pressure homogenization (~70 MPa), the α-glucans were converted into nanoparticles of ~120 nm in diameter with a surface potential of ~-3 mV. Fluorescence measurements using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the α-glucan nanoparticles have a hydrophobic core that remains intact from 10 to 85 °C. α-Glucan nanoparticles were found to be stable for over 220 days and able to form at three pH levels. Accelerated exposure measurements demonstrated that the α-glucan nanoparticles can endure exposure to elevated temperatures up to 60 °C for 6 h intervals.
Collapse
Affiliation(s)
- Kervin O. Evans
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N, University Street, Peoria, IL 61604, USA; (C.S.); (D.L.C.); (R.C.); (G.L.C.)
| | - Christopher Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N, University Street, Peoria, IL 61604, USA; (C.S.); (D.L.C.); (R.C.); (G.L.C.)
| | - David L. Compton
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N, University Street, Peoria, IL 61604, USA; (C.S.); (D.L.C.); (R.C.); (G.L.C.)
| | - Ryan Cormier
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N, University Street, Peoria, IL 61604, USA; (C.S.); (D.L.C.); (R.C.); (G.L.C.)
| | - Gregory L. Côté
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N, University Street, Peoria, IL 61604, USA; (C.S.); (D.L.C.); (R.C.); (G.L.C.)
| | - Sanghoon Kim
- Plant Polymer Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N. University Street, Peoria, IL 61604, USA;
| | - Michael Appell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N. University Street, Peoria, IL 61604, USA;
| |
Collapse
|
27
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
28
|
Ni D, Zhu Y, Xu W, Pang X, Lv J, Mu W. Production and Physicochemical Properties of Food-Grade High-Molecular-Weight Lactobacillus Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5854-5862. [PMID: 32366099 DOI: 10.1021/acs.jafc.9b07894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inulin has been widely applied in food, pharmaceuticals, and many other fields because of its versatile physicochemical properties and physiological functions. Previous research showed that inulosucrase from microorganisms could produce higher-molecular-weight inulin than vegetal inulin. Herein, a food-grade recombinant Bacillus subtilis expression system was constructed to produce inulosucrase from Lactobacillus gasseri DSM 20604 without antibiotic resistance genes. The produced inulosucrase was used to biosynthesize inulin with an average molecular weight of 5.8 × 106 Da. The physicochemical properties of the produced Lactobacillus inulin were evaluated including microstructure, thermal characteristics, crystallinity, rheological behaviors, and storage stability. By comparing with vegetal inulin and other polymers, the biosynthesized microbial inulin showed some superior properties, such as better gel-forming capability and storage stability in aqueous solution than vegetal inulin. These results opened up possibilities for further investigations aimed at developing microbial inulin in the food industry.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int J Mol Sci 2020; 21:E2285. [PMID: 32225036 PMCID: PMC7177810 DOI: 10.3390/ijms21072285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last few years, the application of nanotechnology to nutraceuticals has been rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together with the discussion of emerging applications of nanotechnologies in their formulation. Current research strategies are also discussed, in particular the promising use of nanofibers for the delivery of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the scientific literature, research on this prominent field is needed, covering effectiveness, bioavailability, and safety aspects.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, 9th km of Farah Abad Road, Mazandaran, 48181 68984 Sari, Iran
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Atanas G Atanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici (Napoli), Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
30
|
Charoenwongpaiboon T, Wangpaiboon K, Panpetch P, Field RA, Barclay JE, Pichyangkura R, Kuttiyawong K. Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydr Polym 2019; 223:115044. [DOI: 10.1016/j.carbpol.2019.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
|