1
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
2
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
3
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
4
|
Supachettapun C, Ali MA, Muangsin N, Takada K, Matsumura K, Okajima MK, Kaneko T. Cyanobacterial Ampholyte Hydrogels Developed by the Cationization of Sulfated Polysaccharides and Their Cell-Compatibility. Biomacromolecules 2024; 25:5995-6006. [PMID: 39133657 DOI: 10.1021/acs.biomac.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Sacran is a cyanobacterial supergiant polysaccharide with carboxylate and sulfate groups that exhibits antiallergic and antiinflammatory properties. However, its high anionic functions restrict cell compatibility. Quaternary ammonium groups were substituted to form sacran ampholytes, and the cell compatibility of the cationized sacran hydrogels was evaluated. The cationization process involved the reaction of N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride with the primary amine or hydroxyl groups of sacran. The degree of cationization ranged from 32 to 87% for sugar residues. Hydrogels of sacran ampholytes were prepared by annealing their dried sheets by thermal cross-linking; these hydrogels exhibited anisotropic expansion properties. The water contact angle on the hydrogels decreased from 26.5 to 15.3° with an increase in the degree of cationization, thereby enhancing hydrophilicity. The IC50 values of sacran ampholytes decreased with an increased degree of cationization, resulting in a reduction in cytotoxicity toward the L-929 mouse fibroblast cell line. This reduction was associated with an increase in the cell proliferation density after 3 days of incubation. Scanning electron microscopy images showed fibroblast intercellular connections. Therefore, the sacran ampholyte hydrogel exhibited increased hydrophilicity and cell compatibility, which is beneficial for various biomedical applications.
Collapse
Affiliation(s)
- Chamaiporn Supachettapun
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mohammad Asif Ali
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kenji Takada
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K Okajima
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
5
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
7
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Guo B, Wang Y, Cao C, Qu Z, Song J, Li S, Gao J, Song P, Zhang G, Shi Y, Tang L. Large-Scale, Mechanically Robust, Solvent-Resistant, and Antioxidant MXene-Based Composites for Reliable Long-Term Infrared Stealth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309392. [PMID: 38403451 PMCID: PMC11077694 DOI: 10.1002/advs.202309392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/27/2024]
Abstract
MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
Collapse
Affiliation(s)
- Bi‐Fan Guo
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Ye‐Jun Wang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Cheng‐Fei Cao
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300Australia
| | - Zhang‐Hao Qu
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Jiang Song
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Shi‐Neng Li
- College of Chemistry and Materials EngineeringZhejiang A&F UniversityHangzhou311300China
| | - Jie‐Feng Gao
- College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUniversity of Southern QueenslandSpringfield4300Australia
| | - Guo‐Dong Zhang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Yong‐Qian Shi
- College of Environment and Safety EngineeringFuzhou UniversityFuzhou350116China
| | - Long‐Cheng Tang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
10
|
Wei M, Wang H, Wu J, Yang D, Li K, Liu X, Wang M, Lin B, Wang Z. Multihydrogen Bond Modulated Polyzwitterionic Removable Adhesive Hydrogel with Antibacterial and Hemostatic Function for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21472-21485. [PMID: 38626344 DOI: 10.1021/acsami.3c19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Wound management is a major challenge worldwide, placing a huge financial burden on the government of every nation. Wound dressings that can protect wounds, accelerate healing, prevent infection, and avoid secondary damage continue to be a major focus of research in the health care and clinical communities. Herein, a novel zwitterionic polymer (LST) hydrogel incorporated with [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), mussel-inspired N-[tris(hydroxymethyl)methyl] acrylamide (THMA), and lithium magnesium salt was prepared for functional wound dressings. The incorporation of the THMA monomer containing three hydroxyl groups gives the hydrogel suitable adhesion properties (∼6.0 KPa). This allows the LST zwitterionic hydrogels to bind well to the skin, which not only protects the wound and ensures its therapeutic efficacy but also allows for painless removal and reduced patient pain. Zwitterionic sulfobetaine units of SBMA provide antimicrobial and mechanical properties. The chemical structure and microscopic morphology of LST zwitterionic hydrogels were systematically studied, along with their swelling ratio, adhesion, and mechanical properties. The results showed that the LST zwitterionic hydrogels had a uniform and compact porous structure with the highest swelling and mechanical strain of 1607% and 1068.74%, respectively. The antibacterial rate of LST zwitterionic hydrogels was as high as 99.49%, and the hemostatic effect was about 1.5 times that of the commercial gelatin hemostatic sponges group. In further studies, a full-thickness mouse skin model was selected to evaluate the wound healing performance. Wounds covered by LST zwitterionic hydrogels had a complete epithelial reformation and new connective tissue, and its vascular regenerative capacity was increased to about 2.4 times that of the commercial group, and the wound could completely heal within 12-13 days. This study provides significant advances in the design and construction of multifunctional zwitterionic hydrogel adhesives and wound dressings.
Collapse
Affiliation(s)
- Meng Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang district, Xi'an 710021, China
| | - Haihua Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang district, Xi'an 710021, China
| | - Jingheng Wu
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dong Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang district, Xi'an 710021, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xuan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang district, Xi'an 710021, China
| | - Mengxi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang district, Xi'an 710021, China
| | - Bixia Lin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhigao Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| |
Collapse
|
11
|
Zhang P, Raza S, Cheng Y, Claudine U, Hayat A, Bashir T, Ali T, Ghasali E, Orooji Y. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water. Int J Biol Macromol 2024; 261:129146. [PMID: 38176489 DOI: 10.1016/j.ijbiomac.2023.129146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The study explores the synergy of biobased polymers and hydrogels for water purification. Polymer nanomaterial's, synthesized by combining acrylamide copolymer with maleic anhydride, were integrated into sodium alginate biopolymer using an eco-friendly approach. Crosslinking agents, calcium chloride and glutaraladehyde, facilitated seamless integration, ensuring non-toxicity, high adsorption performance, and controlled capacity. This innovative combination presents a promising solution for clean and healthy water supplies, addressing the critical need for sustainable environmental practices in water purification. In addition, the polymer sodium alginate hydrogel (MAH@AA-P/SA/H) underwent characterization via the use of several analytical procedures, such as FTIR, XPS, SEM, EDX and XRD. Adsorption studies were conducted on metals and dyes in water, and pollutant removal methods were explored. We investigated several variables (such as pH, starting concentration, duration, and absorbent quantity) affect a material's capacity to be adsorbed. Moreover, the maximum adsorption towards Cu2+ is 754 mg/g while for Cr6+ metal ions are 738 mg/g, while the adsorption towards Congo Red and Methylene Blue dye are 685 mg/g and 653 mg/g correspondingly, within 240 min. Adsorption results were further analyzed using kinetic and isothermal models, which showed that MAH@AA-P/SA/H adsorption is governed by a chemisorption process. Hence, the polymer prepared from sodium alginate hydrogel (MAH@AA-P/SA/H) has remarkable properties as a versatile material for the significantly elimination of harmful contaminants from dirty water.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Saleem Raza
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| | - Ye Cheng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Umuhoza Claudine
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Asif Hayat
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Bashir
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Ali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
12
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
13
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
14
|
Xiao X, Yang Y, Lai Y, Huang Z, Li C, Yang S, Niu C, Yang L, Feng L. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Biomacromolecules 2023; 24:5414-5427. [PMID: 37883334 DOI: 10.1021/acs.biomac.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Light-based three-dimensional (3D) bioprinting has been widely studied in tissue engineering. Despite the fact that free-radical chain polymerization-based bioinks like hyaluronic acid methacrylate (HAMA) and gelatin methacryloyl (GelMA) have been extensively explored in 3D bioprinting, the thiol-ene hydrogel system has attracted increasing attention for its ability in building hydrogel scaffolds in an oxygen-tolerant and cell-friendly way. Herein, we report a superfast curing thiol-ene bioink composed of norbornene-modified hyaluronic acid (NorHA) and thiolated gelatin (GelSH) for 3D bioprinting. A new facile approach was first introduced in the synthesis of NorHA, which circumvented the cumbersome steps involved in previous works. Additionally, after mixing NorHA with macro-cross-linker GelSH, the customized NorHA/GelSH bioinks exhibited fascinating superiorities over the gold standard GelMA bioinks, such as an ultrafast curing rate (1-5 s), much lowered photoinitiator concentration (0.03% w/v), and flexible physical performances. Moreover, the NorHA/GelSH hydrogel greatly avoided excess ROS generation, which is important for the survival of the encapsulated cells. Last, compared with the GelMA scaffold, the 3D-printed NorHA/GelSH scaffold not only exhibited excellent cell viability but also guaranteed cell proliferation, revealing its superior bioactivity. In conclusion, the NorHA/GelSH system is a promising candidate for 3D bioprinting and tissue engineering applications.
Collapse
Affiliation(s)
- Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shaojie Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chuan Niu
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
15
|
Köck H, Striegl B, Kraus A, Zborilova M, Christiansen S, Schäfer N, Grässel S, Hornberger H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering (Basel) 2023; 10:767. [PMID: 37508794 PMCID: PMC10376441 DOI: 10.3390/bioengineering10070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Collapse
Affiliation(s)
- Hannah Köck
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Birgit Striegl
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Magdalena Zborilova
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Helga Hornberger
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Özdemir Y, Birtane H, Çiğil AB. An evaluation of antibacterial properties and cytotoxicity of UV-curable biocompatible films containing hydroxyethyl cellulose and silver nanoparticles. Int J Biol Macromol 2023:125516. [PMID: 37353126 DOI: 10.1016/j.ijbiomac.2023.125516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The present study aimed to develop biocompatible film materials with antibacterial and anticancer properties that can be cured with UV rays depending on the thiol-en click reaction mechanism. The synthesized m-Ag NPs were added to formulations containing acrylate functionality HEC, pentaerythritol tetrarkis(3-mercaptopropionate), and photoinitiator at different rates (0, 20, 40, and 60 parts per hundred (phr)). The antibacterial activity of the films was evaluated against S. aureus, P. aeruginosa and E. coli by the disk diffusion test. The antibacterial effect of the films did not form an inhibition zone for the control formulation (CmAg0) against bacteria whereas the antibacterial property increased as the Ag NPs content increased in formulations containing m-Ag NPs. The strongest resistance film against the three bacterial species was observed in the CmAg60 formulation with 60 phr silver content, and the inhibition zones for S. aureus, P. aeruginosa, and E. coli were measured as 16.5 ± 0.7, 16.5 ± 2.1, and 16 ± 1.4, respectively. The cytotoxicity of the films against healthy cells and breast cancer cell (MCF-7) lines was investigated with MTT, and it was observed that all films did not cause any inhibition in the structure of the living cell but killed the cells at a high rate in the MCF-7 line. It was mainly observed that the CmAg60 formulation showed 95.576 % cell inhibition against MCF-7. According to these results, it has been predicted that the prepared films will play a vital role in the next generation of cancer treatments.
Collapse
Affiliation(s)
- Yusuf Özdemir
- Amasya University, Institute of Science, Department of Chemistry, Amasya, Turkey
| | - Hatice Birtane
- Marmara University, Department of Chemistry, Istanbul, Turkey.
| | - Aslı Beyler Çiğil
- Gazi University, Department of Chemistry and Chemical Process Technology, Ankara, Turkey.
| |
Collapse
|
17
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Deng H, Wang J, An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14:1131001. [PMID: 37007032 PMCID: PMC10063825 DOI: 10.3389/fphar.2023.1131001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) containing various ingredients such as DNA, RNA, lipids and proteins, which play a significant role in intercellular communication. Numerous studies have demonstrated the important role of exosomes in bone regeneration through promoting the expression of osteogenic-related genes and proteins in mesenchymal stem cells. However, the low targeting ability and short circulating half-life of exosomes limited their clinical application. In order to solve those problems, different delivery systems and biological scaffolds have been developed. Hydrogel is a kind of absorbable biological scaffold composed of three-dimensional hydrophilic polymers. It not only has excellent biocompatibility and superior mechanical strength but can also provide a suitable nutrient environment for the growth of the endogenous cells. Thus, the combination between exosomes and hydrogels can improve the stability and maintain the biological activity of exosomes while achieving the sustained release of exosomes in the bone defect sites. As an important component of the extracellular matrix (ECM), hyaluronic acid (HA) plays a critical role in various physiological and pathological processes such as cell differentiation, proliferation, migration, inflammation, angiogenesis, tissue regeneration, wound healing and cancer. In recent years, hyaluronic acid-based hydrogels have been used as an exosome delivery system for bone regeneration and have displayed positive effects. This review mainly summarized the potential mechanism of HA and exosomes in promoting bone regeneration and the application prospects and challenges of hyaluronic acid-based hydrogels as exosome delivery devices in bone regeneration.
Collapse
Affiliation(s)
| | | | - Ran An
- *Correspondence: Jiecong Wang, ; Ran An,
| |
Collapse
|
20
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
21
|
Fang Y, Huang S, Gong X, King JA, Wang Y, Zhang J, Yang X, Wang Q, Zhang Y, Zhai G, Ye L. Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion. Acta Biomater 2023; 158:239-251. [PMID: 36581005 DOI: 10.1016/j.actbio.2022.12.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Abdominal adhesions are a class of serious complications following abdominal surgery, resulting in a complicated and severe syndrome and sometimes leading to a Gordian knot. Traditional therapies employ hydrogels synthesized using complicated chemical formulations-often with click chemistry or thermal responsive hydrogel. The complicated synthesis process and severe conditions limit the extent of the hydrogels' applications. In this work, poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) polymer was synthesized to self-assemble into physical hydrogels due to the inter- and intramolecular ion interactions. The strong static interaction bonding density has a substantial impact on the gelation and physicochemical properties, which is beneficial to clinical applications and offers a novel way to obtain the desired hydrogel for a specific biomedical application. Intriguingly, this PSBMA polymer can be customized into a transient network with outstanding antifouling capability depending on the ion concentration. As ion concentration increases, the PSBMA hydrogel dissociated completely, endowing it as a candidate for adhesion prevention. In the cecum-sidewall model, the PSBMA hydrogel demonstrated superior anti-adhesion properties than commercial HA hydrogel. Furthermore, we have demonstrated that this PSBMA hydrogel could inhibit the inflammatory response and encourage anti-fibrosis resulting in adhesion prevention. Most surprisingly, the recovered skins of cecum and sidewall are as smooth as the control skin without any scar and damage. In conclusion, a practical hydrogel was synthesized using a facile method based on purely zwitterionic materials, and this ion-sensitive, antifouling adjustable supramolecular hydrogel with great clinic transform potential is a promising barrier for preventing postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE: The development of hydrogels with satisfactory coverage, long retention time, facile synthetic method, and good biocompatibility is vital for preventing peritoneal adhesions. Herein, we developed a salt sensitive purely zwitterionic physical hydrogel poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) hydrogel to effectively prevent postoperative and recurrent abdominal adhesions. The hydrogel was simple to synthesize and easy to use. In the cecum-sidewall model, PSBMA hydrogel could instantaneously adhere and fix on irregular surfaces and stay in the wound for more than 10 days. The PSBMA hydrogel could inhibit the inflammatory response, encourage anti-fibrosis, and restore smoothness to damaged surfaces resulting in adhesion prevention. Overall, the PSBMA hydrogel is a promising candidate for the next generation of anti-adhesion materials to meet clinical needs.
Collapse
Affiliation(s)
- Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Susu Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Xin Gong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Julia A King
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Jicheng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan 250014, China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| |
Collapse
|
22
|
Stager MA, Adhikari B, Raichart A, Krebs MD. Self-Initiated Photopolymerization of Anti-Inflammatory Zwitterionic Hydrogels with Sustained Release. ACS Macro Lett 2023; 12:65-70. [PMID: 36574625 DOI: 10.1021/acsmacrolett.2c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers that have garnered significant attention as wound-healing materials. Many synthetic hydrogels are fabricated using a radical polymerization approach that requires an initiator molecule that is often photo- or thermosensitive. Initiator-free hydrogels are an emerging area of research that focuses on hydrogel fabrication that occurs in the absence of an initiator or cross-linker molecule, making these hydrogels highly relevant in tissue engineering and regenerative medicine due to their excellent cytocompatibility and ease of scale-up. Here we present on the development of initiator-free zwitterionic hydrogels that photopolymerize without any initiator or cross-linker while under cytocompatible conditions. The hydrogels exhibit a wide range of mechanical characteristics that are dependent on their polymer composition. They resist nonspecific protein adsorption and exhibit a sustained release of proteins and small molecules. Additionally, these self-initiated hydrogels significantly mitigate inflammatory macrophage activation in vitro. Overall, the development of self-initiated photopolymerized zwitterionic hydrogels offers significant progress in the fields of biomaterials and materials science.
Collapse
Affiliation(s)
- Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexandra Raichart
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Melissa D Krebs
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.,Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
23
|
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Curr Pharm Des 2023; 29:3172-3186. [PMID: 37622704 DOI: 10.2174/1381612829666230825100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.
Collapse
Affiliation(s)
- Farhan Younas
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15213, USA
| |
Collapse
|
24
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
25
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
26
|
Gao J, Wen J, Hu D, Liu K, Zhang Y, Zhao X, Wang K. Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion. Bioact Mater 2022; 16:27-46. [PMID: 35386330 PMCID: PMC8958549 DOI: 10.1016/j.bioactmat.2022.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-β-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
27
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
28
|
Wang CG, Surat'man NEB, Chang JJ, Ong ZL, Li B, Fan X, Loh XJ, Li Z. Polyelectrolyte hydrogels for tissue engineering and regenerative medicine. Chem Asian J 2022; 17:e202200604. [DOI: 10.1002/asia.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zhi Lin Ong
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Bofan Li
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zibiao Li
- Institute of Materials Research and Engineering 2 Fusionopolis Way, Innovis, #08-03Singapore 138634 Singapore SINGAPORE
| |
Collapse
|
29
|
Facile synthesize of norbornene-hyaluronic acid to form hydrogel via thiol-norbornene reaction for biomedical application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Recent studies on modulating hyaluronic acid-based hydrogels for controlled drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Stager MA, Bardill J, Raichart A, Osmond M, Niemiec S, Zgheib C, Seal S, Liechty KW, Krebs MD. Photopolymerized Zwitterionic Hydrogels with a Sustained Delivery of Cerium Oxide Nanoparticle-miR146a Conjugate Accelerate Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:1092-1103. [PMID: 35167263 DOI: 10.1021/acsabm.1c01155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the United States, $87 billion per year is spent on the care of diabetic ulcers alone. Although the pathophysiology of diabetic wound healing is multifaceted, high systemic levels of inflammation and increased reactive oxygen species are often implicated in the wound healing impairment. Zwitterionic materials have been demonstrated to reduce inflammation and increase extracellular matrix deposition in wound beds, and here, we demonstrate a fabrication method for photopolymerized zwitterionic hydrogels that also enables sustained drug delivery over time. A therapeutic molecule of interest that is examined in this work is cerium oxide nanoparticle tagged with microRNA-146a (CNP-miR146a) to combat both oxidative stress and inflammation. The hydrogels are composed of zwitterionic and nonzwitterionic monomers, and the hydrogel formation occurs in the absence of a crosslinker. The hydrogels exhibit a wide range of stiffness and mechanical properties depending on their monomer content. Additionally, these hydrogels exhibit sustained release of nanoparticles and proteins. Finally, when employed in an in vivo diabetic mouse wound healing model, the zwitterionic hydrogels alone and laden with the CNP-miR146a conjugate significantly improved the rate of diabetic wound healing. Overall, these materials have excellent potential to be used as a topical treatment for chronic diabetic wounds.
Collapse
Affiliation(s)
- Michael A Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - James Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Alexandra Raichart
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Matthew Osmond
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Stephen Niemiec
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Sudipta Seal
- Department of Materials Science and Engineering, AMPAC, Nanoscience Technology Center, Biionix Cluster, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
32
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Cai C, Zhang X, Li Y, Liu X, Wang S, Lu M, Yan X, Deng L, Liu S, Wang F, Fan C. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106564. [PMID: 34816470 DOI: 10.1002/adma.202106564] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Indexed: 05/24/2023]
Abstract
Antiadhesion barriers such as films and hydrogels used to wrap repaired tendons are important for preventing the formation of adhesion tissue after tendon surgery. However, sliding of the tendon can compress the adjacent hydrogel barrier and cause it to rupture, which may then lead to unexpected inflammation. Here, a self-healing and deformable hyaluronic acid (HA) hydrogel is constructed as a peritendinous antiadhesion barrier. Matrix metalloproteinase-2 (MMP-2)-degradable gelatin-methacryloyl (GelMA) microspheres (MSs) encapsulated with Smad3-siRNA nanoparticles are entrapped within the HA hydrogel to inhibit fibroblast proliferation and prevent peritendinous adhesion. GelMA MSs are responsively degraded by upregulation of MMP-2, achieving on-demand release of siRNA nanoparticles. Silencing effect of Smad3-siRNA nanoparticles is around 75% toward targeted gene. Furthermore, the self-healing hydrogel shows relatively attenuated inflammation compared to non-healing hydrogel. The mean adhesion scores of composite barrier group are 1.67 ± 0.51 and 2.17 ± 0.75 by macroscopic and histological evaluation, respectively. The proposed self-healing hydrogel antiadhesion barrier with MMP-2-responsive drug release behavior is highly effective for decreasing inflammation and inhibiting tendon adhesion. Therefore, this research provides a new strategy for the development of safe and effective antiadhesion barriers.
Collapse
Affiliation(s)
- Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xiong Yan
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| |
Collapse
|
34
|
Liu S, Tang J, Ji F, Lin W, Chen S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022; 8:46. [PMID: 35049581 PMCID: PMC8775195 DOI: 10.3390/gels8010046] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Taizhou Technician College, Taizhou 318000, China
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
35
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
36
|
Dadashi J, Ghasemzadeh MA, Salavati-Niasari M. Recent developments in hydrogels containing copper and palladium for the catalytic reduction/degradation of organic pollutants. RSC Adv 2022; 12:23481-23502. [PMID: 36090397 PMCID: PMC9386442 DOI: 10.1039/d2ra03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants. Accordingly, the elimination of inorganic and organic pollutants using sustainable, effective, and low-cost heterogeneous catalysts is considered as one of the most essential routes for this aim. Thus, many efforts have been devoted to the synthesis of novel compounds and improving their catalytic performance. Recently, palladium- and copper-based hydrogels have been used as catalysts for reduction, degradation, and decomposition reactions because they have significant features such as high mechanical strength, thermal stability, and high surface area. Herein, we summarize the progress achieved in this field, including the various methods for the synthesis of copper- and palladium-based hydrogel catalysts and their applications for environmental remediation. Moreover, palladium- and copper-based hydrogel catalysts, which have certain advantages, including high catalytic ability, reusability, easy work-up, and simple synthesis, are proposed as a new group of effective catalysts. The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants.![]()
Collapse
Affiliation(s)
- Jaber Dadashi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | | | | |
Collapse
|
37
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Synthesis of bio-based waterborne polyesters as environmentally benign biodegradable material through regulation of unsaturated acid structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Zhang J, Chen L, Chen L, Qian S, Mou X, Feng J. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate. Carbohydr Polym 2021; 257:117627. [PMID: 33541653 DOI: 10.1016/j.carbpol.2021.117627] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Because of resistance to bio-macromolecular adhesion, antifouling hydrogels have attracted great attention in biomedical field. But traditional antifouling hydrogels made by hydrophilic polymers are always poor of mechanical properties. Herein, a new hybrid ionic-covalent cross-linked double network (DN) hydrogel was prepared by a simple one-pot method based on sodium alginate and the zwitterionic material carboxybetaine acrylamide (CBAA). The DN hydrogel has good mechanical properties, including high elastic modulus (0.28 MPa), high tensile strength (0.69 MPa), as well as good self-recovery capability. More importantly, the DN hydrogel is highly resistance to the adsorption of non-specific protein, cells, bacteria and algae, exhibiting an outstanding antifouling property. The in vitro and in vivo experiments prove that the DN hydrogel is highly biocompatible. This study provides a new strategy for the preparation of antifouling DN hydrogels with good mechanical properties for different needs, such as tissue scaffolds, wound dressings, implantable devices, and other fields.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| | - Lingdong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Liqun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Sunxiang Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China.
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
40
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Le CMQ, Vidal L, Schmutz M, Chemtob A. Droplet nucleation in miniemulsion thiol–ene step photopolymerization. Polym Chem 2021. [DOI: 10.1039/d1py00139f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reaction parameters, such as droplet size, initiator solubility and monomer solubility, which are important in favouring droplet nucleation in a miniemulsion thiol–ene step polymerization are reviewed.
Collapse
Affiliation(s)
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Marc Schmutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- 67000 Strasbourg
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
42
|
Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials. Carbohydr Polym 2020; 250:116922. [DOI: 10.1016/j.carbpol.2020.116922] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/02/2023]
|
43
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
44
|
Han J, Chen Q, Shen Y, Liu Z, Hao X, Zhong M, Zhao Z, Bockstaller MR. Click-Chemistry Approach toward Antibacterial and Degradable Hybrid Hydrogels Based on Octa-Betaine Ester Polyhedral Oligomeric Silsesquioxane. Biomacromolecules 2020; 21:3512-3522. [PMID: 32687330 DOI: 10.1021/acs.biomac.0c00530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient process for the synthesis of degradable hydrogels containing octa-betaine ester polyhedral oligomeric silsesquioxane (POSS) through efficient thiol-ene and Menschutkin click reactions was developed. The hydrogels exhibited a yield strength of 0.36 MPa and a compressive modulus of 4.38 MPa and displayed excellent flexibility as well as torsion resistance. Antibacterial efficacy of hydrogels (and degradation products) was evaluated using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Efficacy was found to increase with the concentration of cetyl chloroacetate (CCA) in the hydrogel network, reaching 93% and 99% for Escherichia coli and Staphylococcus aureus, respectively. Degradation of hydrogels was observed in weak alkali conditions (pH = 8) and at physiological conditions (pH = 7.4). The degradation time of the hydrogels could be finely tuned by variation of the CCA content in the hydrogel and environmental stimulus. The tunable degradation behavior under physiological conditions combined with high antibacterial efficacy could render the presented materials interesting for tissue engineering applications.
Collapse
Affiliation(s)
- Jin Han
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qinyue Chen
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yupeng Shen
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhixiong Liu
- School of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Xiaoyu Hao
- School of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Mingqiang Zhong
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengping Zhao
- Zhijiang College, Zhejiang University of Technology, Hangzhou, China 310014
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
45
|
Chen F, Le P, Lai K, Fernandes-Cunha GM, Myung D. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an In Situ-Forming Corneal Defect Filler. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:5208-5216. [PMID: 33603277 PMCID: PMC7888987 DOI: 10.1021/acs.chemmater.0c01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Timely treatment of corneal injuries injury can help to prevent corneal scarring, blindness, and the need for corneal transplantation. This work describes a novel hydrogel that can fill corneal defects and assist in corneal regeneration. This hydrogel is a simultaneous interpenetrating polymer network (IPN) composed of collagen cross-linked via strain-promoted azide-alkyne cycloaddition reaction and hyaluronic acid cross-linked via thiol-ene Michael click reaction. The formation of the IPN gel was confirmed via FTIR spectra, UV-vis spectra, and morphological changes. We compared the gelation time, mechanical properties, transmittance, and refractive index of the IPN gel to the collagen gel, hyaluronic acid gel, and semi-IPN gel. The IPN combined the advantages of collagen and hyaluronic acid gels and supported corneal epithelial cell growth on its surface. When applied to corneal stromal defects in vivo, the IPN avoided epithelial hyperplasia, decreased stromal myofibroblast formation, and increased tight junction formation in the regenerated epithelium.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Peter Le
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Krystal Lai
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gabriella M Fernandes-Cunha
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| |
Collapse
|
46
|
Chen X, Yang D. Functional zwitterionic biomaterials for administration of insulin. Biomater Sci 2020; 8:4906-4919. [DOI: 10.1039/d0bm00986e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the structures and biomedical applications of zwitterionic biomaterials in the administration of insulin.
Collapse
Affiliation(s)
- Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Dongqiong Yang
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
47
|
Zhang Q, Wei X, Ji Y, Yin L, Dong Z, Chen F, Zhong M, Shen J, Liu Z, Chang L. Adjustable and ultrafast light-cured hyaluronic acid hydrogel: promoting biocompatibility and cell growth. J Mater Chem B 2020; 8:5441-5450. [PMID: 32555786 DOI: 10.1039/c9tb02796c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-sourced hydrogels are attractive materials for diagnosing, repairing and improving the function of human tissues and organs.
Collapse
Affiliation(s)
- Qianmin Zhang
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiaojuan Wei
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yongli Ji
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Li Yin
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Zaizai Dong
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Institute of Nanotechnology for Single Cell Analysis (INSCA)
| | - Feng Chen
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Mingqiang Zhong
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jian Shen
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Zhenjie Liu
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Lingqian Chang
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Institute of Nanotechnology for Single Cell Analysis (INSCA)
| |
Collapse
|