1
|
Wang M, Miao X, Guo F, Deng Z, Bian F, Xiao T, Chen C. Optimized hybrid edible surface coating prepared with gelatin and cellulose nanofiber for cherry tomato preservation. Int J Biol Macromol 2024; 279:134822. [PMID: 39197613 DOI: 10.1016/j.ijbiomac.2024.134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
The use of renewable bioresources and their nanoforms in developing edible coating materials is considered a promising approach for preserving food freshness. Herein, cellulose nanofibers (CNF) with different morphologies were combined with gelatin to prepare composite preservation film following by brushing over the surface of cherry tomatoes as an edible coating. The gelatin-based composite film containing 0.3 % CNF20 (GC2-0.3) exhibited the lowest water vapor permeability (WVP, 1.97 × 10-4 barrer), lower oxygen permeability (OP, 2.54 × 10-2 barrer), higher transparency (Tr = 85.28 %) and excellent mechanical properties (σ = 47.45 MPa, E = 1.84 GPa). When coated on cherry tomatoes, it maintained good luster and freshness, significantly reducing the water loss of cherry tomatoes. The weight loss was only 16 % after 14 days of storage at 25 °C and 30 % humidity, compared to >30 % for the uncoated cherry tomatoes. This work provides a viable strategy for developing sustainable, green fresh-keeping materials that can prolong the storage time of the putrescible food.
Collapse
Affiliation(s)
- Mengxia Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaran Miao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Feng Guo
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiqing Deng
- Shanghai Institute of Precision Measurement and Test, Shanghai, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Ren H, Huang Y, Yang W, Ling Z, Liu S, Zheng S, Li S, Wang Y, Pan L, Fan W, Zheng Y. Emerging nanocellulose from agricultural waste: Recent advances in preparation and applications in biobased food packaging. Int J Biol Macromol 2024; 277:134512. [PMID: 39111480 DOI: 10.1016/j.ijbiomac.2024.134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/11/2024]
Abstract
With the increasing emphasis on sustainability and eco-friendliness, a novel biodegradable packaging materials has received unprecedented attention. Nanocellulose, owing to its high crystallinity, degradability, minimal toxicity, and outstanding biocompatibility, has gained considerable interest in the field of sustainable packaging. This review provided a comprehensive perspective about the recent advances and future development of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). We first introduced the utilization of agricultural waste for nanocellulose production, such as straw, bagasse, fruit byproducts, and shells. Next, we discussed the preparation process of nanocellulose from various agricultural wastes and expounded the advantages and shortcomings of different methods. Subsequently, this review offered an in-depth investigation on the application of nanocellulose in food packaging, especially the function and packaged form of nanocellulose on food preservation. Finally, the safety evaluation of nanocellulose in food packaging is conducted to enlighten and promote the perfection of relevant regulatory documents. In short, this review provided valuable insights for potential research on the biobased materials utilized in future food packaging.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yu Huang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Weixia Yang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sifan Liu
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Shiyu Zheng
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Siqi Li
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yu Wang
- China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Lichao Pan
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, United States
| |
Collapse
|
3
|
El Bourakadi K, Semlali FZ, Hammi M, El Achaby M. A review on natural cellulose fiber applications: Empowering industry with sustainable solutions. Int J Biol Macromol 2024:135773. [PMID: 39349335 DOI: 10.1016/j.ijbiomac.2024.135773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Cellulose fiber, a prevalent natural biopolymer, offers numerous benefits including renewability and biodegradability. It presents a cost-effective, chemical-free alternative for various applications such as textiles, packaging, food preservation, wastewater treatment, medicine, and cosmetics. Recent research has focused on cellulose's potential in advanced polymeric materials, highlighting its versatility and sustainability. This review examines cellulose fibers' synthesis, structure, and properties, as well as their industrial applications in sectors like automotive, packaging, textiles, construction, and biomedical engineering. It also addresses challenges in large-scale production, processing, and sustainability, providing insights for optimizing cellulose fiber use. The review serves as a comprehensive guide for leveraging cellulose fiber's potential in industrial applications.
Collapse
Affiliation(s)
| | - Fatima-Zahra Semlali
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Maryama Hammi
- Mohammed V-Rabat University, Faculty of Sciences, Rabat, Morocco.
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
4
|
Ma J, Liu Y, Xu J, Chen Y, Liu L, Zhang H. An insect lac blanket-mimetic and degradable shellac hydrogel/chitosan packaging film with controllable gas permeation for fresh-cut vegetables preservation. Int J Biol Macromol 2024; 275:133131. [PMID: 38945721 DOI: 10.1016/j.ijbiomac.2024.133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Fresh-cut products are extremely perishable due to the processing operations, and the atmosphere environment, especially CO2, O2 and H2O, could profoundly affect their shelf life. Herein, an insect "lac blanket"-mimetic and facile strategy was proposed for fresh-cut vegetables preservation, employing porous shellac hydrogel microparticles as gas "switches" in chitosan film to regulate CO2, O2 and H2O vapor permeability. Thus, the shellac hydrogel/chitosan hybrid film presented the controllable and wide range of gas permeability, compared with the chitosan film. The shellac-COOH nanoscale vesicles aggregated to form shellac hydrogel network via hydrophobic binding. The shellac hydrogel microparticles played a certain lubricating effect on the hybrid film casting solution. The hydrogen bond network between shellac hydrogel and chitosan contributed to the excellent mechanical properties of the hybrid film. The hybrid film also exhibited remarkable water-resistant, antifogging properties, optical transparency and degradability. The hybrid packaging films prepared through this strategy could adjust the internal gas (CO2, O2, H2O and ethylene) contents within the packages, and further exhibited admirable preservation performance on three fresh-cut vegetables with different respiratory metabolisms. This gas permeation-controlled strategy has great potential in fresh food preservation and various other applications that need a modified atmosphere.
Collapse
Affiliation(s)
- Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Nanjing Forestry University, Nanjing 210037, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Youqing Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China.
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China; Research Center of Engineering and Technology of Characteristic Forest Resources, National Forestry and Grassland Administration, Kunming 650233, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China.
| |
Collapse
|
5
|
Nongnual T, Butprom N, Boonsang S, Kaewpirom S. Citric acid crosslinked carboxymethyl cellulose edible films: A case study on preserving freshness in bananas. Int J Biol Macromol 2024; 267:131135. [PMID: 38574914 DOI: 10.1016/j.ijbiomac.2024.131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
The study involves the preparation and characterization of crosslinked-carboxymethyl cellulose (CMC) films using varying amounts of citric acid (CA) within the range 5 %-20 %, w/w, relative to the dry weight of CMC. Through techniques such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, carbonyl content analysis, and gel fraction measurements, the successful crosslinking between CMC and CA is confirmed. The investigation includes an analysis of chemical structure, physical and optical characteristics, swelling behavior, water vapor transmission rate, moisture content, and surface morphologies. The water resistance of the cross-linked CMC films exhibited a significant improvement when compared to the non-crosslinked CMC film. The findings indicated that films crosslinked with 10 % CA demonstrated favorable properties for application as edible coatings. These transparent films, ideal for packaging, prove effective in preserving the quality and sensory attributes of fresh bananas, including color retention, minimized weight loss, slowed ripening through inhibiting amyloplast degradation, and enhanced firmness during storage.
Collapse
Affiliation(s)
- Teeranan Nongnual
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Nattawut Butprom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supranee Kaewpirom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
6
|
Xu Y, Wu Z, Li A, Chen N, Rao J, Zeng Q. Nanocellulose Composite Films in Food Packaging Materials: A Review. Polymers (Basel) 2024; 16:423. [PMID: 38337312 DOI: 10.3390/polym16030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Owing to the environmental pollution caused by petroleum-based packaging materials, there is an imminent need to develop novel food packaging materials. Nanocellulose, which is a one-dimensional structure, has excellent physical and chemical properties, such as renewability, degradability, sound mechanical properties, and good biocompatibility, indicating promising applications in modern industry, particularly in food packaging. This article introduces nanocellulose, followed by its extraction methods and the preparation of relevant composite films. Meanwhile, the performances of nanocellulose composite films in improving the mechanical, barrier (oxygen, water vapor, ultraviolet) and thermal properties of food packaging materials and the development of biodegradable or edible packaging materials in the food industry are elaborated. In addition, the excellent performances of nanocellulose composites for the packaging and preservation of various food categories are outlined. This study provides a theoretical framework for the development and utilization of nanocellulose composite films in the food packaging industry.
Collapse
Affiliation(s)
- Yanting Xu
- Postgraduate Department, Minjiang University, No. 200, Xiyuangong Road, Fuzhou 350108, China
| | - Zhenzeng Wu
- The College of Ecology and Resource Engineering, Wuyi University, No. 16, Wuyi Avenue, Wuyishan 354300, China
| | - Ao Li
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Nairong Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Jiuping Rao
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Qinzhi Zeng
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| |
Collapse
|
7
|
Tanpichai S, Pumpuang L, Srimarut Y, Woraprayote W, Malila Y. Development of chitin nanofiber coatings for prolonging shelf life and inhibiting bacterial growth on fresh cucumbers. Sci Rep 2023; 13:13195. [PMID: 37580357 PMCID: PMC10425451 DOI: 10.1038/s41598-023-39739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
The widespread usage of petroleum-based polymers as single-use packaging has had harmful effects on the environment. Herein, we developed sustainable chitin nanofiber (ChNF) coatings that prolong the shelf life of fresh cucumbers and delay the growth of pathogenic bacteria on their surfaces. ChNFs with varying degrees of acetylation were successfully prepared via deacetylation using NaOH with treatment times of 0-480 min and defibrillated using mechanical blending. With longer deacetylation reaction times, more acetamido groups (-NHCOCH3) in chitin molecules were converted to amino groups (-NH2), which imparted antibacterial properties to the ChNFs. The ChNF morphologies were affected by deacetylation reaction time. ChNFs deacetylated for 240 min had an average width of 9.0 nm and lengths of up to several μm, whereas rod-like structured ChNFs with a mean width of 7.3 nm and an average length of 222.3 nm were obtained with the reaction time of 480 min. Furthermore, we demonstrated a standalone ChNF coating to extend the shelf life of cucumbers. In comparison to the rod-like structured ChNFs, the 120 and 240-min deacetylated ChNFs exhibited a fibril-like structure, which considerably retarded the moisture loss of cucumbers and the growth rate of bacteria on their outer surfaces during storage. Cucumbers coated with these 120 and 240-min deacetylated ChNFs demonstrated a lower weight loss rate of ⁓ 3.9% day-1 compared to the uncoated cucumbers, which exhibited a weight loss rate of 4.6% day-1. This protective effect provided by these renewable ChNFs holds promising potential to reduce food waste and the use of petroleum-based packaging materials.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
- Cellulose and Bio-Based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Laphaslada Pumpuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- International Joint Research Center On Food Security (IJC-FOODSEC), Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
8
|
Wang Y, Zhang J, Wang D, Wang X, Zhang F, Chang D, You C, Zhang S, Wang X. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chem 2023; 415:135797. [PMID: 36868069 DOI: 10.1016/j.foodchem.2023.135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Horticultural products tend to deteriorate during postharvest storage and processing. In this study, cellulose nanofibers (CNFs) were prepared from wood to investigate the effects of CNF treatment on the storage quality, aroma composition, and antioxidant system of fresh-cut apple (Malus domestica) wedges. Compared with control treatment, CNF coating treatment significantly improved the appearance of apple wedges; reduced the decay rate of apple wedges; and delayed the decline in weight loss, firmness, and titratable acid during storage. Gas chromatography-mass spectrometry showed that CNF treatment could maintain the aroma components of apple wedges (stored for 4 days). Further investigations showed that CNF treatment increased the antioxidant system level and decreased reactive oxygen species content and membrane lipid peroxidation level of apple wedges. Overall, this study showed that CNF coating could effectively maintain the quality of fresh-cut apples during cold storage.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Daru Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Dayong Chang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China; Yantai Goodly Biological Technology Co., Ltd., Yan'Tai 241003, Shandong, PR China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| |
Collapse
|
9
|
He H, Teng H, An F, Wang Y, Qiu R, Chen L, Song H. Nanocelluloses review: Preparation, biological properties, safety, and applications in the food field. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hong He
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| | - Hui Teng
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Fengping An
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| | - Yiwei Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
| | - Renhui Qiu
- College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
| | - Lei Chen
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Hongbo Song
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| |
Collapse
|
10
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
11
|
Shan Y, Li T, Qu H, Duan X, Farag MA, Xiao J, Gao H, Jiang Y. Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Giza Egypt
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Vigo Spain
| | - Haiyan Gao
- Key Laboratory of Postharvest Handing of Fruits of Ministry of Agriculture and Rural Affairs, Food Science Institute Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- College of Advanced Agricultural Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Lee D, Shayan M, Gwon J, Picha DH, Wu Q. Effectiveness of cellulose and chitosan nanomaterial coatings with essential oil on postharvest strawberry quality. Carbohydr Polym 2022; 298:120101. [DOI: 10.1016/j.carbpol.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
|
13
|
Pradhan D, Jaiswal AK, Jaiswal S. Nanocellulose Based Green Nanocomposites: Characteristics and Application in Primary Food Packaging. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dileswar Pradhan
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Lau H, Heng Tan L, Ying Ee L, Dayal H, Ying Lim S, Liu F, Yau Li SF. Application of 1H-NMR- and LC-MS based Metabolomic analysis for the evaluation of celery preservation methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
16
|
V AK, M P, Srivastav PP, Mangaraj S, R P, Hasan M. Development of soy-based nanocomposite film: Modeling for barrier and mechanical properties and its application as cheese slice separator. J Texture Stud 2022; 53:809-819. [PMID: 34580884 DOI: 10.1111/jtxs.12636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
In the current study, soybean aqueous extract (SAE)-based nanocomposite film was developed by incorporating cellulose nanofiber (CNF) at various concentrations (0-10%). Effect of nanoreinforcement on essential properties of the nanocomposite film such as barrier, mechanical, water affinity, and optical properties were evaluated. Homogeneous films with improved barrier and mechanical properties were observed until 6% CNF, beyond which considerable reduction in desirable properties was noticed due to nanoparticle's agglomeration effect. Furthermore, the prediction of the mechanical and barrier properties of nanocomposite film was performed with mathematical models such as modified Halpin-Tsai and modified Nielsen equations, respectively. The model-fitting results reveal that the theoretically predicted values were in close agreement with the experimental values. Hence, these models were well suited for predicting respective properties. Model prediction also implies that the increase in the aspect ratio of fillers can considerably cause a reduction in water vapor permeability and improvement in mechanical properties. Suitability of developed film as cheese slice separator was evaluated: they had equivalent outcomes in terms of easiness in slice separation and wholeness of slices after separation compared to the commercial material.
Collapse
Affiliation(s)
- Ajesh Kumar V
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pravitha M
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shukadev Mangaraj
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pandiselvam R
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute, Kasaragod, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
17
|
Wang Y, Zhang J, Wang X, Zhang T, Zhang F, Zhang S, Li Y, Gao W, You C, Wang X, Yu K. Cellulose Nanofibers Extracted From Natural Wood Improve the Postharvest Appearance Quality of Apples. Front Nutr 2022; 9:881783. [PMID: 35634411 PMCID: PMC9136226 DOI: 10.3389/fnut.2022.881783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
To prolong the shelf life of perishable food with a simple and environmentally friendly postharvest preservation technology is one of the global concerns. This study aimed to explore the application value of biological macromolecule natural cellulose nanofibers (CNFs) in extending the postharvest fruit shelf life. In this study, 0.5% (wt%) CNFs were prepared from natural wood and coated on the surface of early-ripening apple fruits. After 10 days of storage at room temperature, the results revealed that the shelf life of apple fruits with CNF coating was significantly prolonged, and the fruit appearance quality improved. The invisible network structure of CNFs in the fruit epidermis was observed under an atomic force microscope (AFM). The gas chromatography and mass spectrometry (GC-MS) analysis showed that CNFs significantly promoted the formation of epidermal wax, especially fatty alcohols, during storage. In addition, the CNFs remarkably promoted the upregulation of genes related to the synthesis of cuticular wax of apple. In conclusion, this study provides an environmentally sustainable nanomaterial for post-harvest preservation of horticultural products, and also provides a new insight into the effect of CNFs on postharvest storage of apple fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wensheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Xiaofei Wang
| | - Kun Yu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- Kun Yu
| |
Collapse
|
18
|
Gedarawatte ST, Ravensdale JT, Johns ML, Li M, Al-Salami H, Dykes GA, Coorey R. Evaluation of the water-holding and anti-spoilage effect of a bacterial cellulose nanocrystal coating for the storage of vacuum-packaged beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
20
|
|
21
|
Cárdenas-Barboza LC, Paredes-Córdoba AC, Serna-Cock L, Guancha-Chalapud M, Torres-León C. Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces. Heliyon 2021; 7:e07988. [PMID: 34568603 PMCID: PMC8449181 DOI: 10.1016/j.heliyon.2021.e07988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Physalis peruviana is marketed without its calyx, which generates byproducts and a decrease in the shelf life of these fruits. The aim of this study was to evaluate the effect of edible pectin-coatings reinforced with nanocellulose from calyx on the physical-chemical and physiological parameters of P. peruviana fruits during refrigerated storage (5 °C) for ten days. The nanocellulose extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The characterization of the fibers showed that the maximum degradation temperatures ranged between 300 and 311 °C. The SEM analysis revealed the presence of fibers after the chemical treatment. The removal of lignin and hemicellulose was validated using Fourier Transform Infra Red (FTIR) spectroscopy. The results showed that the fruits treated with pectin and pectin reinforced with nanocellulose at 0.5 % (w/w) had an adequate visual appearance and showed a minor color change (ΔE of 19.04 and 21.04, respectively) and the highest retention of L∗ during storage. Although the addition of nanocellulose at 0.5% presented the lowest respiratory rate (29.60 mgCO2/kg h), the treatment with pectin offered the least weight loss and showed the highest firmness retention at the end of storage. Thus, the edible pectin-coating may be useful for improving the postharvest quality and storage life of fresh P. peruviana fruit. Nanocellulose from P. peruviana calyces can be used under the concept of a circular economy; although, its use as a reinforcement of pectin showed some limitations.
Collapse
Affiliation(s)
- Liceth Carolina Cárdenas-Barboza
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Andrey Camilo Paredes-Córdoba
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Liliana Serna-Cock
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Marcelo Guancha-Chalapud
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, 760004, Cali, Valle del Cauca, Colombia
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Universidad Autónoma de Coahuila, 27480, Viesca, Coahuila, Mexico
| |
Collapse
|
22
|
Rodrigues JP, de Souza Coelho CC, Soares AG, Freitas-Silva O. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Liu C, Jin T, Liu W, Hao W, Yan L, Zheng L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Criado P, Fraschini C, Shankar S, Salmieri S, Lacroix M. Influence of cellulose nanocrystals gellan gum-based coating on color and respiration rate of Agaricus bisporus mushrooms. J Food Sci 2021; 86:420-425. [PMID: 33438265 DOI: 10.1111/1750-3841.15580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023]
Abstract
The edible coating has been used for covering fruits and vegetables, bringing surface protection, and extending product shelf-life. Due to the outstanding properties, nanomaterials have become a part of the packaging/coating new generation, demonstrating improvements in the barrier capacity of materials starting from construction products to the food industry. In the food industry, on the other hand, Agaricus bisporus mushrooms have a limited shelf-life from 1 to 3 days because of their high respiration rate and enzymatic browning. With the aim to reduce these two parameters and prevent rapid senescence, the objective of this study was to incorporate a natural source of nanomaterials (cellulose nanocrystals (CNCs) into a gellan gum-based coating and sprayed the surface of the mushrooms with the coating material. To evaluate the effect of CNCs, oxygen consumption, carbon dioxide production rate, and color change were recorded during the mushroom storage at 4 ± 1 °C. Results showed that all coatings were able to decrease total color change (ΔE) of mushrooms from 12 to 8 at day 10 when the coating was applied in all samples compared to control. In addition, significant differences were observed in the respiration rate when CNCs were added to the mushrooms. Oxygen consumption results exhibited a 44 mL O2 /kg · day production at day 5 with 20% CNCs compared to 269 mL O2 /kg · day observed in noncoated samples. This trend was similarly observed in the carbon dioxide production rate. PRACTICAL APPLICATION: With this research, it was remarkable to see the presence of CNCs in the coating solution reduced the respiration rate and increased the shelf-life of mushrooms. Similar applications can be industrially scaled-up to protect fruits and vegetables by CNCs-based coating or packaging materials. A variety of sustainable materials are available nowadays that serve as packaging matrix, and scientists are working on expanding the compatibility of these nanomaterials. In addition, it has been studied that CNCs enhance the degradation of polymers, an effort that many companies are making to reduce the environmental impact in their products.
Collapse
Affiliation(s)
- Paula Criado
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS Armand-Frappier, Health and Biotechnology Centre, University of Quebec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Carole Fraschini
- FPInnovations, 570 boulevard Saint Jean, Pointe-Claire, QC, H9R 3J9, Canada
| | - Shiv Shankar
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS Armand-Frappier, Health and Biotechnology Centre, University of Quebec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Stephane Salmieri
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS Armand-Frappier, Health and Biotechnology Centre, University of Quebec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS Armand-Frappier, Health and Biotechnology Centre, University of Quebec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
26
|
Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02528-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Pirozzi A, Pataro G, Donsì F, Ferrari G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combination when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting the treatment conditions and the product shelf-life improvement.
Collapse
|
28
|
Pradhan SH, Mulenos MR, Steele LR, Gibb M, Ede JD, Ong KJ, Shatkin JA, Sayes CM. Physical, chemical, and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model. Toxicol Res (Camb) 2020; 9:290-301. [PMID: 32670560 PMCID: PMC7329166 DOI: 10.1093/toxres/tfaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrillated cellulose is a next-generation material in development for a variety of applications, including use in food and food-contact materials. An alternative testing strategy including simulated digestion was developed to compare the physical, chemical, and biological characteristics of seven different types of fibrillated cellulose, following European Food Safety Authority guidance. Fibrillated forms were compared to a conventional form of cellulose which has been used in food for over 85 years and has Generally Recognized as safe regulatory status in the USA. The physical and chemical characterization of fibrillated celluloses demonstrate that these materials are similar physically and chemically, which composed of the same fundamental molecular structure and exhibit similar morphology, size, size distribution, surface charge, and low levels of impurities. Simulated gastrointestinal and lysosomal digestions demonstrate that these physical and chemical similarities remain following exposure to conditions that mimic the gastrointestinal tract or intracellular lysosomes. A toxicological investigation with an advanced intestinal co-culture model found that exposure to each of the fibrillated and conventional forms of cellulose, in either the pristine or digested form at 0.4% by weight, showed no adverse toxicological effects including cytotoxicity, barrier integrity, oxidative stress, or inflammation. The results demonstrate the physical, chemical, and biological similarities of these materials and provide substantive evidence to support their grouping and ability to read-across data as part of a food safety demonstration.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Marina R Mulenos
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - London R Steele
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Matthew Gibb
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - James D Ede
- Vireo Advisors, LLC, Boston, MA, 02130-4323, USA
| | | | | | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| |
Collapse
|
29
|
Biopolymer Coatings as Alternative to Modified Atmosphere Packaging for Shelf Life Extension of Minimally Processed Apples. COATINGS 2019. [DOI: 10.3390/coatings9090569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of caseinate/chitosan blend on the shelf life of minimally processed apples was studied. In the first phase of the work, the effect of the biopolymer coating on the respiration rate of the minimally processed apples was studied as function of gas composition (5%, 10%, 21% of O2 with N2 as balance at 5 °C) and temperature (5 °C, 10 °C at 5% of O2 with N2 as balance). In the second phase, the shelf life of the packed product was studied during storage at 5 °C. The gas composition (O2%-CO2%) in the package headspace, relative humidity, pH, hardness, color and antioxidant capacity of the product were monitored after 0, 1, 4, 7, 11, and 14 days. The coating effectively reduced respiration rate of the product when oxygen was over 10%. In the presence of the coating, the reduction of oxygen did not affect the respiration rate. At 5% of O2, the respiration rate decreased by 50% by changing the temperature from 10 °C to 5 °C. Shelf life study showed that the chitosan—caseinate coating was able to preserve the mechanical properties and the antioxidant capacity of the product during storage by increasing the shelf life by 7 days to 11 days at 5 °C.
Collapse
|