1
|
Zou CY, Han C, Xing F, Jiang YL, Xiong M, Li-Ling J, Xie HQ. Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions. Bioact Mater 2025; 45:459-478. [PMID: 39697242 PMCID: PMC11653154 DOI: 10.1016/j.bioactmat.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| |
Collapse
|
2
|
Darya G, Mohammadi H, Dehghan Z, Nakhaei A, Derakhshanfar A. Animal models of hemorrhage, parameters, and development of hemostatic methods. Lab Anim Res 2025; 41:5. [PMID: 39901216 PMCID: PMC11789289 DOI: 10.1186/s42826-025-00239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Hemorrhage is a prevalent side effect of various injuries and can be life-threatening in certain instances. It is categorized into compressible and non-compressible types, each necessitating distinct modeling, laboratory assessments, and hemostatic approaches. This study utilized the keywords Hemorrhage, Bleeding, Animal Modeling, and Hemostat in reputable databases. The findings indicate that femoral artery hemorrhage and hepatic parenchymal hemorrhage are the predominant modeling techniques for compressible and non-compressible bleeding, respectively. Furthermore, it is noted that animal models of compressible hemorrhages are primarily situated in superficial body areas to investigate dressing or additive hemostats, while non-compressible hemorrhage models, typically located in visceral organs, are employed to examine adhesive or surgical instrument-based hemostats.
Collapse
Affiliation(s)
- Gholamhossien Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Mohammadi
- Department of Pediatric, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nakhaei
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Abedi M, Arbabi M, Gholampour R, Amini J, Barandeh Z, Hosseini S, Abedi A, Gholibegloo E, Zomorrodian H, Raoufi M. Zinc oxide nanoparticle-embedded tannic acid/chitosan-based sponge: A highly absorbent hemostatic agent with enhanced antimicrobial activity. Int J Biol Macromol 2025; 300:140337. [PMID: 39870272 DOI: 10.1016/j.ijbiomac.2025.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm. Compression tests indicated that the incorporation of ECH enhanced the compressive strength of the TA/CS sample, increasing from 0.614 MPa to 1.03 MPa for TA/CS-ECH and 1.16 MPa for ZnO@TA/CS-ECH, while preserving its flexibility. ZnO@TA/CS-ECH sponges exhibited high swelling ratios, consistent with their mesoporous structure revealed by porosity analysis. MTT assays confirmed that the addition of ECH did not adversely affect the biocompatibility of the final ZnO@TA/CS-ECH sample. Hemostatic performance was assessed through prothrombin time (PT), activated partial thromboplastin time (aPTT), blood clotting index (BCI), blood clotting time (BCT) assays, and platelet adhesion imaging. ZnO@TA/CS-ECH significantly reduced the BCT of untreated blood from 349 to 49 s, outperforming Celox™ (182 s). This performance was further confirmed using a rat liver hemostatic model. Moreover, ZnO@TA/CS-ECH demonstrated substantial antimicrobial activity against E. coli, S. aureus, and C. albicans, comparable to standard antibiotics and antifungals. These findings suggest that the three-dimensional ZnO@TA/CS-ECH sponge holds promise in managing infected bleeding and inspiring the next-generation of hemostatic agents.
Collapse
Affiliation(s)
- Mehdi Abedi
- University of San Francisco, Data Science and Statistical Analysis Group, San Francisco, CA 94117-1080. USA
| | - Mostafa Arbabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Razieh Gholampour
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Javid Amini
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Zahra Barandeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Shayan Hosseini
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Ali Abedi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Elham Gholibegloo
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | | | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Aktischicht Wound Care Solutions, Frankfurt, Germany; Aktischicht-Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany.
| |
Collapse
|
4
|
Hou D, Wang Y, Qi L, Wang C, Deng J, Zhao X, Geng X, Sun Q, Ye L, Guo Z. A facile way to fabricate a thrombin immobilized composite sponge with dual hemostatic effects for acute hemorrhage control. BIOMATERIALS ADVANCES 2025; 166:214037. [PMID: 39276658 DOI: 10.1016/j.bioadv.2024.214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/23/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Uncontrolled bleeding and excessive blood loss stand as the leading causes of death in complex surgeries, civilian traumas, and military operations. Sponges have been used for developing efficiency hemostats, but most commonly used hemostatic sponges possess only one single coagulation mechanism or lack inherent blood clotting ability. Herein, we proposed simple yet innovative approaches for creating novel hemostatic composite sponges with dual hemostatic effects. Bacterial cellulose (BC) was first introduced into polyvinyl alcohol (PVA) matrix to develop a BC/PVA (CP) sponge featuring a unique cellulose-embedded porous network structure and desirable properties. Subsequently, thrombin was immobilized on CP through an easy method that combines physical adsorption and covalent binding to fabricate thrombin-carrying CP (TCP) composite sponges. The resulting composites boasted a highly porous structure, outstanding liquid-absorption capacity, low hemolysis rate, and superior biocompatibility. In vitro clotting tests revealed that TCP displayed potent coagulation capabilities, a rapid blood absorption rate, and the ability to stimulate and activate blood components along with the coagulation cascade. In vivo hemostatic assessments further confirmed that TCP offered high hemostatic efficiency and multifaceted hemostatic effects, making it suitable for the management of acute and severe bleeding.
Collapse
Affiliation(s)
- Dandan Hou
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yansen Wang
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Liya Qi
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Chunyao Wang
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jingqian Deng
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xiaohuan Zhao
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Sun
- Center for Stomatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Zifang Guo
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
| |
Collapse
|
5
|
Shuo T, Haoting N, Yuqing W, Liuyun J, Xiang H. A natural carboxylated sisal fiber/chitosan/kaolin porous sponge for rapid and effective hemostasis. Int J Biol Macromol 2024; 283:137618. [PMID: 39551291 DOI: 10.1016/j.ijbiomac.2024.137618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
To improve chitosan hemostasis, carboxylated sisal fiber and kaolin were introduced to obtain carboxylated sisal fiber/chitosan/kaolin (SF/CS/K) composite sponges (the weight ratio of 3: 3:4, 4:4:2, 5:5:0) by freeze-drying method. The results showed that the ionic cross-linking of the carboxylated sisal fiber with chitosan and kaolin-loading endowed the composite sponges with not only oriented groove porous structure, high mechanical strength, porosity, water absorption and compress recovery, but also suitable biodegradation, good cytocompatibility, hemocompatibility, protein adsorption, antibacterial activity. Especially, compared with commercial gelatin hemostatic sponges, the composite sponge of SF/CS/K displayed better coagulation ability and hemostatic effect, and animal experiments further demonstrated that the bleeding amount and hemostatic time of SF/CS/K were greatly reduced in rat hemostatic models of tail amputation, femoral vein trauma and liver injury, owing to the synergistic hemostatic effect of chitosan, kaolin and sisal fiber, as well as the groove porous structure, which endowed them with strong adhesion for red blood cells. Conclusively, SF/CS/K2 composite sponge had the best hemostatic effect because of the most appropriate component ratio, which is a novel promising natural hemostatic sponge for effective and rapid hemostasis in deep massive bleeding sites.
Collapse
Affiliation(s)
- Tang Shuo
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Niu Haoting
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Wang Yuqing
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Jiang Liuyun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Hu Xiang
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
6
|
Chowdhury MFM, Khan MN, Rahman MM. Metal nanoparticles incorporated chitosan-based electrospun nanofibre mats for wound dressing applications: A review. Int J Biol Macromol 2024; 282:137352. [PMID: 39522916 DOI: 10.1016/j.ijbiomac.2024.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Wound healing is a dynamic physiological process essential for regenerating skin and maintaining coherence in hypodermic tissues. Chitosan-based electrospun nanofibre wound dressings show great promise for expediting the integration of skin and tissues due to their nano-topographic, biodegradable, biocompatible, and antimicrobial properties. However, their moderate bactericidal efficacy and limited mechanical strength hinder their widespread clinical application. The incorporation of specific metal nanoparticles (MNPs) and the functionalization of chitosan have brought attention to their crucial role in wound healing applications, yielding promising results by enhancing antibacterial properties, cell proliferation, cell signaling, and the mechanical robustness of the materials. Chitosan naturally mitigates the cytotoxicity of the incorporated metal nanoparticles within the nanofibers. Chitosan and modified chitosan-based electrospun mats incorporated with metal nanoparticles demonstrate substantial potential for expediting wound healing. This review offers a comprehensive overview of recent advancements in electrospun chitosan-based mats containing MNPs aimed at enhancing wound healing. It covers various aspects, including modification techniques, fabrication methods, wound closure mechanisms, MNP release profiles, histological considerations, addresses existing challenges, and outlines potential future developments.
Collapse
Affiliation(s)
- Mohammed Farhad Mahmud Chowdhury
- Bangladesh University of Textiles, Dhaka, Bangladesh; Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Nuruzzaman Khan
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammad Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Zhang S, Jiang T, Li M, Sun H, Wu H, Wu W, Li Y, Jiang H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater Sci Eng 2024; 10:6790-6813. [PMID: 39467733 DOI: 10.1021/acsbiomaterials.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of novel wound dressings is critical in medical care. Graphene and its derivatives possess excellent biomedical properties, making them highly suitable for various applications in medical dressings. This review provides a comprehensive technical analysis and the current application status of graphene-based medical dressings. Initially, we discuss the chemical structure and the fabrication method of graphene and its derivatives. We then provide a detailed summary of the mechanisms by which graphene materials promote wound repair across the four stages of wound healing. Subsequently, we categorize the types of graphene-based wound dressings and analyze corresponding characteristics. Finally, we analyze the challenges encountered at present and propose solutions regarding future development trends. This paper aims to serve as a reference for further research in skin tissue engineering and the development of innovative graphene-based medical dressings.
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No. 157 Health Road, Harbin 150001, People's Republic of China
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| |
Collapse
|
8
|
Ms M, Venkatasubbu GD. Modulating Coagulation via Bioinspired Mesoporous Calcium-Decorated Silica Nanoparticles for Efficient Fibrin Clot Formation. ACS APPLIED BIO MATERIALS 2024; 7:6998-7008. [PMID: 39307996 DOI: 10.1021/acsabm.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Blood clotting is vital for preventing bleeding after an injury. Hemostasis is a complex cascade involving numerous plasma proteins. Uncontrolled bleeding leads to mortality. The presence of Ca (calcium) activates and promotes the different phases in the coagulation cascade. Even nonbiological surfaces such as silicates may activate coagulation factor XII (FXII). This causes the clotting of the blood. The exceptional hemostatic ability of the mesoporous calcium-decorated silica nanoparticles (MCSNs) is achieved by stimulating the factors needed to form fibrin mesh, a durable clot, thereby establishing hemostasis. This may be used as a hemostatic agent during an accident surgical procedure and other bleeding-related trauma conditions. This study investigates the mechanistic activation of the coagulation cascade by MCSN through blood coagulation index, clotting time, and coagulation activation studies like PT and aPTT. Our finding demonstrates that MCSN induces platelet adhesion and RBC aggregation and activates thrombin generation through distinct pathways.
Collapse
Affiliation(s)
- Marvaan Ms
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Katankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - G Devanand Venkatasubbu
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Katankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
9
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
10
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Yu C, Lu Y, Pang J, Li L. A hemostatic sponge derived from chitosan and hydroxypropylmethylcellulose. J Mech Behav Biomed Mater 2024; 150:106240. [PMID: 37992582 DOI: 10.1016/j.jmbbm.2023.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.
Collapse
Affiliation(s)
- Chunyan Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanju Lu
- College of Chemical Engineering, Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, International Innovation Highland of Forest Products Chemistry and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Pang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
12
|
Liu T, Liu S, Shi Y, Zhang Z, Ding S, Hou K, Zhang W, Meng X, Li F. Electrospun nanofiber membranes for rapid liver hemostasis via N-alkylated chitosan doped chitosan/PEO. Int J Biol Macromol 2024; 258:128948. [PMID: 38143056 DOI: 10.1016/j.ijbiomac.2023.128948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The ideal hemostatic agents should be able to stop bleeding quickly and avoid secondary bleeding caused by adhesion with blood clots during dressing change. Herein, a hydrophobic electrospun nanofiber membrane was prepared for achieving hemostasis, rationally targeting both attributes, via doping N-alkylated chitosan (N-CS) grafted with octadecyl into chitosan/polyethylene oxide (PEO). In vitro and in vivo coagulation tests showed that CPNs doped with small amounts of N-CS (CPN31) could significantly shorten hemostasis time and promote the formation of more stable and stronger blood clots. In particular, the whole blood clotting time of CPN31 (58.8 ± 2.2 s) was significantly lower than that of chitosan/PEO (CPN0) nanofiber membrane (67 ± 3.5 s) and the medical sterile gauze (86.7 ± 0.6 s). Furthermore, due to the hemophobic nature of CPNs, blood wetting of the dressing was severely limited and blood can coagulated at the site of liver injury in rats, thus reducing blood loss and allowing rapid removal of the dressing without triggering secondary hemorrhage. The CPN31 exhibited excellent hemostasis properties, easy to remove, blood compatibility, biocompatibility and promoting fibroblast proliferation properties. This hydrophobic CPNs is a promising biological adhesive for hemorrhage control.
Collapse
Affiliation(s)
- Tao Liu
- Medical Support Technology Research Department, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhan Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Shi
- Medical Support Technology Research Department, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Zhuoran Zhang
- General Hospital of Xinjiang Military Command, Xinjiang 830002, China
| | - Sheng Ding
- Medical Support Technology Research Department, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Kexin Hou
- Medical Support Technology Research Department, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Wen Zhang
- Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of Novel Sustained and Controlled Release Formulations and Targeted Drug Delivery Systems, Jinan 250101, Shandong Province, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fan Li
- Medical Support Technology Research Department, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China.
| |
Collapse
|
13
|
Yi K, Miao S, Yang B, Li S, Lu Y. Harnessing the Potential of Chitosan and Its Derivatives for Enhanced Functionalities in Food Applications. Foods 2024; 13:439. [PMID: 38338575 PMCID: PMC10855628 DOI: 10.3390/foods13030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
As one of the most abundant natural polysaccharides that possess good biological activity, chitosan is extracted from chitin. Its application in the food field is being increasingly valued. However, chitosan extraction is difficult, and its poor solubility limits its application. At present, the extraction methods include the acid-base method, new chemical methods, and biological methods. The extraction rates of chitin/chitosan are 4-55%, 13-14%, and 15-28%, respectively. Different chemical modifications have different effects on chitosan, making it applicable in different fields. This article reviews and compares the extraction and chemical modification methods of chitosan, emphasizing the importance of green extraction methods. Finally, the application prospects of chitosan in the food industry are discussed. This will promote the understanding of the advantages and disadvantages of different extraction methods for chitosan as well as the relationship between modification and application, providing valuable insights for the future development of chitosan.
Collapse
Affiliation(s)
- Kexin Yi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
| | - Bixing Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Sijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
14
|
Cui H, Cai J, He H, Ding S, Long Y, Lin S. Tailored chitosan/glycerol micropatterned composite dressings by 3D printing for improved wound healing. Int J Biol Macromol 2024; 255:127952. [PMID: 37951437 DOI: 10.1016/j.ijbiomac.2023.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Wound infection control is a primary clinical concern nowadays. Various innovative solutions have been developed to fabricate adaptable wound dressings with better control of infected wound healing. This work presents a facile approach by leveraging 3D printing to fabricate chitosan/glycerol into composite dressings with tailored micropatterns to improve wound healing. The bioinks of chitosan/glycerol were investigated as suitable for 3D printing. Then, three tailored micropatterns (i.e., sheet, strip, and mesh) with precise geometry control were 3D printed onto a commercial dressing to fabricate the micropatterned composite dressings. In vitro and in vivo studies indicate that these micropatterned dressings could speed up wound healing due to their increased water uptake capacity (up to ca. 16-fold@2 min), benign cytotoxicity (76.7 % to 90.4 % of cell viability), minor hemolytic activity (<1 %), faster blood coagulation effects (within 76.3 s), low blood coagulation index (14.5 % to 18.7 % @ 6 min), enhanced antibacterial properties (81.0 % to 86.1 % against S. aureus, 83.7 % to 96.5 % against E. coli), and effective inhibition of wound inflammation factors of IL-1β and TNF-α. Such tailored micropatterned composite dressing is facile to obtain, highly reproducible, and cost-efficient, making it a promising implication for improved and personalized contaminated wound healing.
Collapse
Affiliation(s)
- Haoran Cui
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Junjie Cai
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China; Bethune International Peace Hospital, Shijiazhuang 050051, People's Republic of China
| | - Hanjiao He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Yi Long
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China.
| | - Song Lin
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China.
| |
Collapse
|
15
|
Ren Z, Li M, Wang F, Qiao J, Kaya MGA, Tang K. Antibacterial chitosan-based composite sponge with synergistic hemostatic effect for massive haemorrhage. Int J Biol Macromol 2023; 252:126344. [PMID: 37586621 DOI: 10.1016/j.ijbiomac.2023.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Uncontrollable acute bleeding and wound infection pose significant challenges in emergency treatment and surgical operations. Therefore, the research and development of highly efficient antibacterial hemostatic agents are of great importance in reducing the mortality rate among patients with massive hemorrhage. In this study, we utilized hydrophobically modified chitosan (HM-CS) and gallic acid chitosan (GA-CS) to create a composite sponge (HM/GA-CS) that exhibits complementary advantages. The composite sponge combines the alkyl chain and polyphenol structure, allowing it to adsorb blood cells and plasma proteins simultaneously. This synergistic effect was confirmed through various tests, including blood cell adhesion, plasma protein barrier behavior, and in vitro hemostatic testing. Furthermore, experiments conducted on a rat liver injury model demonstrated that the composite sponge achieved rapid coagulation within 52 s, resulting in significantly lower bleeding volume compared with traditional gauze. In addition, the incorporation of GA-CS into HM-CS enhanced the antibacterial properties of the composite sponge. The antibacterial rate of the composite sponge against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 100 % and 98.2 %, respectively. To evaluate its biocompatibility, the composite sponge underwent blood compatibility and cell activity tests, confirming its suitability. The HM/GA-CS sponge holds promising applications in managing cases of massive hemorrhage.
Collapse
Affiliation(s)
- Zhitao Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengya Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Fang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jialu Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mǎdǎlina Georgiana Albu Kaya
- Collagen Department, INCDTP-Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest 031215, Romania
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Li W, Xu K, Liu Y, Lei X, Ru X, Guo P, Feng H, Chen Y, Xing M. Hydrophobic Polystyrene-Modified Gelatin Enhances Fast Hemostasis and Tissue Regeneration in Traumatic Brain Injury. Adv Healthc Mater 2023; 12:e2300708. [PMID: 37442090 PMCID: PMC11468692 DOI: 10.1002/adhm.202300708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Hemostatic sealant is required to deal with blood loss, especially in the scenario of traumatic brain injury (TBI), which presents high rates of morbidity and disability. Hemostasis in surgery with traditional gelatin-based sealants often leads to blood loss and other issues in brain because of the hydrophilic gelatin swelling. Herein, hydrophobic effects on the hemostasis in TBI surgery are studied by tuning the chain length of polystyrene (PS) onto methylacrylated gelatin (Gel-MA). The hydrophobicity and hemostatic efficiency can be tuned by controlling the length of PS groups. The platelet activation of modified sealants Gel-MA-2P, Gel-MA-P, and Gel-MA-0.5P is as much as 17.5, 9.1, and 2.1 times higher than Gel-MA in vitro. The hemostatic time of Gel-MA-2P, Gel-MA-P, and Gel-MA-0.5P groups is 2.0-, 1.6-, and 1.1-folds faster than that in Gel-MA group in TBI mice. Increased formation of fibrins and platelet aggregation can also be observed in vitro by scanning electron microscopy. Animal's mortality is lowered by 46%, neurologic deficiency is reduced by 1.5 times, and brain edema is attenuated by 10%. Protein expression is further investigated to exhibit toxic iron-related processes caused by delayed hemostasis and activation of platelets via PI3K/PKC-α signaling. The hydrophobic Gel-MA has the potential in hemostatic TBI and promotes nervous system recovery in brain with the potentials in clinics.
Collapse
Affiliation(s)
- Wenyan Li
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| | - Yuqing Liu
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| | - Xuejiao Lei
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Xufang Ru
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Peiwen Guo
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Yujie Chen
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| |
Collapse
|
17
|
Borges-Vilches J, Unalan I, Aguayo CR, Fernández K, Boccaccini AR. Multifunctional Chitosan Scaffold Platforms Loaded with Natural Polyphenolic Extracts for Wound Dressing Applications. Biomacromolecules 2023; 24:5183-5193. [PMID: 37906697 DOI: 10.1021/acs.biomac.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Claudio R Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
19
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
20
|
Mahmoudi A, Ghavimi MA, Maleki Dizaj S, Sharifi S, Sajjadi SS, Jamei Khosroshahi AR. Efficacy of a New Hemostatic Dental Sponge in Controlling Bleeding, Pain, and Dry Socket Following Mandibular Posterior Teeth Extraction-A Split-Mouth Randomized Double-Blind Clinical Trial. J Clin Med 2023; 12:4578. [PMID: 37510692 PMCID: PMC10380399 DOI: 10.3390/jcm12144578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS This study aimed to clinically evaluate of a novel gelatin-based biodegradable sponge after mandibular posterior teeth extraction to assess its abilities in controlling bleeding, pain, and dry socket compared a commercial sponge. TRIAL DESIGN In this study, 26 patients who needed the extraction of two mandibular molar teeth were selected and, in each patient, after tooth extraction, the prepared gelatin sponge was used in the test group and the commercial sponge was used in the control group in the form of a randomized, double-blind, split-mouth clinical trial. The sterile gauzes were used on top of each sponge to absorb the extra blood (unabsorbed blood of sponges) to assess the blood absorption amount. Also, the amount of bleeding was recorded for 1 and 4 h after extraction for two groups. The amount of pain was measured for 12, 24, and 48 h after tooth extraction by Visual Analogue Scale (VAS). All patients also returned for examination four days after extraction to assess the occurrence of dry socket. RESULTS The results showed that the average weight of absorbed blood by sterile gauze in the control group (6.32 ± 1.06 g) was higher than in test group (3.97 ± 1.1 g), e.g., the bleeding control was better for the test group (p < 0.05). Bleeding was observed to be significantly reduced in the test group within 1 h (p = 0.003), within 1-4 h (p = 0.002), and after 4 h (p = 0.042) post-operatively in comparison to the control group. The average pain decreased significantly over time in both groups and the reduction of the pain was significantly higher for the test group (p < 0.05). Just one dry socket case occurred in the control group. CONCLUSION The prepared sponge is recommended for use in dental surgeries because of its abilities in bleeding, pain, and dry socket control.
Collapse
Affiliation(s)
- Armin Mahmoudi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Seyyede Shabnam Sajjadi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Amir Reza Jamei Khosroshahi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| |
Collapse
|
21
|
Lei D, Zhao J, Zhu C, Jiang M, Ma P, Mi Y, Fan D. Multifunctional Oxidized Dextran Cross-Linked Alkylated Chitosan/Drug-Loaded and Silver-Doped Mesoporous Bioactive Glass Cryogel for Hemostasis of Noncompressible Wounds. Gels 2023; 9:455. [PMID: 37367126 DOI: 10.3390/gels9060455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Noncompressible wounds resulting from accidents and gunshots are typically associated with excessive bleeding, slow wound healing, and bacterial infection. Shape-memory cryogel presents great potential in controlling the hemorrhaging of noncompressible wounds. In this research, a shape-memory cryogel was prepared using a Schiff base reaction between alkylated chitosan (AC) and oxidized dextran (ODex) and then incorporated with a drug-laden and silver-doped mesoporous bioactive glass (MBG). Hydrophobic alkyl chains enhanced the hemostatic and antimicrobial efficiency of the chitosan, forming blood clots in the anticoagulated condition, and expanding the application scenarios of chitosan-based hemostats. The silver-doped MBG activated the endogenous coagulation pathway by releasing Ca2+ and prevented infection through the release of Ag+. In addition, the proangiogenic desferrioxamine (DFO) in the mesopores of the MBG was released gradually to promote wound healing. We demonstrated that AC/ODex/Ag-MBG DFO(AOM) cryogels exhibited excellent blood absorption capability, facilitating rapid shape recovery. It provided a higher hemostatic capacity in normal and heparin-treated rat-liver perforation-wound models than gelatin sponges and gauze. The AOM gels simultaneously promoted infiltration, angiogenesis, and tissue integration of liver parenchymal cells. Furthermore, the composite cryogel exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, AOM gels show great promise for clinical translation in treating lethal, noncompressible bleeding and the promotion of wound healing.
Collapse
Affiliation(s)
- Dong Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
22
|
Qi W, Dong N, Wu L, Zhang X, Li H, Wu H, Ward N, Yu J, Liu H, Wang J, Deng X, Zhao RC. Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact Mater 2023; 23:53-68. [DOI: 10.1016/j.bioactmat.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
23
|
Interpenetrating network expansion sponge based on chitosan and plasma for ultrafast hemostasis of arterial bleeding wounds. Carbohydr Polym 2023; 307:120590. [PMID: 36781269 DOI: 10.1016/j.carbpol.2023.120590] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Preventing arterial hemorrhage by intervening within the first few minutes is critical to the patient's life. Hemostatic materials have been developed over the last decades to address this issue, nevertheless these materials alone do not contribute to improve the survival effects in many extreme conditions, which is usually caused by penetrating arterial bleeding wounds that are incompressible and deep arterial bleeding with irregularly shapes. It is well known that, after calcium ion stimulation, many intriguing changes occurred in the major components of plasma, including the activation of several coagulation factors, such as the conversion of fibrinogen to fibrin, prothrombin to thrombin, and so on. Therefore, we constructed an expansion sponge with interpenetrating network based on chitosan and plasma, while various activated coagulation factors in plasma were also loaded into the pore structure of chitosan sponges. The prepared CS-PG sponge is capable of providing a simpler and more efficient method for treating high-pressure arterial bleeding wounds, which includes three steps: Rapid sealing and adhension, Thrombin catalysis and Activated autocoagulation. As the next generation bioactive materials, compared to conventional hemostatic materials, CS-PG sponge demonstrated superior hemostatic characteristics in both rabbit femoral artery damage and rat liver injury models.
Collapse
|
24
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
25
|
Song Y, Li S, Chen H, Han X, Duns GJ, Dessie W, Tang W, Tan Y, Qin Z, Luo X. Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. Int J Biol Macromol 2023; 233:123532. [PMID: 36740110 DOI: 10.1016/j.ijbiomac.2023.123532] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) via a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both in vitro and in vivo. Significantly, the hemostatic time of the CMCS/SA-K60 sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.
Collapse
Affiliation(s)
- Yannan Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Huifang Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xinyi Han
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Gregory J Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| | - Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| |
Collapse
|
26
|
Xie H, Shi G, Wang R, Chen Q, Yu A, Lu A. Euryale ferox stem-inspired anisotropic quaternized cellulose/xanthan-based antibacterial sponge with high absorbency and compressibility for noncompressible hemorrhage. Int J Biol Macromol 2023; 237:124166. [PMID: 36965567 DOI: 10.1016/j.ijbiomac.2023.124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Uncontrollable hemorrhage from deep noncompressible wounds remains an intractable challenge. Herein, inspired by the euryale ferox stem which is capable of transporting water and nutrient substances efficiently along longitudinally aligned channels, an anisotropic sponge with rapidly liquid absorption capacity, excellent mechanical compressibility and antibacterial property based on quaternized cellulose (QC), xanthan gum (XG) and reduced graphene oxide (rGO), was constructed. The euryale ferox stem-like structure and multiple interactions, involving hydrogen bonding, electrostatic interaction and chemical crosslinking, endowed the sponge with excellent fatigue resistance, elasticity and efficient liquid absorption capacity. In vivo rat liver injury, tail amputation and liver noncompressible hemorrhage model experiments confirmed that the sponge exhibited superior hemostatic performance than commercial gelatin sponge, attributing to the positive charge, efficient absorption capacity and rough surface of the sponge, which synergistically promoting the aggregation and activation of red blood cells and platelets as well as formation of fibrin network, leading to accelerated blood coagulation process. Besides, the sponge showed favorable cytocompatibility, hemocompatibility and antibacterial property. Overall, the bioinspired sponge had fantastic potential for controlling deep noncompressible hemorrhage and providing a new idea for designing hemostatic materials.
Collapse
Affiliation(s)
- Hongxia Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Ge Shi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ruizi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China.
| |
Collapse
|
27
|
Wang D, Sun Y, Zhang D, Kong X, Wang S, Lu J, Liu F, Lu S, Qi H, Zhou Q. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr Polym 2023; 299:120184. [PMID: 36876799 DOI: 10.1016/j.carbpol.2022.120184] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Tooth extraction commonly causes uncontrolled bleeding, loss of blood clots, and bacterial infection, leading to the dry socket and bone resorption. Thus, it is highly attractive to design a bio-multifunctional scaffold with outstanding antimicrobial, hemostatic, and osteogenic performances for avoiding dry sockets in clinical applications. Herein, alginate (AG)/quaternized chitosan (Qch)/diatomite (Di) sponges were fabricated via electrostatic interaction, Ca2+ cross-linking, as well as lyophilization methods. The composite sponges are facilely made into the shape of the tooth root, which could be well integrated into the alveolar fossa. The sponge shows a highly interconnected and hierarchical porous structure at the macro/micro/nano levels. The prepared sponges also possess enhanced hemostatic and antibacterial abilities. Moreover, in vitro cellular assessment indicates that the developed sponges have favorable cytocompatibility and significantly facilitate osteogenesis by upregulating the formation of alkaline phosphatase and calcium nodules. The designed bio-multifunctional sponges display great potential for trauma treatment after tooth extraction.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yinyin Sun
- Oral Medicine, The People's Hospital of Jimo, Qingdao, Qingdao 266200, China
| | - Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Sainan Wang
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Jinglin Lu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fengyuan Liu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shulai Lu
- Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
28
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Alginate foam gel modified by graphene oxide for wound dressing. Int J Biol Macromol 2022; 223:391-403. [PMID: 36356865 DOI: 10.1016/j.ijbiomac.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Recently, hydrogel dressings have been rapidly developed for wound healing. However, it is still a huge challenge to endow hydrogel wound dressings with excellent hemostatic performance. Here, a new wound treatment material, foam gel wound dressing, is reported, which possesses rapid hemostasis and antibacterial properties. The foam gel dressing is composed of chitooligosaccharide modified graphene oxide (CG) nanocomposites and calcium alginate foam substrate. In this system, CG has a strong interaction with platelets, which is helpful for rapid hemostasis. So the wound dressing could stop bleeding quickly within 10 s. Meanwhile, CG also provides excellent antibacterial properties to dressings, which is conducive to wound healing. Full-thickness wound healing experiments showed that compared with blank control and CG-free foam gel dressings, CG-loaded foam gel dressings shows better healing properties, and the wounds covered with them are almost completely healed within 12 days. In addition, histological morphology analysis displays CG-loaded wound dressing could significantly accelerate wound healing by reducing the inflammatory response and promoting vascular remodeling. This unique strategy provides a simple and practical method for the clinical application of the next generation of wound dressings.
Collapse
|
30
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
31
|
Dong R, Zhang H, Guo B. Emerging hemostatic materials for non-compressible hemorrhage control. Natl Sci Rev 2022; 9:nwac162. [PMID: 36381219 PMCID: PMC9646998 DOI: 10.1093/nsr/nwac162] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Non-compressible hemorrhage control is a big challenge in both civilian life and the battlefield, causing a majority of deaths among all traumatic injury mortalities. Unexpected non-compressible bleeding not only happens in pre-hospital situations but also leads to a high risk of death during surgical processes throughout in-hospital treatment. Hemostatic materials for pre-hospital treatment or surgical procedures for non-compressible hemorrhage control have drawn more and more attention in recent years and several commercialized products have been developed. However, these products have all shown non-negligible limitations and researchers are focusing on developing more effective hemostatic materials for non-compressible hemorrhage control. Different hemostatic strategies (physical, chemical and biological) have been proposed and different forms (sponges/foams, sealants/adhesives, microparticles/powders and platelet mimics) of hemostatic materials have been developed based on these strategies. A summary of the requirements, state-of-the-art studies and commercial products of non-compressible hemorrhage-control materials is provided in this review with particular attention on the advantages and limitations of their emerging forms, to give a clear understanding of the progress that has been made in this area and the promising directions for future generations.
Collapse
Affiliation(s)
- Ruonan Dong
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
32
|
Sharifi S, Maleki Dizaj S, Ahmadian E, Karimpour A, Maleki A, Memar MY, Ghavimi MA, Dalir Abdolahinia E, Goh KW. A Biodegradable Flexible Micro/Nano-Structured Porous Hemostatic Dental Sponge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3436. [PMID: 36234564 PMCID: PMC9565827 DOI: 10.3390/nano12193436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A biodegradable micro/nano-structured porous hemostatic gelatin-based sponge as a dentistry surgery foam was prepared using a freeze-drying method. In vitro function evaluation tests were performed to ensure its hemostatic effect. Biocompatibility tests were also performed to show the compatibility of the sponge on human fetal foreskin fibroblasts (HFFF2) cells and red blood cells (RBCs). Then, 10 patients who required the extraction of two teeth were selected, and after teeth extraction, for dressing, the produced sponge was placed in one of the extracavities while a commercial sponge was placed in the cavity in the other tooth as a control. The total weight of the absorbed blood in each group was compared. The results showed a porous structure with micrometric and nanometric pores, flexibility, a two-week range for degradation, and an ability to absorb blood 35 times its weight in vitro. The prepared sponge showed lower blood clotting times (BCTs) (243.33 ± 2.35 s) and a lower blood clotting index (BCI) (10.67 ± 0.004%) compared to two commercial sponges that displayed its ability for faster coagulation and good hemostatic function. It also had no toxic effects on the HFFF2 cells and RBCs. The clinical assessment showed a better ability of blood absorption for the produced sponge (p-value = 0.0015). The sponge is recommended for use in dental surgeries because of its outstanding abilities.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Alireza Karimpour
- Kimia Pajuhesh Nanofarnam Compony, Tabriz Medical Equipment Technology Incubator Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Abdollah Maleki
- Non-Destructive Testing Lab, Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| |
Collapse
|
33
|
Wang L, Hao F, Tian S, Dong H, Nie J, Ma G. Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydr Polym 2022; 291:119574. [DOI: 10.1016/j.carbpol.2022.119574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
|
34
|
Graphene oxide reinforced hemostasis of gelatin sponge in noncompressible hemorrhage via synergistic effects. Colloids Surf B Biointerfaces 2022; 220:112891. [DOI: 10.1016/j.colsurfb.2022.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
|
35
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
36
|
Borges-Vilches J, Figueroa T, Guajardo S, Carmona S, Mellado C, Meléndrez M, Aguayo C, Fernández K. Novel and effective hemostats based on graphene oxide-polymer aerogels: In vitro and in vivo evaluation. BIOMATERIALS ADVANCES 2022; 139:213007. [PMID: 35891602 DOI: 10.1016/j.bioadv.2022.213007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
In this study, graphene oxide (GO)-based aerogels cross-linked with chitosan (CS), gelatin (GEL), and polyvinyl alcohol (PVA) were characterized and their hemostatic efficiencies both in vitro and in vivo were investigated and compared to commercial materials (ChitoGauze®XR and Spongostan™). All aerogels exhibited highly porous structures and a negative surface charge density favorable to their interaction with blood cells. The in vitro studies showed that all aerogels coagulated >60 % of the blood contained in their structures after 240 s of the whole-blood clotting assay, the GO-CS aerogel being the one with the highest blood clotting. All aerogels showed high hemocompatibility, with hemolytic rates <5 %, indicating their use as biomaterials. Among them, the GO-GEL aerogel exhibited the lowest hemolytic activity, due possibly to its high GEL content compared to the GO amount. According to their blood clotting activity, aerogels did not promote coagulation through extrinsic and intrinsic pathways. However, their surfaces are suitable for accelerating hemostasis by promoting alternative routes. All aerogels adhered platelets and gathered RBCs on their surfaces, and in addition the GO-CS aerogel surface also promoted the formation of filamentous fibrin networks adhered on its structure. Furthermore, in vivo evaluations revealed that all aerogels significantly shortened the hemostatic times and reduced the blood loss amounts compared both to the Spongostan™ and ChitoGauze®XR commercial materials and to the gauze sponge (control group). The hemostatic performance in vitro and in vivo of these aerogels suggests that they could be used as hemostats for controlling profuse bleedings.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Sebastián Guajardo
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Satchary Carmona
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Constanza Mellado
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Manuel Meléndrez
- Department of Materials Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
37
|
Electrospun kaolin-loaded chitosan/PEO nanofibers for rapid hemostasis and accelerated wound healing. Int J Biol Macromol 2022; 217:998-1011. [PMID: 35907464 DOI: 10.1016/j.ijbiomac.2022.07.186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
Abstract
Development of chitosan-based hemostatic products and their application in wound healing has always been a research hotspot in the field of emergency treatment and biomedicine. In this study, the classic hemostatic chitosan and the most well-known inorganic hemostatic agent-kaolin were tried to combine to form a more excellent dressing. Together with the aid of non-toxic, harmless and good hydrophilic polyethylene oxide, chitosan/polyethylene oxide (PEO)/kaolin nanofiber membranes (CPKs) were prepared by electrospinning technology. Such membranes exhibited adjustable mechanical properties and good biocompatibility. Furthermore, a series of in vitro coagulation experiments proved that CPKs with 10 % ratio of kaolin (CPK10) has excellent hemostatic ability. Especially, in the whole blood coagulation time (WBCT) assay, the hemostatic time of CPK10 (43 ± 1.4 s) was significantly lower than that of chitosan/polyethylene oxide (CPK0) nanofiber membrane (61 ± 2.2 s) and QuikClot® Combat Gauze (55.7 ± 1.2 s). The further rat liver injury test reconfirmed that CPK10 can stop bleeding better and faster compared to other groups. In addition, CPKs could promote back wound healing in rats within 14 days without significant inflammatory response. This safe and effective hemostatic CPKs is expected to be a promising candidate hemostat in pre-hospital medical care.
Collapse
|
38
|
Chen J, Yang X, Chen Y, Feng Y, Pan J, Shi C. Expandable, biodegradable, bioactive quaternized gelatin sponges for rapidly controlling incompressible hemorrhage and promoting wound healing. BIOMATERIALS ADVANCES 2022; 136:212776. [PMID: 35929314 DOI: 10.1016/j.bioadv.2022.212776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Designing expandable sponges with biodegradability and effective antibacterial properties are the urgent challenge for incompressible hemorrhage and wound healing. In the present investigation, based on quaternized gelatin (QG) and oxidized dextran (OD), a series of expandable sponges (ODQG) with high-water absorption capacity and robust mechanical properties were prepared. ODQG had good biodegradability in vitro and in vivo, and had inherent antibacterial activity (90% for E. coli and 99.74% for S. aureus). Due to the synergy effect of electrostatic interaction and blood concentration, ODQG could effectively attract and activate red blood cells/platelets and accelerate the coagulation process. Therefore, ODQG showed better hemostatic performance than Kuaikang® gelatin sponges and gauzes in incompressible hemorrhage model. Furthermore, ODQG could regulate inflammatory factor (TNF-α) and cytokines (TGF-β, VEGF), and greatly promote wound healing process. The biodegradable sponges with excellent antibacterial properties might have potential application prospect for incompressible hemostasis and wound healing in the future.
Collapse
Affiliation(s)
- Jie Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yeyi Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jingye Pan
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Changcan Shi
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
39
|
Wei X, Cai J, Wang C, Yang K, Ding S, Tian F, Lin S. Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing. Int J Biol Macromol 2022; 210:271-281. [DOI: 10.1016/j.ijbiomac.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
40
|
Kang K, Liu Y, Song X, Xu L, Zhang W, Jiao Y, Zhao Y. Hemostatic Performance of ɑ-Chitin/gelatin Composite Sponges with Directional Pore Structure. Macromol Biosci 2022; 22:e2200020. [PMID: 35488361 DOI: 10.1002/mabi.202200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Biomedical materials with effective hemostatic properties are in great demand in clinical and battlefield application for severe hemorrhage control. In this study, nearly amorphous chitin is obtained by treating α-chitin with superfine grinding, and the solubility of chitin in hexafluoro-2-propanol (HFIP) is significantly increased. Chitin and gelatin mixtures are prepared by adding different amount of gelatin to the 8mg ml-1 chitin solution. In the presence water (non-solvent), the mixtures are gelled as HFIP is replaced by water, and chitin/gelatin composite sponges with directional pore structure are prepared by directional freeze drying of the hydrogel. The structure, porosity, liquid absorbing capacity, biodegradability, and hemostatic properties of the sponges with different ratios of gelatin are investigated. The results show that the sponge with the mass ratio of chitin/gelatin of 1:1 is potential hemostatic material with high absorbing capacity, hemocompatibility, and the best hemostatic performance. The in vivo study demonstrates that hemostatic time of the composite sponge (73 s) is much shorter than of that of gauze (193 s), chitin sponge (132s) as well as gelatin sponge (116 s) in rat femoral artery injury model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Shenyang Medical College, No.146 Huanghe North Street, Shenyang, 110034, China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenchang Zhang
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Zhao
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| |
Collapse
|
41
|
Rezabeigi E, Schmitt C, Hadj Henni A, Barkun AN, Nazhat SN. In Vitro Evaluation of Real-Time Viscoelastic and Coagulation Properties of Various Classes of Topical Hemostatic Agents Using a Novel Contactless Nondestructive Technology. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16047-16061. [PMID: 35352550 DOI: 10.1021/acsami.2c01741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hemorrhaging is the main cause of death among combat and civilian injuries and has significant clinical and economic consequences. Despite their vital roles in bleeding management, an optimal topical hemostatic agent (HA) has yet to be developed for a particular scenario. This is partly due to a lack of an overarching quantitative testing technology to characterize the various classes of HAs in vitro. Herein, the feasibility of a novel, contactless, and nondestructive technique to quantitatively measure the shear storage modulus (G') and clotting properties of whole blood in contact with different dosages of eight topical HAs, including particulates and gauze-like and sponge-like systems, was assessed. The real-time G'-time profiles of these blood/HA systems revealed their distinct biomechanical behavior to induce and impact coagulation. These were analyzed to characterize the clot initiation time, clotting rate, clotting time, and apparent stiffness of the formed clots (both immediately and temporally), which were correlated with their reported hemostatic mechanisms of action. Moreover, the HAs that worked independently from the natural blood clotting cascade were identified and quantified through this technology. In sum, this study indicated that the nondestructive nature of the technology may offer a promising tool for accurate, quantitative in vitro measurements of the clotting properties of various classes of HAs, which may be used to better predict their in vivo outcomes.
Collapse
Affiliation(s)
- Ehsan Rezabeigi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Cédric Schmitt
- Rheolution Inc., 5333 Avenue Casgrain, Suite 601, Montreal, Quebec H2T 1X3, Canada
| | - Anis Hadj Henni
- Rheolution Inc., 5333 Avenue Casgrain, Suite 601, Montreal, Quebec H2T 1X3, Canada
| | - Alan N Barkun
- Division of Gastroenterology, The McGill University Health Center, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
42
|
Wang X, Dang Q, Liu C, Chang G, Song H, Xu Q, Ma Y, Li B, Zhang B, Cha D. Antibacterial porous sponge fabricated with capric acid-grafted chitosan and oxidized dextran as a novel hemostatic dressing. Carbohydr Polym 2022; 277:118782. [PMID: 34893218 DOI: 10.1016/j.carbpol.2021.118782] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
This work aims to fabricate multifunctional hemostatic sponges (C-ODs). Porous C-ODs were first constructed by using capric acid-modified chitosan (CSCA) and oxidized dextrans (ODs) with different oxidation degrees. Batches of experiments showed that (i) CSCA (33.39% of grafting degree), ODs, and C-ODs (100-200 μm in pore size) were synthesized, evidenced by FT-IR, 1H NMR, elemental analysis, hydroxylamine hydrochloride titration, and SEM results; (ii) among C-ODs, C-OD2 had appropriate porosity (85.0%), swelling (20 times its dry weight), absorption, water retention, water vapor transmission, and mechanical properties; (iii) C-OD2 possessed low toxicity (relative cell viability > 86%), low hemolysis rate (0.65%), suitable tissue adhesion (4.74 kPa), and strong antibacterial efficacy (five strains); and (iv) C-OD2's dynamic blood clotting was within 30 s. In three animal injury models, C-OD2's hemostasis time and blood loss were fairly lower than commercial gelatin sponge. Totally, C-OD2 might serve as an ideal hemostatic dressing.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hao Song
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qing Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yue Ma
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
43
|
|
44
|
Zhang W, Zhao L, Gao C, Huang J, Li Q, Zhang Z. Highly resilient, biocompatible, and antibacterial carbon nanotube/hydroxybutyl chitosan sponge dressing for rapid and effective hemostasis. J Mater Chem B 2021; 9:9754-9763. [PMID: 34796365 DOI: 10.1039/d1tb01911b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrolled hemorrhage is the leading cause of trauma death. The development of safe and efficient hemostatic agents that can rapidly and effectively control bleeding is of great significance to rescue the injured. However, the mechanical, absorptive, and antibacterial properties of conventional two-dimensional hemostatic agents are not satisfactory. Herein, a series of effective three-dimensional hemostatic dressings (JWCNT/HBC sponges) are developed by chemical modification of joint-welded carbon nanotube (JWCNT) sponges with hydroxybutyl chitosan (HBC) for hemorrhage hemostasis. The JWCNT/HBC sponges exhibit high elasticity, porous structure, and suitable blood-absorption and blood-maintaining performance. Moreover, the introduction of HBC endows the JWCNT/HBC sponges with favorable blood compatibility and good antibacterial activity. The sponge treated with 0.5% HBC (JWCNT/0.5%HBC sponge) displays better antiseptic capability, faster blood clotting ability in vitro and shorter hemostasis time in vivo than the commercial gelatin sponge. The JWCNT/HBC sponges combine the advantages of JWCNT sponges and HBC in the adhesion and activation of platelets and red blood cells, thus becoming a good medical material for trauma hemostasis.
Collapse
Affiliation(s)
- Wei Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liming Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Chen Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qingwen Li
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
45
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
46
|
Kumar G, Chaudhary K, Mogha NK, Kant A, Masram DT. Extended Release of Metronidazole Drug Using Chitosan/Graphene Oxide Bionanocomposite Beads as the Drug Carrier. ACS OMEGA 2021; 6:20433-20444. [PMID: 34395991 PMCID: PMC8359167 DOI: 10.1021/acsomega.1c02422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 05/04/2023]
Abstract
This study depicts the facile approach for the synthesis of chitosan/graphene oxide bionanocomposite (Chi/GO) beads via the gelation process. This is the first-ever study in which these Chi/GO beads have been utilized as a drug carrier for the oral drug delivery of metronidazole (MTD) drug, and investigations were made regarding the release pattern of the MTD drug using these Chi/GO beads as a drug carrier for a prolonged period of 84 h. The MTD is loaded on the surface as well as the cavity of the Chi/GO beads to result in MTD-Chi/GO bionanocomposite beads. The MTD drug loading was found to be 683 mg/g. Furthermore, the in vitro release patterns of pure drug and the drug encapsulated with Chi/GO beads are explored in simulated gastric as well as simulated intestinal fluids with phosphate-buffered saline (PBS) of pH 1.2 and 7.4, respectively. As-synthesized bionanocomposite beads have shown excellent stability and capacity for extended release of the MTD drug as compared to the pure drug in terms of bioavailability in both media. The cumulative release data are fitted with the Korsmeyer-Peppas kinetics and first-order reaction kinetics at pH 1.2 and 7.4. The synthesized bionanocomposite beads have good potential to minimize the multiple-dose frequency with the sustained drug release property and can reduce the side effects due to the drug.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Karan Chaudhary
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | | | - Arun Kant
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
47
|
Bernardes BG, Del Gaudio P, Alves P, Costa R, García-Gonzaléz CA, Oliveira AL. Bioaerogels: Promising Nanostructured Materials in Fluid Management, Healing and Regeneration of Wounds. Molecules 2021; 26:3834. [PMID: 34201789 PMCID: PMC8270285 DOI: 10.3390/molecules26133834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wounds affect one's quality of life and should be managed on a patient-specific approach, based on the particular healing phase and wound condition. During wound healing, exudate is produced as a natural response towards healing. However, excessive production can be detrimental, representing a challenge for wound management. The design and development of new healing devices and therapeutics with improved performance is a constant demand from the healthcare services. Aerogels can combine high porosity and low density with the adequate fluid interaction and drug loading capacity, to establish hemostasis and promote the healing and regeneration of exudative and chronic wounds. Bio-based aerogels, i.e., those produced from natural polymers, are particularly attractive since they encompass their intrinsic chemical properties and the physical features of their nanostructure. In this work, the emerging research on aerogels for wound treatment is reviewed for the first time. The current scenario and the opportunities provided by aerogels in the form of films, membranes and particles are identified to face current unmet demands in fluid managing and wound healing and regeneration.
Collapse
Affiliation(s)
- Beatriz G. Bernardes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy;
| | - Paulo Alves
- Center for Interdisciplinary Research in Health, Institute of Health Sciences, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Raquel Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Biochemistry Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Carlos A. García-Gonzaléz
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
48
|
Gong M, Liu C, Liu C, Wang L, Shafiq F, Liu X, Sun G, Song Q, Qiao W. Biomimetic hydroxyapate/polydopamine composites with good biocompatibility and efficiency for uncontrolled bleeding. J Biomed Mater Res B Appl Biomater 2021; 109:1876-1892. [PMID: 33847453 DOI: 10.1002/jbm.b.34849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 11/11/2022]
Abstract
Uncontrolled bleeding is thought to be the most deadly cause of pre-hospital, traffic, and military accidents death. However, the popular commercial hemostats can only realize the hemostasis of mild bleeding. Therefore, we developed polydopamine (PDA) composite materials (PMs), which applied hydroxyapatite as the parent body. The PMs were produced via lyophilization and functionalized with amino, phenol hydroxyls groups, which endowed hydrophobicity to materials. This ensured a high aggregation ability of blood cells to the PMs and they were tested to be as high as 300% compared with the negative control group. The clotting time was shortened to 79.7% compared with the usually used commercial hemostat (Celox) in the test of in vitro hemostasis. Through the results of PT and APTT tests, blood coagulation index test, and the analysis of intracellular Ca2+ activation, we further understood the mechanism of the hemostasis of the materials, which explained the low blood loss and quick coagulation time of the PM hemostats in detail. Besides, the low hemolysis and cytotoxicity of the PMs suggested the good biocompatibility of the hemostats, which was further proved by the regular morphology maintained by erythrocytes in the hemolysis tests. The study of nanoscale composites led the research for the methods of hemostasis.
Collapse
Affiliation(s)
- Mengxiang Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Chunyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Lingyi Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Xia Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, P.R. China
| | - Guozhen Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, P.R. China
| | - Qiling Song
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, P.R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| |
Collapse
|
49
|
Chitosan/alginate/hyaluronic acid polyelectrolyte composite sponges crosslinked with genipin for wound dressing application. Int J Biol Macromol 2021; 182:512-523. [PMID: 33848546 DOI: 10.1016/j.ijbiomac.2021.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Wound dressing composed of polyelectrolyte complexes (PECs), based on chitosan/alginate/hyaluronic acid (CS/ALG/HYA) crosslinked by genipin, was prepared by freeze-dried molding. Genipin as excellent natural biological crosslinker was chose for high biocompatibility and improving mechanical properties of materials. The CS/ALG/HYA sponges (CAHSs) were characterized by FTIR, XRD, DSC and SEM. Porosity, swelling behavior and mechanical properties and in vitro degradation of CAHSs were investigated. The cytotoxicity assay was carried out on HUVEC cells in vitro and the result proves the good biocompatibility of CAHSs. Hemolysis tests indicated that the prepared CAHSs were non-hemolytic material (hemolysis ratio < 5%, no cytotoxicity). PT and aPPT coagulation tests demonstrated that CAHS2 and CAHS3 could both activate the extrinsic and intrinsic coagulation pathway and thus accelerated blood coagulation. Further, in a rat full-thickness wounds model, the CAHS2 sponge significantly facilitates wound closure compared to other groups. CAHSs exhibited adjustable physical, mechanical and biological properties. Thus, the chitosan-based polyelectrolyte composite sponges exhibit great potential as promising wound dressings.
Collapse
|
50
|
Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges. Carbohydr Polym 2021; 264:118028. [PMID: 33910719 DOI: 10.1016/j.carbpol.2021.118028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023]
Abstract
Serial hemostatic sponges consisting of polysaccharides-modified chitosan foam sponges were prepared by Schiff base crosslinking reaction between the deacetylated chitosan and oxidized dialdehyde cellulose. Such composite foam sponges were characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy to confirm their morphology and compositions. Then the coagulation process was evaluated in vitro by thrombus elasticity meters. Furthermore, the hemostasis experiments on mouse tail vein and rabbit femoral artery were also performed in vivo. The results strongly indicated that such synergistic cellulose-modified chitosan foam sponges showed comprehensively excellent water-absorbing quality, improved mechanical performance, low hemolysis rates, benign cytotoxicity, good resilience ability after repeated compression, and superior hemostasis capability both in vitro and in vivo. Furthermore, the hemostatic mechanism is via adhering/activating the red blood cell/platelet to form robust blood clots through the endogenous coagulation pathway, which serves as a good candidate for emergency trauma treatment in daily civilian and military hemostasis.
Collapse
|