1
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
2
|
Wang F, Dai S, Ye J, Yang X, Xu J, Zhang S, Qiu S, Chen C, Xu H, Deng G. Soy protein isolate/dextran glycation conjugates: Fabrication through ultrasound-assisted cyclic continuous reaction and their applications as carriers of anthocyanins. Int J Biol Macromol 2025; 294:139485. [PMID: 39756761 DOI: 10.1016/j.ijbiomac.2025.139485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The precise control of browning and enhancement of Maillard reaction kinetics to improve the surface functionality and nutrient encapsulation efficiency of soy proteins remains a significant challenge. This research presents an ultrasound-assisted cyclic reaction method (1-7 cycles) to synthesize soy protein isolate/dextran (SPI/D) conjugates with enhanced grafting degree and functionality during the Maillard reaction. The technique significantly increased the grafting degree to 65.92 % by the seventh cycle, with minimal browning. Structural analysis showed tighter secondary and more relaxed tertiary structures, leading to a diminished exposure of hydrophobic moieties and an enhancement in solubility, emulsification, foaming, and antioxidant capacity. These functional improvements notably bolstered the SPI/D conjugates' ability to encapsulate anthocyanins (ANs). Particularly, after seven cycles, SPI/D demonstrated a marked enhancement in the thermal, storage, and light stability of ANs. Additionally, it reduced the susceptibility of ANs to degradation by hydrogen peroxide, Fe3+ ions, and gastrointestinal simulated digestion (p < 0.05), which was attributed to their relatively higher hydrophobic residues, hydrogen bonds, and hydrophobic interactions. This strategy provides new insights into soy protein design, highlighting the potential to augment surface functionality and nutrient encapsulate efficiency by controlling the browning degree and enhancing Maillard reaction kinetics.
Collapse
Affiliation(s)
- Fang Wang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China; Key Laboratory of Functional Molecule Structure Optimisation and Application in Sichuan Province Colleges and Universities, Chengdu Normal University, Chengdu 611130, China
| | - Shengsheng Dai
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Jiarui Ye
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Xinrui Yang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Jiali Xu
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Shuo Zhang
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Si Qiu
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Congdi Chen
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Guowei Deng
- College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China; Key Laboratory of Functional Molecule Structure Optimisation and Application in Sichuan Province Colleges and Universities, Chengdu Normal University, Chengdu 611130, China.
| |
Collapse
|
3
|
Zhang S, Xing N, Jiao Y, Li J, Wang T, Zhang Q, Hu X, Li C, Kuang W. An arabinan from Citrus grandis fruits alleviates ischemia/reperfusion-induced myocardial cell apoptosis via the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Carbohydr Polym 2025; 347:122728. [PMID: 39486958 DOI: 10.1016/j.carbpol.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Citrus grandis fruit is a famous traditional Chinese medicine with various bioactivities, including cardioprotective effects. Polysaccharides are one of the key active ingredients responsible for its cardioprotective effects. This study aimed to investigate the structure and cardioprotective effect of a homogeneous polysaccharide from C. grandis fruit (CGP80-1) and explore its mechanism against myocardial ischemia-reperfusion (MI/R) injury. Structure analysis showed that CGP80-1 (11,917 Da) is an arabinan with compact coil chain conformation, containing →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, and →2,3,5)-α-L-Araf-(1→ as the backbone, as well as →5)-α-L-Araf-(1→ and t-α-L-Araf as side-chains substituted at the C2 and C3 positions. Pharmacological experiments showed that pre-treatment with CGP80-1 could effectively alleviate MI/R injury by improving endogenous antioxidant enzymes and cardiac enzymes, reducing reactive oxygen species levels, and regulating apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. The protective effects were correlated with the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Further analysis of structure-activity relationships revealed that the myocardial protection effects of CGP80-1 might be attributed to its appropriate molecular weight, high arabinose content, and unique compact coil chain conformation. Overall, our results provide insight into the chemical structure of CGP80-1 and its mechanism of action, suggesting that CGP80-1 could be a candidate drug for myocardial protection.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yukun Jiao
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, Jiangxi Health Industry Institute of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Junhao Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
4
|
Tian J, Zhang Z, Shang Y, Yang T, Zhou R. Isolation, structures, bioactivities, and applications of the polysaccharides from Boletus spp.: A review. Int J Biol Macromol 2025; 285:137622. [PMID: 39551313 DOI: 10.1016/j.ijbiomac.2024.137622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Boletus spp., the edible mushrooms distributed in Europe, Asia, and North America, have been widely used as food and medicinal ingredients worldwide. Bioactive polysaccharides are highly abundant in Boletus spp., as demonstrated by modern phytochemical studies. The isolation, chemical properties, and bioactivities of polysaccharides from Boletus spp. have long been attracted by academics worldwide. However, there is still a lack of systematic tracking of research progress on Boletus polysaccharides (BPs), which is essential for researchers to understand their potential and gain a deeper insight into their functional mechanisms. In this review, we summarized the recent development of BPs, including the extraction and purification methods, physiochemical and structural features, bioactivities and functional mechanisms, the structure-activity relationship, and the potential applications. This review aims to provide researchers with a comprehensive understanding of the current progress and potential of BPs to assist their further investigations.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Tao Yang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
5
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
6
|
Xiang Y, Liu Z, Liu Y, Dong B, Yang C, Li H. Ultrasound-assisted extraction, optimization, and purification of total flavonoids from Daphnegenkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities. ULTRASONICS SONOCHEMISTRY 2024; 111:107079. [PMID: 39342895 PMCID: PMC11459584 DOI: 10.1016/j.ultsonch.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Daphne genkwa (D. genkwa) is the dried flower buds of a Chinese medicinal plant with multiple biological activities. Response surface methodology (RSM) combined with artificial neural network (ANN) techniques were utilized to optimize ultrasound-assisted extraction conditions for D. genkwa. Antioxidant activity and anti-inflammatory and analgesic properties of total flavonoids from D. genkwa (TFDG) were assessed. Optimal conditions involving ultrasonic power of 225 W, 30 min extraction time, 30 mL/g liquid-solid ratio, 60 °C extraction temperature, and 70% ethanol concentration yielded a maximum total flavonoids content (TFC) of 5.41 mg/g. After microporous resin purification, four specific flavonoids in D. genkwa were identified and quantified using high-performance liquid chromatography (HPLC). The TFDG demonstrated potent antioxidant activity, with a 94% rate of scavenging the 2, 2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, TFDG exhibited pain-alleviating properties in hot plate and acetic acid-induced writhing tests and noteworthy inhibitory effects on xylene-induced ear swelling in mice. The total flavonoids extracted by ultrasound had excellent biological activity. This establishes a foundation for further investigation into the potential medical value of D. genkwa.
Collapse
Affiliation(s)
- Yi Xiang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Zheng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Yanzhi Liu
- Department of Pharmacy, Foshan Women and Children Hospital, Foshan 528000, Guangdong Province, PR China.
| | - Bin Dong
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Hanhan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Gong P, Wang X, Han Y, Long H, Yang W, Chen F, Cui M, Zhai W, Zheng B, Chen X. Hypoglycemic activity of enzymatically extracted Eucommia ulmoides polysaccharide (EUL-w1) on IR-HepG2 cell via the AMPK/PI3K/Akt signaling pathway. Int J Biol Macromol 2024; 283:137596. [PMID: 39542294 DOI: 10.1016/j.ijbiomac.2024.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study devised optimal conditions to extract Eucommia ulmoides leaf (EUL) polysaccharides using a cellulase and pectinase composite enzyme system based on one-way experiments and response surface methodology. Crude EUL polysaccharides (EULPs) were extracted and purified using a DEAE chromatography column. The polysaccharides EUL-w, EUL1, EUL2, and EUL3 were obtained by elution with water, 0.1 mol/L NaCl, 0.2 mol/L NaCl, and 0.3 mol/L NaCl, respectively. The EUL-w fraction had the highest hypoglycemic activity based on its α-amylase and α-glucosidase activities. The preliminary structure of purified EUL-w1 was elucidated. In vitro hypoglycemic activity studies and metabolomics analyses suggested that EUL-w1 modulated glucose metabolism by mediating the AMPK/PI3K/Akt signaling pathway. Our findings provide novel insights and data support for the utilization of EULPs as an emerging food resource in functional foods.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xufeng Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yewen Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi 'an University of Science and Technology, Xi'an 710054, China
| | - Mengjiao Cui
- Natural Will Biology Company, Xi'an 710000, China
| | - Wenjun Zhai
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710061, China
| | | | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Zhang T, Zheng J, Chen M, Li D, Sun Y, Liu R, Sun T. A mini review of polysaccharides from Zanthoxylum bungeanum maxim: Their extraction, purification, structural characteristics, bioactivity and potential applications. Int J Biol Macromol 2024; 282:137007. [PMID: 39486707 DOI: 10.1016/j.ijbiomac.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Zanthoxylum bungeanum Maxim (Z. bungeanum), commonly known as Sichuan pepper or Chinese prickly ash, is a deciduous shrub in the Rutaceae family, with a lengthy history of use as a food ingredient and traditional medicine in China. Z. bungeanum polysaccharides (ZBPs) represent one of the crucial bioactive components of Z. bungeanum, garnering global attention due to their potential medicinal value, culinary significance, and promising application prospects. The principal methods for extracting ZBPs are hot water extraction, ultrasound-assisted extraction, enzyme-assisted extraction and microbial fermentation extraction. However, the structural characteristics of ZBPs remain ambiguous, necessitating further exploration and elucidation of the structure-activity relationship using the advanced analytical techniques. In addition, ZBPs demonstrate diverse bioactivities, including antioxidant activity, neuroprotective effect, antibacterial activity, and the anti-fatigue effect, positioning them as promising candidates for various therapeutic and health-promoting applications. This review provides a comprehensive overview of the extraction, purification, structural characteristics, bioactivities, and potential applications of ZBPs, emphasizing the significant promise of ZBPs as valuable natural compounds with a range of bioactivities, supporting their further exploitation and application in various fields of industries and therapeutics.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Yang J, Song Y, Yu Y, Yang X, Zhang X, Zhang W. Research progress on extraction techniques, structure-activity relationship, and biological functional mechanism of berry polysaccharides: A review. Int J Biol Macromol 2024; 282:137155. [PMID: 39505177 DOI: 10.1016/j.ijbiomac.2024.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In recent years, polysaccharides extracted from berries have received great attention due to their various bioactivities. However, the preparation and application of berry polysaccharides have been greatly limited due to the lack of efficient extraction techniques, unclear structure-activity relationships, and ambiguous functional mechanisms. This review discusses the technological progress in solvent extraction, assisted extraction, critical extraction, and combination extraction. The structure-activity relationship and functional mechanism (antioxidation, hypoglycemic, immunoregulation etc.) of berry polysaccharides are reviewed. After systematic exploration, we believe that industrial production is more suitable for using efficient and low-cost extraction methods, such as ultrasonic assisted extraction and microwave assisted extraction. And some of the bioactivities (antioxidant activity, hypoglycemic activity, etc.) of berry polysaccharides are closely related to their structure (molecular weight, monosaccharide composition, branching structure, etc.). Besides, berry polysaccharides exhibit bioactivities by regulating enzyme activity, cellular metabolism, gene expression, and other pathways to exert their effects on the body. These findings indicate the potential of berry polysaccharides as functional foods and drugs. This paper will contribute to the preparation, bioactivity research, and application of berry polysaccharides.
Collapse
Affiliation(s)
- Jun Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Yao Song
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
10
|
Chen C, Amona FM, Chen J, Chen X, Ke Y, Tang S, Xu J, Chen X, Pang Y. Multifunctional SEBS/AgNWs Nanocomposite Films with Antimicrobial, Antioxidant, and Anti-Inflammatory Properties Promote Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61751-61764. [PMID: 39479988 DOI: 10.1021/acsami.4c15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Wound healing is a complex biological process that can trigger inflammation and oxidative stress and impair myofibrillogenesis and angiogenesis. Several advanced wound-dressing nanocomposite materials have been designed to address these issues. Here, we designed a new multifunctional styrene-ethylene-butylene-styrene/silver nanowire (SEBS/AgNWs)-based nanocomposite film with antimicrobial, antioxidant, and anti-inflammatory properties to promote wound healing. The porous morphological structure of SEBS/AgNWs enhances their antimicrobial, antioxidant, and anti-inflammatory properties. SEBS/AgNWs significantly inhibited the growth of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli strains, effectively wiping out ABTS•+, DPPH•, hydrogen peroxide (H2O2), and hydroxyl (•OH) radicals, showing their effective ROS-scavenging properties. It further showed significant antioxidant properties by increasing the levels of enzyme-like catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), while decreasing malonaldehyde (MDA) levels. Additionally, SEBS/AgNWs reduced the expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), while increasing levels of transforming growth factor- β (TGF-β), vascular endothelial growth factor-A (VEGF), and CD31 in wound healing. This suggests that applying a multifunctional nanoplatform based on SEBS/AgNWs could enhance wound healing and improve patient outcomes in wound care management.
Collapse
Affiliation(s)
- Chen Chen
- College of Hydraulic Engineering Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shuangcheng Tang
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinming Xu
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
11
|
Amahrous A, Taib M, Meftah S, Oukani E, Lahboub B. ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. J Oleo Sci 2024; 73:1361-1375. [PMID: 39414460 DOI: 10.5650/jos.ess24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The increasing global population and the rise of health-conscious consumers have led to a growing demand for innovative foods and functional ingredients. Hairless canary seed (Phalaris canariensis L.), which has recently obtained regulatory food approval from Health Canada and the United States Food and Drug Administration (US-FDA), has the potential to meet these demands due to its unique nutrient profile and characteristics. Canary seed stands out among cereals and pseudo-cereals (gluten-free cereals) as it has the highest protein content and is gluten-free. Additionally, it contains significant amounts of tryptophan, an amino acid typically lacking in cereals. It is considered a true cereal grain that can be processed into flour, starch, and oil for various food and non-food applications. This article provides a comprehensive overview of the chemical composition, functional properties, and biological activities of canary seeds. It also explores the processing methods for incorporating these seeds into food and cosmetic products. Furthermore, suggestions for future research directions are presented to enhance the utilization of this plant. Overall, it is evident that Phalaris canariensis holds considerable potential as a sustainable crop that can be further developed.
Collapse
Affiliation(s)
- Ayoub Amahrous
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Mehdi Taib
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Said Meftah
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Elhassan Oukani
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Bouyazza Lahboub
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| |
Collapse
|
12
|
Huang C, Wang Y, Zhou C, Fan X, Sun Q, Han J, Hua C, Li Y, Niu Y, Emeka Okonkwo C, Yao D, Song L, Otu P. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem 2024; 453:139622. [PMID: 38761729 DOI: 10.1016/j.foodchem.2024.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.
Collapse
Affiliation(s)
- Chengxia Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenhui Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Deyang Yao
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Linglin Song
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Phyllis Otu
- Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| |
Collapse
|
13
|
Zhu J, Wang H, Liu S, Miao L, Dong H, Tong X, Jiang L. Complexes of soybean protein fibrils and chlorogenic acid: Interaction mechanism and antibacterial activity. Food Chem 2024; 452:139551. [PMID: 38723572 DOI: 10.1016/j.foodchem.2024.139551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study explored the mechanism of interaction between chlorogenic acid (CA) and protein fibrils (PF) as well as the effects of varying the CA/PF concentration ratio on antibacterial activity. Analysis of various parameters, such as ζ-potential, thioflavin T fluorescence intensity, surface hydrophobicity, and free sulfhydryl groups, revealed that the interaction between PF and CA altered the structure of PF. Fluorescence analysis revealed that hydrogen bonding and hydrophobic interactions were the primary interaction forces causing conformational rearrangement, resulting in a shorter, more flexible, and thicker fibril structure, as observed through transmission electron microscopy. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and X-ray diffraction analyses revealed that the characteristic fibril structure was destroyed when the CA/PF ratio exceeded 0.05. Notably, the CA-PF complexes inhibited the growth of Escherichia coli and Staphylococcus aureus and also exhibited antioxidant activity. Overall, this study expands the application prospects of CA and PF in the food industry.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liming Miao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongxia Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
14
|
Chen H, Bai Z, Tao S, Li M, Jian L, Zhang Y, Yang X. Optimization of enzyme-assisted microwave extraction, structural characterization, antioxidant activity and in vitro protective effect against H 2O 2-induced damage in HepG2 cells of polysaccharides from roots of Rubus crataegifolius Bunge. Int J Biol Macromol 2024; 276:133969. [PMID: 39029849 DOI: 10.1016/j.ijbiomac.2024.133969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
In this study, an enzyme-assisted microwave extraction process was obtained by response surface method of polysaccharide from roots of Rubus crataegifolius Bunge. The optimized extraction process was as follow: enzyme dosage 2 %, enzymatic time was 3.6 h, enzymatic pH 4.9, and microwave time 4.7 min, with the extraction yield of 9.07 %. Four homogeneous polysaccharides (RCP-1, RCP-3, RCP-4 and RCP-5) were purified through column chromatography. Four polysaccharides have the relative higher molecular weights of 1.70 × 106 Da, 5.56 × 106 Da, 4.97 × 106 Da, and 9.80 × 106 Da and mainly consisted of GluN, GluA, Glu, Gal and Arab. FT-IR and NMR spectral analysis confirmed that the purified polysaccharides were polypyranose containing α- and β-glycosidic bonds. RCP - 1 has a relative high crystallinity. Four purified polysaccharides contained triple helical conformations, and have good antioxidant activities. Among the purified polysaccharides, RCP - 1 was found to reduce the oxidative cell damage induced by H2O2 through increasing of cell viability, inhibition of AST and ALT levels, ROS production and cell apoptosis, increasing of the activities of antioxidative enzymes, as well as reduction of MDA content. Our findings would provide a foundation for purified polysaccharides efficient extraction and demonstrated that the polysaccharides from R. crataegifolius roots could be a promising hepatoprotective agent.
Collapse
Affiliation(s)
- Huiling Chen
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Zifan Bai
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Shuo Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Muchun Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Liqiao Jian
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Yan Zhang
- College of Medical, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiudong Yang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China.
| |
Collapse
|
15
|
Zhang Z, Wang S, Liu Q, Cao G, Liu Y. Extraction, purification, structural characteristics, and pharmacological activities of the polysaccharides from corn silk: A review. Int J Biol Macromol 2024; 274:133433. [PMID: 38936581 DOI: 10.1016/j.ijbiomac.2024.133433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Corn silk is widely used as a traditional Chinese medicine possessing multiple beneficial effects, whose active ingredient is corn silk polysaccharide (CSP). CSP is abundant in corn silk, and has a variety of bioactivities, such as antioxidant, hypoglycemic, hypolipidemic, hepatorenal-protective, antitumor, anti-fatigue, immunomodulating, and anti-ischemia-reperfusion injury effects. Moreover, CSP ameliorates diabetes, diabetes nephropathy, and hyperlipidemia. This review aimed to comprehensively and systematically summarize recent information on the extraction, purification, structural characterization, biological activity, potential mechanism, and toxicity of CSP. Thus, it could provide a reference for the further use of CSP and discuss the future prospects of CSP research and development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250109, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
16
|
Cheong KL, Liu K, Chen W, Zhong S, Tan K. Recent progress in Porphyra haitanensis polysaccharides: Extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem X 2024; 22:101414. [PMID: 38711774 PMCID: PMC11070828 DOI: 10.1016/j.fochx.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Porphyra haitanensis, a red seaweed species, represents a bountiful and sustainable marine resource. P. haitanensis polysaccharide (PHP), has garnered considerable attention for its numerous health benefits. However, the comprehensive utilization of PHP on an industrial scale has been limited by the lack of comprehensive information. In this review, we endeavor to discuss and summarize recent advancements in PHP extraction, purification, and characterization. We emphasize the multifaceted mechanisms through which PHP promotes gastrointestinal health. Furthermore, we present a summary of compelling evidence supporting PHP's protective role against oxidative stress. This includes its demonstrated potent antioxidant properties, its ability to neutralize free radicals, and its capacity to enhance the activity of antioxidant enzymes. The information presented here also lays the theoretical groundwork for future research into the structural and functional aspects of PHP, as well as its potential applications in functional foods.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Keying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenting Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
17
|
Liu B, Ma J, Li T, Li P, Yan D, Zhu J, Zhang X. Advances in the Preparation, Structure and Bioactivity of Polysaccharides from Lycium ruthenicum Murr.: A Review. Foods 2024; 13:1995. [PMID: 38998501 PMCID: PMC11241109 DOI: 10.3390/foods13131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Lycium ruthenicum Murr. is rich in polysaccharides, and the polysaccharides in Lycium ruthenicum Murr. (LRPS) have various bioactivities, such as antioxidant activity, anti-tumor activity, neuroprotective activity, and immunomodulatory activity. It has broad prospects in the development of functional foods and pharmaceuticals. Researchers have found that the structural characteristics of LRPS, such as molecular weight, monosaccharide composition, primary structure, etc., have a significant impact on their bioactivities. Therefore, studying the structure of LRPS is of great significance in revealing their bioactivities and mechanisms. This study, based on introducing the preparation methods of LRPS, focuses on reviewing the research progress on the main structural characteristics, various bioactivities, and mechanisms of action of LRPS. In addition, the study provides prospects for the development of LRPS in the fields of food and medicine, aiming to provide theoretical support for its deep processing and application.
Collapse
Affiliation(s)
- Bing Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Jingyu Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Ting Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Pei Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Dehui Yan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Jun Zhu
- Gansu Institute of Standardization, Lanzhou 730000, China;
| | - Xinguo Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| |
Collapse
|
18
|
Zhang Y, Sun M, He Y, Gao W, Wang Y, Yang B, Sun Y, Kuang H. Polysaccharides from Platycodon grandiflorum: A review of their extraction, structures, modifications, and bioactivities. Int J Biol Macromol 2024; 271:132617. [PMID: 38795891 DOI: 10.1016/j.ijbiomac.2024.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Platycodon grandiflorum (P. grandiflorum) has long been used as a food and traditional herbal medicine. As a food, P. grandiflorum is often transformed into pickles for consumption, and as a traditional Chinese medicine, P. grandiflorum clears the lung, nourishes the pharynx, dispels phlegm, and discharges pus. Polysaccharides are among the main active components of P. grandiflorum. Recent literature has described the preparation, identification, and pharmacological activity of these polysaccharides. Studies have shown that these polysaccharides exhibit a variety of significant biological effects in vitro and in vivo, such as immune stimulation and antioxidant, anti-liver injury, anti-apoptosis and antitumour effects. However, there is no systematic summary of the related research articles on P. grandiflorum polysaccharide, which undoubtedly brings some difficulties to the future research. The purpose of this review is to comprehensively describe research progress on the extraction, purification, structural characterization, modification, and biological activity of P. grandiflorum polysaccharides. The shortcomings of recent research are summarized, further research on their biological activity is proposed to provide new reference value for the application of P. grandiflorum polysaccharides in drugs and health products in the future.
Collapse
Affiliation(s)
- Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
19
|
Martínez-Castro R, Flórez-Santiago J, Valle-Molinares R, Cabrera-Barraza J, Espitia-Almeida F. Optimized microwave-assisted azadirachtin extraction using response surface methodology. Heliyon 2024; 10:e31504. [PMID: 38831827 PMCID: PMC11145488 DOI: 10.1016/j.heliyon.2024.e31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
The neem tree (Azadirachta indica A. Juss) is grown mainly for shade, fuel, and numerous non-timber forest products using its leaves, fruit, and bark. It produces an essential oil that is used as a source for obtaining bioinsecticides, with a broad spectrum of action in agricultural production. Its bioinsecticidal activity is due to the presence of triterpenes, such as azadirachtin, a product in continued growth of the global biopesticide market. Optimal conditions for neem oil extraction using response surface methodology (RSM) and microwave-assisted extraction (MAE) methods have been defined. However, the extraction conditions for these methods tend to consume high volumes of organic solvent and long extraction times. The aim of the present study is to determine the optimal conditions for the extraction of azadirachtin from neem seeds in a hydroalcoholic medium using MAE and RSM with a Box-Behnken design (BBD). A BBD was applied to evaluate the effects of the factors, magnetron voltage (X1), extraction time (X2), and pH of the extraction medium (X3), on the yield of the azadirachtin extraction process. The effect of each variable on the extraction yield was studied independently, considering the pure coefficients (linear and quadratic) on the three levels that were studied in the experiments. Moreover, the study experiments were conducted in triplicate, data were presented as mean and standard deviation, homogeneity of variances was estimated using Levene's test, and a two-way ANOVA with Tukey's post hoc analysis was performed to identify the experimental conditions that allowed us to find the highest extraction yield and to analyze whether the response surface model adequately described our data. The most significant effects of the model correspond to quadratic and interaction effects (p < 0.0001); the quadratic terms voltage (X1), extraction time (X2), and pH (X3); and the interaction effects between voltage-pH (X1*X3) and time-pH (X2*X3), which had a significant influence on the model. Moreover, a canonical analysis was performed. The optimal conditions were as follows: 69.22 V, 6.89 min, and a pH value of 4.35, coinciding with the zones shown in the contour plots. Furthermore, the response obtained at the optimal conditions was 37.5 μg of azadirachtin per gram of pretreated seed.
Collapse
Affiliation(s)
- Robinson Martínez-Castro
- Faculty of Engineering, Chemical Engineering Program, Universidad del Atlántico, Puerto Colombia, 081001, Colombia
| | - Jiress Flórez-Santiago
- Faculty of Basic Sciences, Chemistry Program, Universidad del Atlántico, Puerto Colombia, 081001, Colombia
| | - Roger Valle-Molinares
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia, 081001, Colombia
| | - Julián Cabrera-Barraza
- Center for Research and Innovation in Climate Change and Biodiversity, Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Fabián Espitia-Almeida
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia, 081001, Colombia
- Life Sciences Research Center, Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| |
Collapse
|
20
|
Pan J, Shi Y, Zou J, Zhang X, Xin B, Zhai B, Guo D, Sun J, Luan F. Preparation technologies, structural features, and biological activities of polysaccharides from Mesona chinensis Benth.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117979. [PMID: 38412892 DOI: 10.1016/j.jep.2024.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
21
|
Wang M, Tang HP, Bai QX, Yu AQ, Wang S, Wu LH, Fu L, Wang ZB, Kuang HX. Extraction, purification, structural characteristics, biological activities, and applications of polysaccharides from the genus Lilium: A review. Int J Biol Macromol 2024; 267:131499. [PMID: 38614164 DOI: 10.1016/j.ijbiomac.2024.131499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lei Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
22
|
Teng H, He Z, Hong C, Xie S, Zha X. Extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn (Hippophae rhamnoides L.): A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117809. [PMID: 38266946 DOI: 10.1016/j.jep.2024.117809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) is an edible fruit with a long history in China as a medicinal plant. The fruits of H. rhamnoides are rich in a variety of nutrients and pharmacological active compounds. As one of the most important active ingredients in sea buckthorn, polysaccharides have attracted the attention of researchers due to their antioxidant, anti-fatigue, and liver protective qualities. AIM OF THE REVIEW This review summarizes recent studies on extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn. In addition, the relationship between the structure and the activities of sea buckthorn polysaccharides (SBPS) were discussed. This review would provide important research bases and up-to-date information for the future in-depth development and application of sea buckthorn polysaccharides in the field of pharmaceuticals and functional foods. MATERIALS AND METHODS By inputting the search term "Sea buckthorn polysaccharides", relevant research information was obtained from databases such as Web of Science, Google Scholar, PubMed, China Knowledge Network (CNKI), China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS The main extraction methods of SBPS include hot water extraction (HWE), ultrasonic assisted extraction (UAE), microwave-assisted extraction (MAE), flash extraction (FE), and ethanol extraction. More than 20 polysaccharides have been isolated from sea buckthorn fruits. The chemical structures of sea buckthorn polysaccharides obtained by different extraction, isolation, and purification methods are diverse. Polysaccharides from sea buckthorn display a variety of pharmacological properties, including antioxidant, anti-fatigue, liver protection, anti-obesity, regulation of intestinal flora, immunoregulation, anti-tumor, anti-inflammatory, and hypoglycemic activities. CONCLUSIONS Sea buckthorn has a long medicinal history and characteristics of an ethnic medicine and food. Polysaccharides are one of the main active components of sea buckthorn, and they have received increasing attention from researchers. Sea buckthorn polysaccharides have remarkable pharmacological activities, health benefits, and broad application prospects. In addition, further exploration of the chemical structure of SBPS, in-depth study of their pharmacological activities, identification of their material basis, characterization of disease resistance mechanisms, and potential health functions are still directions of future research. With the accumulation of research on the extraction and purification processes, chemical structure, pharmacological effects, molecular mechanisms, and structure-activity relationships, sea buckthorn polysaccharides derived from natural resources will ultimately make significant contributions to human health.
Collapse
Affiliation(s)
- Hao Teng
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China.
| | - Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China
| | - Chengzhi Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songzi Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xueqiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
23
|
Qin Z, Huang M, Zhang X, Hua Y, Zhang X, Li X, Fan C, Li R, Yang J. Structural and in vivo-in vitro myocardial injury protection features of two novel polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Int J Biol Macromol 2024; 264:130537. [PMID: 38432275 DOI: 10.1016/j.ijbiomac.2024.130537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to investigate the structural characteristics, in vivo antiatherosclerosis activity, and in vitro myocardial injury protection effects of polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Thus, crude polysaccharides of Allium macrostemon Bunge and Allium chinense G. Don significantly reduced serum lipid levels, improved cardiac myocyte morphology and arrangement, and relieved the development of myocardial fibrosis. Meanwhile, the lesion areas of the aorta and aortic valve had evident visual improvements. Furthermore, two main novel purified polysaccharides, namely, AMB-1 and ACGD-1, were isolated and characterized from crude Allium macrostemon Bunge and Allium chinense G. Don fractions, respectively. The purified polysaccharides mainly consisted of fructose and glucose and had molecular weights of 25.22 and 19.53 kDa, respectively. In addition, Fourier transform infrared spectroscopy, methylation, and nuclear magnetic resonance data revealed the primary structures of the AMB1 (or ACGD1) backbone with branched side chains. Scanning electron microscope analysis showed that the purified polysaccharides were both piled together in a lamellar or clastic form with a smooth surface along with linear or irregular bulges. Moreover, the purified polysaccharides both showed nontoxicity on H9c2 cells and effectively dropped hypoxia/reoxygenation-induced apoptosis by the BCL-2/BAX pathway. Overall, the characterization of the structural properties and in vivo and in vitro myocardial injury protection effects of Allium macrostemon Bunge and Allium chinense G. Don polysaccharides enriched our understanding of their nutritional and medicinal values. To the best of our knowledge, this is the first study on the structural characteristics and bioactivities of Allium chinense G. Don polysaccharides.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meixia Huang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xudong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuzhuo Hua
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou 450052, China
| | - Xinqiang Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China
| | - Renfeng Li
- Departments of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jing Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Yang Q, Li M, Gu C, Lu A, Dong L, Zhang X, Hu X, Liu Y, Lu J. Effect of Fucoidan on Structure and Bioactivity of Chinese Steamed Bread. Foods 2024; 13:1057. [PMID: 38611362 PMCID: PMC11011307 DOI: 10.3390/foods13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Fucoidan refers to a group of sulphated polysaccharides obtained from brown seaweed, with numerous biological activities. In this study, fucoidan was fortified into Chinese steamed bread (CSB) at different concentrations (0, 1%, 3% and 5%) and the effect of fucoidan on the dough properties, structure properties and bioactivity were investigated. The results showed that fucoidan could change the viscosity of unfermented dough, and a high concentration of fucoidan could remove the free radicals produced by the SH-SS exchange reaction (GS-) in the dough, which significantly reduced the content of disulfide bond and reduced the expanded volume of fermented dough (p < 0.05). In addition, fucoidan forms a physical barrier on the surface of starch particles and hinders the reaction between protein-to-protein; therefore, fucoidan increased the hardness, gumminess and chewiness in CSB, and reduced the specific volume in CSB. Furthermore, the fucoidan-fortified CSB samples were found to have both the ability to significantly reduce the predicted glycemic index (pGI) (p < 0.05) and improve antioxidant activity (p < 0.05). Collectively, these findings could provide a theoretical basis for the applications of fucoidan as a functional component in fermented foods.
Collapse
Affiliation(s)
- Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Man Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Anni Lu
- Pinehurst School, Albany, Auckland 302-308, New Zealand
| | - Lijun Dong
- Beijing Imperial Food Garden Food Co., Ltd., Beijing 101407, China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Yao Liu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| |
Collapse
|
25
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
26
|
Chen L, Cui C, Wang Z, Che F, Chen Z, Feng S. Structural Characterization and Antioxidant Activity of β-Glucans from Highland Barley Obtained with Ultrasonic-Microwave-Assisted Extraction. Molecules 2024; 29:684. [PMID: 38338428 PMCID: PMC10856557 DOI: 10.3390/molecules29030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In order to efficiently extract β-glucan from highland barley (HBG) and study its structural characterization and antioxidant activity, ultrasonic-microwave-assisted extraction (UME) was optimized by the response surface method (RSM). Under the optimal extraction conditions of 25.05 mL/g liquid-solid ratio, 20 min ultrasonic time, and 480 W microwave intensity, the DPPH radical scavenging activity of HBG reached 25.67%. Two polysaccharide fractions were purified from HBG, namely HBG-1 and HBG-2. Structural characterization indicated that HBG-1 and HBG-2 had similar functional groups, glycosidic linkages, and linear and complex chain conformation. HBG-1 was mainly composed of glucose (98.97%), while HBG-2 primarily consisted of arabinose (38.23%), galactose (22.01%), and xylose (31.60%). The molecular weight of HBG-1 was much smaller than that of HBG-2. Both HBG-1 and HBG-2 exhibited concentration-dependent antioxidant activity, and HBG-1 was more active. This study provided insights into the efficient extraction of HBG and further investigated the structure and antioxidant activities of purified components HBG-1 and HBG-2. Meanwhile, the results of this study imply that HBG has the potential to be an antioxidant in foods and cosmetics.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Chunfeng Cui
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Zhiheng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Fuhong Che
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Zhanxiu Chen
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Shengbao Feng
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| |
Collapse
|
27
|
Yang Y, Li M, Sun J, Qin S, Diao T, Bai J, Li Y. Microwave-assisted aqueous two-phase extraction of polysaccharides from Hippophae rhamnoide L.: Modeling, characterization and hypoglycemic activity. Int J Biol Macromol 2024; 254:127626. [PMID: 37884251 DOI: 10.1016/j.ijbiomac.2023.127626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Natural polysaccharides are concerned for their high biological activity and low toxicity. Two kinds of polysaccharides were extracted from Hippophae rhamnoide L. by microwave-assisted aqueous two-phase system. Under the optimal conditions predicted by RSM model (K2HPO4/ethanol (18.93 %/28.29 %), liquid to material ratio 77 mL/g, power 625 W and temperature 61 °C), the yield of total polysaccharides reached 35.91 ± 0.76 %. Moreover, the polysaccharides extraction was well fitted to the Weibull model. After purification by Sepharose-6B, the polysaccharides from top phase (PHTP, purity of 81.44 ± 1.25 %) and bottom phase (PHBP, purity of 88.85 ± 1.40 %) were obtained. GC, FT-IR, methylation and NMR analyses confirmed the backbone of PHTP was composed of a repeated unit →4)-β-D-Glcp-(1 → 2)-α-L-Rhap-(1 → 4)-β-D-Galp-(1 → 4)-α-D-GalAp-(1 → 3)-α-L-Araf-(1 → 3)-α-D-Manp-(1→, while the repeated unit in PHBP was →3)-α-L-Araf-(1 → 2)-α-L-Rhap-(1 → 4)-β-D-Glcp-(1 → 3)-α-D-Manp-(1 → 4)-β-D-Galp-(1 → 4)-α-D-GalAp-(1→. Compared with PHTP (6.46 × 106 g/mol), PHBP with relatively low molecular weight (8.2 × 105 g/mol) exhibited the smaller particle size, better water-solubility, thermal and rheological property, stronger anti-glycosylation and α-amylase inhibitory effects. Moreover, PHTP and PHBP displayed a reversible inhibition on α-amylase in a competitive manner. This study provides a high-efficient and eco-friendly method for polysaccharides extraction, and lays a foundation for sea buckthorn polysaccharides as potential therapeutic agents in preventing and ameliorating diabetes.
Collapse
Affiliation(s)
- Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Miao Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Sun
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuhui Qin
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tengteng Diao
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
28
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
29
|
Li X, Wei J, Lin L, Li J, Zheng G. Structural characterization, antioxidant and antimicrobial activities of polysaccharide from Akebia trifoliata (Thunb.) Koidz stem. Colloids Surf B Biointerfaces 2023; 231:113573. [PMID: 37783040 DOI: 10.1016/j.colsurfb.2023.113573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Polysaccharides have a variety of beneficial pharmacological impact on human health. Akebia trifoliata (Thunb.) Koidz. has promising development prospects as a food resource with medicinal value. The aim of this study was to investigate the structural characterization, antioxidant, and antibacterial properties of A. trifoliata (Thunb.) Koidz polysaccharides (ATKPs). ATKP-II was purified from ATKP by DEAE-cellulose column with NaCl solution as eluent. ATKP and ATKP-II structures were characterized by high performance gel permeation chromatography, gas chromatography, ultraviolet-visible, Fourier transform infrared spectroscopy, thermogravimetry analysis and scanning electron microscopy. ATKP and ATKP-II were primarily composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose in a molar percent of 1.6: 22.1: 3.6: 6.3: 55.7: 10.7, and 0.5: 22.1: 3.7: 10.2: 42.1: 21.4, respectively. Their structure may contain β-D-glucopyranose. The thermogravimetry analysis showed that ATKP and ATKP-II have good thermal stability at 230 °C and 200 °C, respectively. ATKP had the best antioxidant activities for 2, 2-diphenyl-1-picrylhydrazyl, hydroxyl, and superoxide free radical scavenging activities in vitro, and reducing ability than that of the purified polysaccharides. Moreover, ATKP was demonstrated an appreciable in vitro antibacterial activity, against Staphylococcus aureus, Bacillus subtilis, Salmonella, Penicillium italicum, Rhizopus and Aspergillus niger, but showed no activity against Escherichia coli and Saccharomycetes. These results demonstrated that ATKP displayed excellent antioxidant and antibacterial activities. This study provides a basis for the development and utilization in ATKP.
Collapse
Affiliation(s)
- Xin Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Wei
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
30
|
Kanth S, Malgar Puttaiahgowda Y, Kulal A. Synthesis, characterization, and antimicrobial activities of a starch-based polymer. Carbohydr Res 2023; 532:108900. [PMID: 37459722 DOI: 10.1016/j.carres.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Due to the rise of nosocomial infections and the increasing threat of antibiotic resistance, new techniques are required to combat bacteria and fungi. Functional antimicrobial biodegradable materials developed from low-cost renewable resources like polysaccharides would enable greater applications in this regard. Our group has developed and characterized a new antimicrobial polymer using commercially available N-ethyl piperazine and starch via simple one-pot method. The prepared antimicrobial polymer was characterized by FTIR and NMR. In addition, the thermal properties of the synthesized antimicrobial polymer were examined through TGA and DSC. The antimicrobial potential of the prepared material was investigated using the bacteria, Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis and a fungi Candida albicans. The result indicates that, as the amount of polymer increases, the antimicrobial activity also increases. SA-E-NPz exhibited a zone of inhibition in the range of 8-13 mm, and the MIC was found to be < 0.625 mg against all four microbes. The antimicrobial activity of polymer coated on fabric was also studied. Furthermore, the cytotoxicity studied against human fibroblast cell lines showed that the prepared polymer is non-toxic to the cells. The study concluded that the synthesized polymer shows good antimicrobial activity, is non-toxic to human fibroblast cells, and thus can be used for wound dressing or textile applications.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore, 562 110, Karnataka, India
| |
Collapse
|
31
|
Zhang J, Zhao J, Liu G, Li Y, Liang L, Liu X, Xu X, Wen C. Advance in Morchella sp. polysaccharides: Isolation, structural characterization and structure-activity relationship: A review. Int J Biol Macromol 2023; 247:125819. [PMID: 37455001 DOI: 10.1016/j.ijbiomac.2023.125819] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Morchella sp. is a kind of precious medicinal and edible fungus with a unique flavor and is rich in various amino acids and organic germanium needed by the human body. Most notably, Morchella sp. polysaccharides have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies have been carried out on the extraction methods, structural characterization and activity evaluation of Morchella sp. polysaccharides, which provides a good theoretical basis for its further development and application. However, the systematic summary of the related research of Morchella sp. polysaccharides has not been reported yet. Therefore, this review mainly focused on the isolation and purification methods, structural characterization, biological activities and structure-activity relationship of Morchella sp. polysaccharides. This work will help to have a better in-depth understanding of Morchella sp. polysaccharides and provide a scientific basis and direct reference for more scientific and rational applications.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
32
|
Zhang W, Duan W, Huang G, Huang H. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106487. [PMID: 37327689 PMCID: PMC10422121 DOI: 10.1016/j.ultsonch.2023.106487] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In order to improve the yield of mung bean peel polysaccharide, on the basis of single-factor experiments, the ultrasonic assisted extraction conditions were optimized by response surface methodology (RSM). The results showed that under the conditions of material-liquid ratio of 1: 40, temperature 77 °C, ultrasonic power 216 W and extraction time 47 min, the extraction rate of mung bean peel polysaccharide was the best, which was 2.55 %. The extracted polysaccharide was phosphorylated and its antioxidant activity in vitro was studied. The results suggested that the modified polysaccharide had a significant scavenging effect on hydroxyl radicals and enhanced the ability of anti-lipid peroxidation, which offered ideas and methods for the development and application of mung bean peel polysaccharide.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Wei Duan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
33
|
Gao N, Zhang W, Hu D, Lin G, Wang J, Xue F, Wang Q, Zhao H, Dou X, Zhang L. Study on Extraction, Physicochemical Properties, and Bacterio-Static Activity of Polysaccharides from Phellinus linteus. Molecules 2023; 28:5102. [PMID: 37446762 DOI: 10.3390/molecules28135102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
We optimized an ultrasound-assisted extraction process of Phellinus linteus mycelium polysaccharides (PLPs) and studied their monosaccharide composition and bacteriostatic properties. Based on a single-factor experiment, a three-factor, three-level Box-Behnken design was used to optimize the ultrasound-assisted extraction process of PLP, using the yield of PLP as the index. The chemical composition and monosaccharide composition of PLP were determined by chemical analysis and HPLC analysis, respectively. Microscopic morphological analysis of the surface of PLP was performed via swept-surface electron microscopy. The bacteriostatic properties of PLP were determined using the spectrophotometric turbidimetric method. The results showed that the best extraction process of PLP with ultrasonic assistance achieved a result of 1:42 g/mL. In this method, the ultrasonic temperature was 60 °C, ultrasonic extraction was performed for 20 min, and the yield of PLP was 12.98%. The monosaccharide composition of PLP mainly contains glucose (Glc), mannose (Man), galactose (Gal), and glucuronic acid (GlcA). The intracellular polysaccharide of Phellinus igniarius Mycelia (PIP) is an irregular spherical accumulation, the surface is rough and not smooth, and the extracellular polysaccharide (PEP) is a crumbly accumulation. PIP has a stronger inhibitory ability for S. aureus and E. coli and a slightly weaker inhibitory effect for B. subtilis; the inhibitory effect of PEP on S. aureus, E. coli, and B. subtilis is slightly inferior to that of PIP.
Collapse
Affiliation(s)
- Nengbin Gao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Weijia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Dianjie Hu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Guo Lin
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Jingxuan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Feng Xue
- Jilin Province Changbai Forest Management Bureau, Baishan 134499, China
| | - Qian Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Hongfei Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| |
Collapse
|
34
|
Peng W, Guo X, Xu X, Zou D, Zou H, Yang X. Advances in Polysaccharide Production Based on the Co-Culture of Microbes. Polymers (Basel) 2023; 15:2847. [PMID: 37447493 DOI: 10.3390/polym15132847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Microbial polysaccharides are natural carbohydrates that can confer adhesion capacity to cells and protect them from harsh environments. Due to their various physiological activities, these macromolecules are widely used in food, medicine, environmental, cosmetic, and textile applications. Microbial co-culture is an important strategy that is used to increase the production of microbial polysaccharides or produce new polysaccharides (structural alterations). This is achieved by exploiting the symbiotic/antagonistic/chemo-sensitive interactions between microbes and stimulating the expression of relevant silent genes. In this article, we review the performance of polysaccharides produced using microbial co-culture in terms of yield, antioxidant activity, and antibacterial, antitumor, and anti-inflammatory properties, in addition to the advantages and application prospects of co-culture. Moreover, the potential for microbial polysaccharides to be used in various applications is discussed.
Collapse
Affiliation(s)
- Wanrong Peng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xueying Guo
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Dan Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hang Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
35
|
Lu X. Changes in the structure of polysaccharides under different extraction methods. EFOOD 2023. [DOI: 10.1002/efd2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
36
|
Wang Z, Zhou X, Liang X, Zheng X, Shu Z, Sun Q, Wang Q, Li N. Antioxidant and antibacterial activities of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int J Biol Macromol 2023; 233:123628. [PMID: 36758762 DOI: 10.1016/j.ijbiomac.2023.123628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
In the present work, a Gynostemma pentaphyllum herb endophytic fungus of Chaetomium globosum CGMCC 6882 polysaccharide produced from tapioca starch (GCP-TS) with submerged fermentation was analyzed. GCP-TS contains rhamnose, glucosamine, galactose, glucose, mannose, and glucuronic acid in the molar ratio of 6.29: 0.55: 1.12: 22.93: 10.94: 3.54. Its weight-average molecular weight, number-average molecular weight and polydispersity were 4.73 × 104 Da, 4.29 × 104 Da and 1.103, respectively. Antioxidant results showed that GCP-TS had a concentration-dependent scavenging ability against DPPH radical, superoxide anion, hydroxyl radical, and ABTS radical. The corresponding scavenging capacities of GCP-TS aqueous solution at the concentration of 1.0 mg/mL were 45.11 ± 2.52, 43.58 ± 1.97, 36.27 ± 2.48, and 34.39 ± 2.06 %, respectively. Antibacterial activities of GCP-TS against Staphylococcus aureus and Escherichia coli were enhanced with the increase in its concentration, and its bacteriostatic activity against S. aureus was stronger than that against E. coli.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaona Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinxin Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
37
|
Hari S, Ramaswamy K, Sivalingam U, Ravi A, Dhanraj S, Jagadeesan M. Progress and prospects of biopolymers production strategies. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
In recent decades, biopolymers have garnered significant attention owing to their aptitude as an environmentally approachable precursor for an extensive application. In addition, due to their alluring assets and widespread use, biopolymers have made significant strides in their production based on various sources and forms. This review focuses on the most recent improvements and breakthroughs that have been made in the manufacturing of biopolymers, via sections focusing the most frequented and preferred routes like micro-macro, algae apart from focusing on microbials routes with special attention to bacteria and the synthetic biology avenue of biopolymer production. For ensuring the continued growth of the global polymer industry, promising research trends must be pursued, as well as methods for overcoming obstacles that arise in exploiting the beneficial properties exhibited by a variety of biopolymers.
Collapse
|
38
|
Liu Y, Li H, Ren P, Che Y, Zhou J, Wang W, Yang Y, Guan L. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota. Int J Biol Macromol 2023; 230:123154. [PMID: 36610568 DOI: 10.1016/j.ijbiomac.2023.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lead (Pb) can cause damages to the brain, liver, kidney, endocrine and other systems. Flammulina velutipes residues polysaccharide (FVRP) has been reported to exhibit anti-heavy metal toxicity on yeast, but its regulating mechanism is unclear. Therefore, the protective effect and the underlying mechanism of FVRP on Pb-intoxicated mice were investigated. The results showed that FVRP could reduce liver and kidney function indexes, serum inflammatory factor levels, and increase antioxidant enzyme activity of Pb-poisoned mice. FVRP also exhibited a protective effect on histopathological damages in organs of Pb-intoxicated mice. Furthermore, FVRP attenuated Pb-induced kidney injury by inhibiting apoptosis via activating the Akt/GSK3β/Nrf-2/HO-1 signaling pathway. In addition, based on 16 s rRNA and ITS-2 sequencing data, FVRP regulated the imbalance of gut microbiota to alleviate the damage of Pb-poisoned mice by increasing the abundance of beneficial microbiota (Lachnospiraceae, Lactobacillaceae, Saccharomyces and Mycosphaerella) and decreasing the abundance of harmful microbiota (Muribaculaceae and Pleosporaceae). In conclusion, FVRP inhibited kidney injury in Pb-poisoned mice by inhibiting apoptosis via activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway, and regulating gut fungi and gut bacteria. This study not only revealed the role of gut fungi in Pb-toxicity, but also laid a theoretical foundation for FVRP as a natural drug against Pb-toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
39
|
Geng X, Guo D, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M. Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa. Food Chem X 2023; 18:100644. [PMID: 37032744 PMCID: PMC10074541 DOI: 10.1016/j.fochx.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The aim of this study was to establish a human digestion model in vitro to explore the degradation characteristics of a novel high-purity polysaccharide from Clitocybe squamulosa (CSFP2). The results showed that the content of reducing sugars (CR ) of CSFP2 increased from 0.13 to 0.23 mg/mL, the molecular weight (Mw) of CSFP2 decreased significantly during the saliva-gastrointestinal digestion. The constituent monosaccharides of CSFP2, including galactose, glucose, and mannose, were stable during in vitro digestion, but their molar ratios were changed from 0.023: 0.737: 0.234 to 0.496: 0.478: 0.027. The surface of CSFP2 changes from a rough flaky structure to a scattered flocculent or rod-shaped structure after the gastrointestinal digestion. However, the apparent viscosity of CSFP2 was overall stable during in vitro digestion. Moreover, CSFP2 still maintains its strong antioxidant capacity after saliva-gastrointestinal digestion. The results showed that CSFP2 can be partially decomposed during digestion. Meanwhile, some physico-chemical properties of the fermentation broth containing CSFP2 changed significantly after gut microbiota fermentation. For example, the pH value (from 8.46 to 4.72) decreased significantly (p < 0.05) after 48 h of fermentation. the OD 600 value increased first and then decreased (from 2.00 to 2.68 to 1.32) during 48-h fermentation. In addition, CSFP2 could also increase the amounts of short-chain fatty acids (SCFAs) (from 5.5 to 37.15 mmol/L) during fermentation (in particular, acetic acid, propionic acid, and butyric acid). Furthermore, the relative abundances of Bacteriodes, Bifidobacterium, Catenibacterium, Lachnospiraceae_NK4A136_group, Megasphaera, Prevotella, Megamonas, and Lactobacillus at genus level were markedly increased with the intervention of CSFP2. These results provided a theoretical basis for the further development of functional foods related to CSFP2.
Collapse
|
40
|
Li YX, Lu BW, Jiang SL, Dong CX, Du J. Structural characterization of water-soluble polysaccharides from Sophora flavescens Ait. and their anti-inflammatory activities based on NO release. J Carbohydr Chem 2023. [DOI: 10.1080/07328303.2023.2174551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Yi-Xuan Li
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bo-Wen Lu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Si-Liang Jiang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
41
|
Mendes TPS, Santana RA, Cedro PÉP, Miranda ACA, Junior BBN, Júnior GLV. Extraction, characterization, antioxidant and α-amylase inhibitory activities of (1 → 3)(1 → 6)-β-D-glucogalactan from Aspergillus niger ATCC 1004. 3 Biotech 2023; 13:56. [PMID: 36691433 PMCID: PMC9859964 DOI: 10.1007/s13205-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The optimization of extraction, chemical characterization, and the evaluation of antioxidant activity and α-amylase inhibition capacities of the cell wall polysaccharides extracted from Aspergillus niger ATCC 1004 were studied in this paper. The response surface methodology through a factorial design of three levels indicated the optimal conditions for extraction: pH 13 and 180 min. Characterization results showed that the polysaccharide is glucogalactan, consisting of β-D-galactose-linked units (1 → 6) and β-D-linked glucose (1 → 3). The antioxidant activity was evaluated through three in vitro assays. It could effectively scavenge DPPH, ABTS and hydroxyl radicals with inhibition rates of 82.12%, 75.87% and 79.24, respectively, at 6.4 mg/mL, which were higher than those of the other polysaccharides. For inhibitory activity against α-amylase, a blocking effect of 53.7% was observed at a concentration of 2 mg/mL. Therefore, the cell wall polysaccharides of Aspergillus niger, (1 → 3)(1 → 6)-β-D-glucogalactan, seem to be a promising source for use as an antioxidant, in addition to holding an in vitro hypoglycemic potential.
Collapse
Affiliation(s)
- Tátilla P. S. Mendes
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Romário A. Santana
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Pâmala Évelin P. Cedro
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Alana Caise A. Miranda
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | | | | |
Collapse
|
42
|
Impact of Coreopsis tinctoria Nutt. Essential oil microcapsules on the formation of biogenic amines and quality of smoked horsemeat sausage during ripening. Meat Sci 2023; 195:109020. [DOI: 10.1016/j.meatsci.2022.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
43
|
Liu D, Tang W, Han C, Nie S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front Nutr 2022; 9:1074671. [PMID: 36545471 PMCID: PMC9760828 DOI: 10.3389/fnut.2022.1074671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Polygonatum sibiricum has been used as food and medicine for thousands of years, and P. sibiricum polysaccharides (PSPs) have become the hot research spot due to their various health-promoting functions. Numerous studies have shown that PSPs possess huge potential in the application of functional food and medicine fields. However, the research status and features of the preparation process, molecular structure, and bioactivities of PSPs are unclear. Therefore, this review makes a comprehensive summary and proposes new insights and guidelines for the extraction, purification, structural features, biosynthesis, and multiple bioactivities of PSPs. Notably, it is concluded that PSPs mainly contain several types of polysaccharides, including fructan, pectin, galactomannan, glucomannans, arabinogalactan, and galactan, and multiple bioactivates, including osteogenic activity, anti-obesity, anti-diabetes, anti-depression, antioxidant, antiglycation, and protective effect against neurotoxicity and gut microbiota regulating activity. This review contributes to the structure-function study and resource utilization of P. sibiricum and its polysaccharides in food fields.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Wei Tang
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China,Shaoping Nie
| |
Collapse
|
44
|
Fabrication of high-performance lignin/PHBH biocomposites with excellent thermal, barrier and UV-shielding properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Feki A, Cherif B, Sellem I, Naifar M, Amar IB, Azaza YB, Kallel R, Hariz L, Zeghal S, Ayadi FM, Boudawara T, Amara IB. Biomedical applications of polysaccharide derived from tetrasporophyte tufts of Asparagopsis armata (Falkenbergia rufolanosa): Focus on antioxidant, anti-inflammatory, anti-coagulant and hepato-protective activities. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Preparation, Characterization, and Anti-Adhesive Activity of Sulfate Polysaccharide from Caulerpa lentillifera against Helicobacter pylori. Polymers (Basel) 2022; 14:polym14224993. [PMID: 36433125 PMCID: PMC9697858 DOI: 10.3390/polym14224993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
In the gastric mucosa, chronic inflammation due to Helicobacter pylori infection promotes gastrocarcinogenesis. Polysaccharides of Caulerpa lentillifera are well-characterized by broad antimicrobial activity and anti-inflammatory potentials. The present study was undertaken to investigate whether the low molecular sulfate polysaccharides of C. lentillifera (CLCP) exhibit any anti-adhesive activity against H. pylori. After a hot water extraction and purification process, two purified polysaccharide fractions (CLCP-1 and CLCP2) were studied based on structural characterization and bioactivity determination. The results implied that except for the molar ratio, CLCP-1 and CLCP-2 contain high sulfate, mannose, galactose, xylose, glucose levels, and low protein levels. The molecular weight and Fourier transform infrared spectroscopy (FT-IR) assays confirmed that CLCP-1 and CLCP-2 are sulfate polysaccharides with an average molecular weight (Mw) of 963.15 and 648.42 kDa, respectively. In addition, CLCP-1 and CLCP-2 exhibited stronger antibacterial activity against H. pylori. CLCP-1 and CLCP-2 could significantly promote macrophage proliferation and decrease the production of nitric oxide (NO) through downregulated expression of inducible nitric oxide synthase (iNOS). Meanwhile, CLCP-1 and CLCP-2 in this study showed efficiently protected gastric adenocarcinoma (AGS) cells against H. pylori with the inhibition of the IL-8/NF-κB axis. These findings suggested the effect of Caulerpa lentillifera polysaccharides on H. pylori adhesion, a potential supply of nutrients for eradication therapy through the reduction of cell count and inflammation.
Collapse
|
48
|
Zhang C, Shu Y, Li Y, Guo M. Extraction and immunomodulatory activity of the polysaccharide obtained from Craterellus cornucopioides. Front Nutr 2022; 9:1017431. [PMID: 36424922 PMCID: PMC9678937 DOI: 10.3389/fnut.2022.1017431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we investigated the structural features of the polysaccharide obtained from Craterellus cornucopioides (CCP2) by high-performance liquid chromatography, Fourier transform infrared spectroscopy and ion chromatography. The results showed that CCP2 was a catenarian pyranose that principally comprised of mannose, galactose, glucose, and xylose in the ratio of 1.86: 1.57: 1.00: 1.14, with a molecular weight of 8.28 × 104 Da. Moreover, the immunoregulation effect of CCP2 was evaluated both in vitro and in vivo. It displayed a remarkable immunological activity and activation in RAW264.7 cells by enhancing the phagocytosis of macrophages in a dose-dependent manner without showing cytotoxicity at the concentrations of 10–200 μg/mL in vitro. Additionally, Histopathological analysis indicated the protective function of CCP2 against immunosuppression induced by cyclophosphamide (Cy). Meanwhile, the intake of CCP2 had better immunoregulatory activity for immunosuppression BALB/c mice model. After prevention by CCP2, the spleen and thymus weight indexes of BALB/c mice model were significantly increased. The RT-qPCR and Western Blot results provided comprehensive evidence that the CCP2 could activate macrophages by enhancing the production of cytokines (IL-2, IL-6, and IL-8) and upregulating the protein expression of cell membrane receptor TLR4 and its downstream protein kinase (TRAF6, TRIF, and NF-κB p65) production of immunosuppressive mice through TLR4-NFκB p65 pathway. The results demonstrated that CCP2 could be a potential prebiotic and might provide meaningful information for further research on the immune mechanism.
Collapse
|
49
|
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022; 27:7641. [PMID: 36364468 PMCID: PMC9658512 DOI: 10.3390/molecules27217641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3) from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3 mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained (1→4)-α-d-Glc, (1→4,6)-α-d-Glc, (1→6)-α-d-Gal, (1→2)-α-d-Man, (1→4)-α-d-Man, β-l-Ara-(1→, and α-l-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural functional active substance in functional foods.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| |
Collapse
|
50
|
Ramos M, Laveriano E, San Sebastián L, Perez M, Jiménez A, Lamuela-Raventos RM, Garrigós MC, Queralt AV. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|