1
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2024:e2402571. [PMID: 39498750 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - M Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Alaina F Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Tiffany V Pulido
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jessica N Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Johnny Yi
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jeffrey L Cornella
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - David G Lott
- Division of Laryngology, Department of Otolaryngology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Lindsay B Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Taylor G Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE) at Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Chen N, Ding Y, Li X, Li J, Cheng Y, Tian Y, Tian Y, Wu M. Chemical structures and immunomodulatory activities of polysaccharides from Polygonatum kingianum. Int J Biol Macromol 2024; 279:135406. [PMID: 39245127 DOI: 10.1016/j.ijbiomac.2024.135406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The physicochemical properties of the polysaccharides in Polygonatum kingianum, a Chinese medicinal herb used for both medicine and food, have not been fully studied. This study isolated three polysaccharides (PKP-1, PKP-2, and PKP-3) from the dry rhizomes of P. kingianum, with an average molecular weight of approximately 3137 Da, 5341 Da and 3755 Da, respectively. Structural analysis showed that all the three polysaccharides are fructans with β-D-Fruf-(2→, →6)-β-D-Fruf-(2→, →1)-β-D-Fruf-(2→, →1,6)-β-D-Fruf-(2→ and →6)-α-D-Glcp-(1→ glycosidic bond type. Notably, PKP-2 contains both acetyl groups and trace amounts of mannose residues. Scanning electron microscopy indicated that each polysaccharide possesses unique surface morphology. Thermal analysis showed that the three polysaccharides have good thermal stability. Rheological studies further revealed that all the three polysaccharides are typical shear thinning fluids. In vitro experiments showed that PKP-1 and PKP-2 significantly promote the secretion of NO and cytokines (TNF-α, IL-6) in macrophages by activating the NF-κB signaling pathway, thereby demonstrating potential immunomodulatory activity. These findings lay a theoretical foundation for the potential application of Polygonatum polysaccharides in the food industry.
Collapse
Affiliation(s)
- Nanyu Chen
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunzhang Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Life Sciences and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Forest Resources Conservation and Utilization, Southwest Mountains of China, Southwest Forestry University, Kunming 650224, China
| | - Jiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongxian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yong Tian
- Shanghai Zhenchen Cosmetics Co., Ltd., Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd., Shanghai 201109, China
| | - Yuncai Tian
- Shanghai Zhenchen Cosmetics Co., Ltd., Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd., Shanghai 201109, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
3
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
4
|
Yao F, Wu Z, Gu Y, Di Y, Liu Y, Srinivasan V, Lian C, Li Y. Acetylated nanocellulose reinforced hydroxypropyl starch acetate realizing polypropylene replacement for green packaging application. Carbohydr Polym 2024; 331:121886. [PMID: 38388040 DOI: 10.1016/j.carbpol.2024.121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The use of natural starch as a replacement for petroleum-based packaging materials is limited due to its poor processability, weak mechanical properties, and strong moisture sensitivity. To address these limitations, this study adopts molecular design of hydroxypropylation and acetylation to sequentially modify natural starch, and material design of introducing acetylated cellulose nanofibers (ACNF) into the starch matrix to reinforce the material. Hydroxypropylation decreased the interaction force between the starch molecular chains, thereby reducing the glass transition temperature. Subsequent acetylation introduced hydrophobic acetyl groups that disrupted intermolecular hydrogen bonds, enhancing the mobility of the starch molecular chain, and endowed the hydroxypropyl starch acetate (HPSA) with excellent thermoplastic processability (melt index of 7.12 g/10 min) without the need for plasticizers and notable water resistance (water absorption rate of 3.0 %). The introduction of ACNF generated a strong interaction between HPSA chains, promoting the derived ACNF-HPSA to exhibit excellent mechanical strength, such as high impact strength of 2.1 kJ/m2, tensile strength of 22.89 MPa, elasticity modulus of 813.22 MPa, flexural strength of 24.18 MPa and flexural modulus of 1367.88 MPa. Its overall performance even surpassed that of polypropylene (PP) plastic, making it a potential alternative material for PP-based packaging materials.
Collapse
Affiliation(s)
- Fengbiao Yao
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqiang Wu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018,China
| | - Yongsheng Gu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Di
- Taian Cellulose Ether Technology Co. Ltd., Tai'an 271000, China
| | - Yiliang Liu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Vennila Srinivasan
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, India
| | - Chenglong Lian
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China; Shandong Xingang Enterprise Group Co., Ltd., Linyi 276013, China.
| | - Yongfeng Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018,China.
| |
Collapse
|
5
|
Martins JR, Llanos JHR, Abe MM, Costa ML, Brienzo M. New blend of renewable bioplastic based on starch and acetylated xylan with high resistance to oil and water vapor. Carbohydr Res 2024; 537:109068. [PMID: 38417199 DOI: 10.1016/j.carres.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Renewable materials of biological origin exhibit attractive properties in relation to traditional plastics, as they can be partially or completely replaced, thereby reducing environmental impacts. Hemicelluloses are a group of polysaccharides that have expanded applications when acetylated. Acetylation can improve the mechanical strength and water vapor barrier properties of xylan-based bioplastics. By partially acetylating xylan in the present study, it was possible to use water as a solvent for the film-forming solution and starch as a second polysaccharide in the formation of bioplastics. Xylan was modified via partial chemical acetylation by varying the reaction time, solvent, and catalyst content. The bioplastics were formed by non-acetylated xylan and acetylated xylan with degrees of substitution (DS) of 0.45 and 0.9, respectively, with starch to form blends using glycerol as a plasticizer. Acetylation with DS 0.45 showed better results in increasing the hydrophilicity of the bioplastic. On the other hand, acetylation influenced the thermal stability of bioplastics, increasing the maximum temperature of the degradation rate from 302 °C to 329 °C and 315 °C, owing to changes in the crystallinity of the polymers. In addition to the modulus of elasticity 2.99 to 290.61 and 274.67 MPa for the non-acetylated bioplastic and the bioplastic with DS of 0.45 and 0.90, respectively. Thus, the films obtained presented suitable physicochemical properties for use in various industrial applications, such as active and intelligent packaging in the food sector.
Collapse
Affiliation(s)
- Julia Ribeiro Martins
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil
| | | | - Mateus Manabu Abe
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil
| | - Michelle Leali Costa
- Materials and Technology Department, School of Engineering, São Paulo State University (Unesp), Av. Dr. Ariberto Pereira da Cunha 333, Guaratinguetá, 12516-410, Brazil; Lightweight Structures Laboratory (LEL/IPT), Rod. Presidente Dutra, s/n, 137, 8 km - Eugenio de Melo, São José dos Campos, 12247-004, Brazil
| | - Michel Brienzo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil.
| |
Collapse
|
6
|
Zhang M, Li Q, Qi H, Xiang Z. Significantly improve film formability of acetylated xylans by structure optimization and solvent screening. Int J Biol Macromol 2024; 256:128523. [PMID: 38040163 DOI: 10.1016/j.ijbiomac.2023.128523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Acetylated xylans have great potential in fabricating functional film and coating materials, which need a good solubility/dispersibility and film formability in an easily evaporable solvent. However, the changes of film formability with degree of substitution by acetyls (DSAc) in different solvent systems for xylans have not been extensively studied, which limit the application of acetylated xylans in film materials. In this study, acetylated xylans with DSAc of 0-2 were prepared and the effects of acetyl groups on solubility/dispersibility, crystallinity and film formability of xylans in water and chloroform solvent systems were investigated. Due to the change of polarity, xylans with DSAc of 0-0.62 are only soluble in water solvents, while xylans with DSAc of 1.13-2 are only soluble in chloroform/ethanol (70/30 v/v) organic solvents. We have found that the film formability of acetylated xylans is highly related to their solubility and crystallization. Film formable xylans all had good solubility in the cast solvents. However, although with good solubility, xylans with DSAc of 0-0.3 and DSAc of 1.76-2 cannot form intact films, which is due to the forming of xylan hydrate crystals and xylan diacetate crystals. With the increase of DSAc, the mechanical property of xylan film increases initially at low DSAc and decreases at high DSAc. This study provides theoretical basis for applying xylans and their derivatives in advanced functional film and coating materials with great biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Mingquan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qianlong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Nechita P, Roman Iana Roman M, Năstac SM. Green Approaches on Modification of Xylan Hemicellulose to Enhance the Functional Properties for Food Packaging Materials-A Review. Polymers (Basel) 2023; 15:polym15092088. [PMID: 37177236 PMCID: PMC10180625 DOI: 10.3390/polym15092088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Based on the environmental concerns, the utilisation of hemicelluloses in food packaging has become a sustainable alternative to synthetic polymers and an important method for the efficient utilisation of biomass resources. After cellulose, hemicellulose is a second component of agricultural and forestry biomass that is being taken advantage of given its abundant source, biodegradability, nontoxicity and good biocompatibility. However, due to its special molecular structure and physical and chemical characteristics, the mechanical and barrier properties of hemicellulose films and coatings are not sufficient for food packaging applications and modification for performance enhancement is needed. Even though there are many studies on improving the hydrophobic properties of hemicelluloses, most do not meet environmental requirements and the chemical modification of these biopolymers is still a challenge. The present review examines emerging and green alternatives to acetylation for xylan hemicellulose in order to improve its performance, especially when it is used as biopolymer in paper coatings or films for food packaging. Ionic liquids (ILs) and enzymatic modification are environmentally friendly methods used to obtain xylan derivatives with improved thermal and mechanical properties as well as hydrophobic performances that are very important for food packaging materials. Once these novel and green methodologies of hemicellulose modifications become well understood and with validated results, their production on an industrial scale could be implemented. This paper will extend the area of hemicellulose applications and lead to the implementation of a sustainable alternative to petroleum-based products that will decrease the environmental impact of packaging materials.
Collapse
Affiliation(s)
- Petronela Nechita
- Research and Consultancy Center for Agronomy and Environment, Engineering and Agronomy Faculty in Brăila, "Dunărea de Jos" University of Galați, 810017 Braila, Romania
| | - Mirela Roman Iana Roman
- Doctoral School of Fundamental and Engineering Sciences, "Dunarea de Jos" University of Galati, 817112 Braila, Romania
| | - Silviu Marian Năstac
- Research Center for Mechanics of Machines and Technological Equipments, Engineering and Agronomy Faculty in Brăila, "Dunărea de Jos" University of Galați, 810017 Braila, Romania
- Department of Mechanical Engineering, Faculty of Mechanical Engineering, Transilvania University of Brașov, 500014 Brașov, Romania
| |
Collapse
|
8
|
Ho TM, Lehtonen M, Räikkönen H, Kilpeläinen PO, Mikkonen KS. Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils. Food Res Int 2023; 164:112333. [PMID: 36737926 DOI: 10.1016/j.foodres.2022.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88-96%, and GX was 63-98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49-92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Thao M Ho
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66 FIN-00014 HU, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65 FIN-00014 HU, Finland.
| | - Mari Lehtonen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66 FIN-00014 HU, Finland
| | - Heikki Räikkönen
- Faculty of Pharmacy, University of Helsinki, P.O. Box 56 FIN-00014 HU, Finland
| | - Petri O Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Viikinkaari 9, FI-00790 Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66 FIN-00014 HU, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65 FIN-00014 HU, Finland
| |
Collapse
|
9
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
10
|
Zhang H, Zhao T, Wu Y, Xie F, Xiong Z, Song Z, Ai L, Wang G. Acetylation modification improved the physicochemical properties of xyloglucan from tamarind seeds. Int J Biol Macromol 2022; 223:193-201. [PMID: 36356863 DOI: 10.1016/j.ijbiomac.2022.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Acetylation modification was conducted to improve the water-solubility and solution properties of xyloglucan from tamarind seeds (TSX). Three acetylated TSX with different degree of substitution (DS) were successfully prepared, and their structure and molecular parameters were investigated by FT-IR, NMR, and high-performance size exclusion chromatography (HPSEC). Further, the effects of acetylation on the thermal stability, solubility, and rheological properties of TSX were studied. Results showed that acetyl groups were mainly substituted at the O-6 position of terminal galactose with DS of 0.2, 0.47, and 0.36 for AC-2, AC-5, and AC-10, respectively. HPSEC analysis indicated that molecular weight of acetylated derivatives decreased slightly, and the solution conformation became more flexible as the DS increase. By comparing with TSX, the thermal stability, water-solubility, solution transmittance, and ζ-potential of acetylated TSX were significantly improved as the DS increase. In addition, rheological studies demonstrated that acetylation reduced the shear viscosity, but high DS of acetylation could induce the weak gelling property of TSX. In conclusion, acetylation modification could be applied to improve the physicochemical properties of TSX and promote its further application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Taolei Zhao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Zhang M, Bobokalonov J, Dzhonmurodov A, Xiang Z. Optimizing yield and chemical compositions of dimethylsulfoxide-extracted birchwood xylan. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Wang S, Gao W, Wang Y, Song T, Qi H, Xiang Z. Emulsifying properties of naturally acetylated xylans and their application in lutein delivery emulsion. Carbohydr Polym 2022; 296:119927. [DOI: 10.1016/j.carbpol.2022.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
|
13
|
Li X, Dilokpimol A, Kabel MA, de Vries RP. Fungal xylanolytic enzymes: Diversity and applications. BIORESOURCE TECHNOLOGY 2022; 344:126290. [PMID: 34748977 DOI: 10.1016/j.biortech.2021.126290] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
As important polysaccharide degraders in nature, fungi can diversify their extensive set of carbohydrate-active enzymes to survive in ecological habitats of various composition. Among these enzymes, xylanolytic ones can efficiently and sustainably degrade xylans into (fermentable) monosaccharides to produce valuable chemicals or fuels from, for example relevant for upgrading agro-food industrial side streams. Moreover, xylanolytic enzymes are being used in various industrial applications beyond biomass saccharification, e.g. food, animal feed, biofuel, pulp and paper. As a reference for researchers working in related areas, this review summarized the current knowledge on substrate specificity of xylanolytic enzymes from different families of the Carbohydrate-Active enZyme database. Additionally, the diversity of enzyme sets in fungi were discussed by comparing the number of genes encoding xylanolytic enzymes in selected fungal genomes. Finally, to support bio-economy, the current applications of fungal xylanolytic enzymes in industry were reviewed.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
14
|
Xiao J, Chen X, Zhan Q, Zhong L, Hu Q, Zhao L. Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide. ULTRASONICS SONOCHEMISTRY 2022; 82:105901. [PMID: 34973579 PMCID: PMC8799604 DOI: 10.1016/j.ultsonch.2021.105901] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/24/2023]
Abstract
The controllable ultrasonic modification was hindered due to the uncertainty of the relationship between ultrasonic parameters and polysaccharide quality. In this study, the ultrasonic degradation process was established with kinetics. The physicochemical properties and prebiotic activity of ultrasonic degraded Flammulina velutipes polysaccharides (U-FVPs) were investigated. The results showed that the ultrasonic degradation kinetic models were fitted to 1/Mt-1/M0 = kt. When the ultrasonic intensity increased from 531 to 3185 W/cm2, the degradation proceeded faster. The decrease of polysaccharide concentration contributed to the degradation of FVP, and the fastest degradation rate was at 60 °C. Ultrasound changed the solution conformation of FVP, and partially destroyed the stability of the triple helix structure of FVP. Additionally, the viscosity and gel strength of FVP decreased, but its thermal stability was improved by ultrasound. Higher ultrasonic intensity led to larger variations in physicochemical properties. Compared with FVP, U-FVPs could be more easily utilized by gut microbiota. U-FVPs displayed better prebiotic activity by promoting the growth of Bifidobacterium and Brautella and inhibiting the growth of harmful bacteria. Ultrasound could be effectively applied to the degradation of FVP to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Jinrong Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
15
|
Khodayari A, Thielemans W, Hirn U, Van Vuure AW, Seveno D. Cellulose-hemicellulose interactions - A nanoscale view. Carbohydr Polym 2021; 270:118364. [PMID: 34364609 DOI: 10.1016/j.carbpol.2021.118364] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Leuven, Belgium.
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Graz, Austria
| | | | - David Seveno
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation. Carbohydr Polym 2020; 250:116916. [DOI: 10.1016/j.carbpol.2020.116916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
|
17
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
18
|
Fu GQ, Zhang SC, Chen GG, Hao X, Bian J, Peng F. Xylan-based hydrogels for potential skin care application. Int J Biol Macromol 2020; 158:244-250. [PMID: 32360465 DOI: 10.1016/j.ijbiomac.2020.04.235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Skin care biomaterials from natural compounds are increasingly needed in recent. We demonstrate a simple strategy to fabricate the dialdehyde xylan (DAX) crosslinked hydrogel with skin care potential. The hydrogel mainly consists of dialdehyde xylan, which is used as crosslinker for gelatin (G). Glycerol (Gly) and nicotinamide (NCA) are introduced here for improving the texture, antibacterial property as well as skin care functionality. The in vitro release results demonstrate that NCA can be released smoothly from the xylan-based gel, whereby the xylan-based fabricated gel can be utilized as an ideal matrix gel in skin care with loading and release function. The antibacterial ability is in the following order: Yeast > Bacillus subtilis > Staphylococcus aureus. The cytocompatibility experiments confirm the excellent viability of the gel. These merits demonstrate the fabricated hydrogel as a potential material in skin care.
Collapse
Affiliation(s)
- Gen-Que Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng-Chun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ge-Gu Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jing Bian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|