1
|
Xu C, Li W, Mao J, Liu Z, Lao A, Mao L, Gu A, Wu J, Shen A, Lin K, Liu J. Using chondroitin sulfate lithium hydrogel for diabetic bone regeneration via regulation of macrophage polarization. Carbohydr Polym 2025; 347:122787. [PMID: 39487003 DOI: 10.1016/j.carbpol.2024.122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Bone regeneration in a diabetic environment remains a clinical challenge because of the proinflammatory microenvironment and malfunction of osteogenesis. Traditional therapy for bone defects doesn't work out in diabetes. Therefore, we introduced lithium (Li) into chondroitin sulfate (CS) and developed a crosslinked hydrogel composed of gelatin methacryloyl (GelMA) and chondroitin sulfate lithium (CS-Li) which could release Li in a sustained manner. This crosslinked hydrogel has a porous microstructure, excellent biocompatibility, and osteogenesis properties. With the synergetic effects of CS and Li, this crosslinked hydrogel regulates macrophage polarization to anti-inflammatory phenotype in the high glucose microenvironment and alleviates the inhibition of angiogenesis and osteogenesis caused by diabetes both in vitro and in vivo. The relationship between macrophage polarization and the promotion of angiogenesis and osteogenesis in diabetic microenvironments may be attributed to the activation of Glycogen synthase kinase-3β/β-catenin pathways. Overall, significant results in this study present that CS-Li was a potential therapy for bone defects in diabetic patients.
Collapse
Affiliation(s)
- Chenci Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiqi Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jing Mao
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ziyang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Lixia Mao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Anqi Gu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Aili Shen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
2
|
Ata O, Bozdogan N, Mataraci CE, Kumcuoglu S, Kaya Bayram S, Tavman S. Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chem 2025; 462:141023. [PMID: 39217742 DOI: 10.1016/j.foodchem.2024.141023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, β chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ozge Ata
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Ceren Evrim Mataraci
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | | | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye.
| |
Collapse
|
3
|
Carvalho DN, Gonçalves C, Sousa RO, Reis RL, Oliveira JM, Silva TH. Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1079-1119. [PMID: 39254780 PMCID: PMC11541305 DOI: 10.1007/s10126-024-10361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R's policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Alkabli J. Recent advances in the development of chitosan/hyaluronic acid-based hybrid materials for skin protection, regeneration, and healing: A review. Int J Biol Macromol 2024; 279:135357. [PMID: 39245118 DOI: 10.1016/j.ijbiomac.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biomaterials play vital roles in regenerative medicine, specifically in tissue engineering applications. They promote angiogenesis and facilitate tissue creation and repair. The most difficult aspect of this field is acquiring smart biomaterials that possess qualities and functions that either surpass or are on par with those of synthetic products. The biocompatibility, biodegradability, film-forming capacity, and hydrophilic nature of the non-sulfated glycosaminoglycans (GAGs) (hyaluronic acid (HA) and chitosan (CS)) have attracted significant attention. In addition, CS and HA possess remarkable inherent biological capabilities, such as antimicrobial, antioxidant, and anti-inflammatory properties. This review provides a comprehensive overview of the recent progress made in designing and fabricating CS/HA-based hybrid materials for dermatology applications. Various formulations utilizing CS/HA have been developed, including hydrogels, microspheres, films, foams, membranes, and nanoparticles, based on the fabrication protocol (physical or chemical). Each formulation aims to enhance the materials' remarkable biological properties while also addressing their limited stability in water and mechanical strength. Additionally, this review gave a thorough outline of future suggestions for enhancing the mechanical strength of CS/HA wound dressings, along with methods to include biomolecules to make them more useful in skin biomedicine applications.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia.
| |
Collapse
|
5
|
Ishii T, Hirai K, Higashi K, Aijima A, Yokota N, Toida T, Iwasaki Y, Ito R, Higashi N, Akiyama H. Novel simultaneous analysis of 18 types of glycosaminoglycan-derived disaccharides using 4-aminobenzoic acid ethyl ester derivatization by HPLC with fluorescence detection. Anal Bioanal Chem 2024; 416:6209-6221. [PMID: 39212700 DOI: 10.1007/s00216-024-05504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kengo Hirai
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Aijima
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nae Yokota
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshihiko Toida
- The Center for Preventive Medical Sciences, Chiba University, 1-8-1, Inohana, Chiba-Shi, Chiba, 260-8675, Japan
| | - Yusuke Iwasaki
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Rie Ito
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
| |
Collapse
|
6
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
7
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
8
|
Pang HL, Zhang LT, Zhang YT, Ren Q. Separation and purification of bovine nasal cartilage-derived chondroitin sulfate and evaluation of its binding to bovine serum albumin. Int J Biol Macromol 2024; 277:134501. [PMID: 39111483 DOI: 10.1016/j.ijbiomac.2024.134501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
This study employs an optimized and environmentally friendly method to extract and purify chondroitin sulfate (CS) from bovine nasal cartilage using enzymatic hydrolysis, ethanol precipitation, and DEAE Sepharose Fast Flow column chromatography. The extracted CS, representing 44.67 % ± 0.0016 of the cartilage, has a molecular weight of 7.62 kDa. Characterization through UV, FT-IR, NMR spectroscopy, and 2-aminoacridone derivatization HPLC revealed a high content of sulfated disaccharides, particularly ΔDi4S (73.59 %) and ΔDi6S (20.61 %). Interaction studies with bovine serum albumin (BSA) using fluorescence spectroscopy and molecular docking confirmed a high-affinity, static quenching interaction with a single binding site, primarily mediated by van der Waals forces and hydrogen bonding. The interaction did not significantly alter the polarity or hydrophobicity of BSA aromatic amino acids. These findings provide a strong foundation for exploring the application of CS in tissue engineering and drug delivery systems, leveraging its unique interaction with BSA for targeted delivery and enhanced efficacy.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Li-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
9
|
Tithi AD, Song Y, Paskaleva E, Koffas M. Biosynthesis of animal-free recombinant chondroitin sulfate E using a functional chondroitin sulfotransferase in E. coli. Appl Microbiol Biotechnol 2024; 108:440. [PMID: 39145804 PMCID: PMC11327189 DOI: 10.1007/s00253-024-13275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Chondroitin sulfate E (CS-E) is a vital sulfated glycosaminoglycan with diverse biological functions and therapeutic potential. This study marks a significant milestone by achieving the first successful microbial production of chondroitin 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) in Escherichia coli, enabling recombinant CS-E biosynthesis. Initially, we identified sulfotransferases capable of converting chondroitin sulfate A (CS-A) to CS-E, but these enzymes were non-functional when expressed in E. coli. Moreover, there is no experimentally derived three-dimensional structure available for this specific sulfotransferase in the protein databases. To overcome this challenge, we developed a 3D model of GalNAc4S-6ST using AlphaFold2 and employed PROSS stability design to identify mutations that enhance enzyme solubility and stability with different N-terminal truncations. Experimental validation of these mutations led to the identification of several functional enzymes. Among various E. coli strains tested for enzyme expression, Origami B (DE3) emerged as the most effective host. This facilitated the enzymatic conversion of CS-A to CS-E, achieving a conversion rate of over 50%, and marking the first successful biosynthesis of animal-free CS-E. These findings represent a significant advancement towards the large-scale synthesis of CS-E using cost-effective carbon sources, offering a sustainable alternative to traditional sourcing from endangered animals like sharks. KEY POINTS: • Functional expression of GalNAc4S-6ST in a simple prokaryote was accomplished. • First-time biosynthesis of animal-free chondroitin sulfate E was accomplished.
Collapse
Affiliation(s)
- Aditi Dey Tithi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Troy, NY, USA
| | - Yuefan Song
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Elena Paskaleva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Chemical and Biological Engineering, Troy, NY, USA.
| |
Collapse
|
10
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
11
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|
12
|
Kaczmarek-Szczepańska B, Kleszczyński K, Zasada L, Chmielniak D, Hollerung MB, Dembińska K, Pałubicka K, Steinbrink K, Swiontek Brzezinska M, Grabska-Zielińska S. Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application. Int J Mol Sci 2024; 25:5891. [PMID: 38892078 PMCID: PMC11172586 DOI: 10.3390/ijms25115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this work was to develop and characterize a thin films composed of hyaluronic acid/ellagic acid for potential medical application. Its principal novelty, distinct from the prior literature in terms of hyaluronic acid films supplemented with phenolic acids, resides in the predominant incorporation of ellagic acid-a distinguished compound-as the primary constituent of the films. Herein, ellagic acid was dissolved in two different solvents, i.e., acetic acid (AcOH) or sodium hydroxide (NaOH), and the surface properties of the resultant films were assessed using atomic force microscopy and contact angle measurements. Additionally, various physicochemical parameters were evaluated including moisture content, antioxidant activity, and release of ellagic acid in phosphate buffered saline. Furthermore, the evaluation of films' biocompatibility was conducted using human epidermal keratinocytes, dermal fibroblasts, and human amelanotic melanoma cells (A375 and G361), and the antimicrobial activity was elucidated accordingly against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Our results showed that the films exhibited prominent antibacterial properties particularly against Staphylococcus aureus, with the 80HA/20EA/AcOH film indicating the strong biocidal activity against this strain leading to a significant reduction in viable cells. Comparatively, the 50HA/50EA/AcOH film also displayed biocidal activity against Staphylococcus aureus. This experimental approach could be a promising technique for future applications in regenerative dermatology or novel strategies in terms of bioengineering.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.K.); (M.B.H.); (K.S.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Dorota Chmielniak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Mara Barbara Hollerung
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.K.); (M.B.H.); (K.S.)
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (K.D.); (M.S.B.)
| | - Krystyna Pałubicka
- Department of Conservation and Restoration of Paper and Leather, Nicolaus Copernicus University in Torun, Sienkiewicza 30/32, 87-100 Torun, Poland;
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.K.); (M.B.H.); (K.S.)
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (K.D.); (M.S.B.)
| | - Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
13
|
Shi C, Deng Y, An X, Chen Y, Lv X, Liu Q. Extraction, Physicochemical Properties, and In Vitro Antioxidant Activities of Chondroitin Sulfate from Bovine Nose Cartilage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6328378. [PMID: 38800764 PMCID: PMC11126348 DOI: 10.1155/2024/6328378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/31/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Beef is an important high-nutrition livestock product, and several byproducts, such as bovine cartilage, are produced during slaughter. To effectively utilize these agricultural and pastoral byproducts, combined (trypsin-papain) enzymolysis and cetylpyridine chloride purification methods were used to obtain chondroitin sulfate (CS) from the nasal cartilage of Shaanxi Yellow cattle. The effects of pH, temperature, and time on the CS yield during enzymatic hydrolysis were investigated, and the CS extraction process was optimized using response surface methodology. The best yield of CS was 21.62% under the optimum conditions of pH 6.51, temperature of 64.53°C, and enzymolysis time of 19.86 h. The molecular weight of CS from Shaanxi cattle nasal cartilage was 89.21 kDa, glucuronic acid content was 31.76 ± 0.72%, protein content was 1.12 ± 0.03%, and sulfate group content was 23.34 ± 0.08%. The nasal cartilage CS of the Yellow cattle showed strong DPPH•, •OH, and ABTS+• radical scavenging abilities and ferrous reduction ability in the experimental concentration range. This study could contribute to "turn waste into treasure" and improve the comprehensive utilization of regional characteristic biological resources.
Collapse
Affiliation(s)
- Chan Shi
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxuan Deng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xin An
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuan Chen
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xingang Lv
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
14
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
15
|
Saha SK, Zhu Y, Murray P, Madden L. Future proofing of chondroitin sulphate production: Importance of sustainability and quality for the end-applications. Int J Biol Macromol 2024; 267:131577. [PMID: 38615853 DOI: 10.1016/j.ijbiomac.2024.131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Chondroitin sulphates (CSs) are the most well-known glycosaminoglycans (GAGs) found in any living organism, from microorganisms to invertebrates and vertebrates (including humans), and provide several health benefits. The applications of CSs are numerous including tissue engineering, osteoarthritis treatment, antiviral, cosmetics, and skincare applications. The current commercial production of CSs mostly uses animal, bovine, porcine, and avian tissues as well as marine organisms, marine mammals, sharks, and other fish. The production process consists of tissue hydrolysis, protein removal, and purification using various methods. Mostly, these are chemical-dependent and are complex, multi-step processes. There is a developing trend for abandonment of harsh extraction chemicals and their substitution with different green-extraction technologies, however, these are still in their infancy. The quality of CSs is the first and foremost requirement for end-applications and is dependent on the extraction and purification methodologies used. The final products will show different bio-functional properties, depending on their origin and production methodology. This is a comprehensive review of the characteristics, properties, uses, sources, and extraction methods of CSs. This review emphasises the need for extraction and purification processes to be environmentally friendly and gentle, followed by product analysis and quality control to ensure the expected bioactivity of CSs.
Collapse
Affiliation(s)
- Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland.
| | - Yin Zhu
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| | - Lena Madden
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| |
Collapse
|
16
|
Wang Z, Wang W, Gong H, Jiang Y, Liu R, Yu G, Li G, Cai C. Structural Elucidation of Glycosaminoglycans in the Tissue of Flounder and Isolation of Chondroitin Sulfate C. Mar Drugs 2024; 22:198. [PMID: 38786589 PMCID: PMC11123320 DOI: 10.3390/md22050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 μg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiwen Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Gong
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yudi Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renjie Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
17
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
18
|
Ahmad F, Sachdeva P, Sachdeva B, Singh G, Soni H, Tandon S, Rafeeq MM, Alam MZ, Baeissa HM, Khalid M. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Mol Biotechnol 2024; 66:663-686. [PMID: 36513873 DOI: 10.1007/s12033-022-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Glioblastoma multiforme (GBM), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) are some of the most prevalent neurodegenerative disorders in humans. Even after a variety of advanced therapies, prognosis of all these disorders is not favorable, with survival rates of 14-20 months only. To further improve the prognosis of these disorders, it is imperative to discover new compounds which will target effector proteins involved in these disorders. In this study, we have focused on in silico screening of marine compounds against multiple target proteins involved in AD, GBM, ALS, and PD. Fifty marine-origin compounds were selected from literature, out of which, thirty compounds passed ADMET parameters. Ligand docking was performed after ADMET analysis for AD, GBM, ALS, and PD-associated proteins in which four protein targets Keap1, Ephrin A2, JAK3 Kinase domain, and METTL3-METTL14 N6-methyladenosine methyltransferase (MTA70) were found to be binding strongly with the screened compound Dioxinodehydroeckol (DHE). Molecular dynamics simulations were performed at 100 ns with triplicate runs to validate the docking score and assess the dynamics of DHE interactions with each target protein. The results indicated Dioxinodehydroeckol, a novel marine compound, to be a putative inhibitor among all the screened molecules, which might be effective against multiple target proteins involved in neurological disorders, requiring further in vitro and in vivo validations.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India.
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, University of Delhi, Delhi, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
- Kusuma School of Biological Sciences, India Institute of Technology, Delhi, India
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanadi M Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
19
|
Elhiss S, Hamdi A, Chahed L, Boisson-Vidal C, Majdoub H, Bouchemal N, Laschet J, Kraiem J, Le Cerf D, Maaroufi RM, Chaubet F, Ben Mansour M. Hyaluronic acid from bluefin tuna by-product: Structural analysis and pharmacological activities. Int J Biol Macromol 2024; 264:130424. [PMID: 38428772 DOI: 10.1016/j.ijbiomac.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The fishing and aquaculture industries generate a huge amount of waste during processing and preservation operations, especially those of tuna. Recovering these by-products is a major economic and environmental challenge for manufacturers seeking to produce new active biomolecules of interest. A new hyaluronic acid was extracted from bluefin tuna's vitreous humour to assess its antioxidant and pharmacological activities. The characterization by infrared spectroscopy (FT-IR), nuclear magnetic resonance ((1D1H) and 2D (1H COSY, 1H/13C HSQC)) and size exclusion chromatography (SEC/MALS/DRI/VD) revealed that the extracted polysaccharide was a hyaluronic acid with high uronic acid content (55.8 %) and a weight average molecular weight of 888 kDa. This polymer possesses significant anti-radical activity and ferrous chelating capacity. In addition, pharmacological evaluation of its anti-inflammatory and analgesic potential, using preclinical models, in comparison with reference drugs (Dexamethasone, diclofenac, and acetylsalicylate of lysine), revealed promising anti-inflammatory activity as well as interesting peripheral and central antinociceptive activity. Therefore, our new hyaluronic acid compound may therefore serve as a potential drug candidate for the treatment of pain sensation and inflammation of various pathological origins.
Collapse
Affiliation(s)
- Sawsen Elhiss
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Assia Hamdi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Latifa Chahed
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | | | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Nadia Bouchemal
- Université Sorbonne Paris Nord, CNRS, CSPBAT, F-93000 Bobigny, France
| | - Jamila Laschet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Jamil Kraiem
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Didier Le Cerf
- Université Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000 Rouen, France
| | - Raoui Mounir Maaroufi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Frédéric Chaubet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Université Sorbonne Paris Nord, INSERM, LVTS, Institut Galilée, F-93430 Villetaneuse, France
| | - Mohamed Ben Mansour
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia.
| |
Collapse
|
20
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
21
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
22
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
23
|
Ju R, Han B, Han F, Peng Y. Efficient Expression and Characterization of an Endo-Type Lyase HCLase_M28 and Its Gradual Scale-Up Fermentation for the Preparation of Chondroitin Sulfate Oligosaccharides. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04878-7. [PMID: 38386140 DOI: 10.1007/s12010-024-04878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Glycosaminoglycan (GAG) lyases have been critical in structural and functional studies of GAGs. HCLase_M28, a lyase identified from the genome of Microbacterium sp. M28 was heterologously expressed, enzymatically characterized, and prepared in large-scale fermentation for the production of chondroitin sulfate (CS) oligosaccharides. Results showed that the expression of HCLase_M28 in Escherichia coli BL21 (DE3)-pET24a-HCLase_M28opt1 and Bacillus subtilis W800-pSTOP1622-HCLase_M28opt2 were 108-fold and 25-fold that of wide strain. The optimal lytic reaction of HCLase_M28 happened in 20 mM Tris-HCl (pH 7.2) at 50 °C with a specific activity of 190.9 U/mg toward CS-A. The degrading activity was slightly simulated in presence of 1 mM Ca2+ and Mn2+ while severely inhibited by Hg+, Cu2+, Fe3+, and SDS. TLC and ESI-MS analysis proved HCLase_M28 was an endolytic lyase and degraded CS and hyaluronic acid into unsaturated disaccharides. Through a gradual scale-up of fermentation in 5 L, 100 L, and 1000 L, a highly efficient intracellular expression of HCLase_M28 with an activity of 3.88 × 105 U/L achieved within a 34 h of cultivation. Through ultrafiltration, CS oligosaccharides with DP of 2 to 8 as the main components could be controllably prepared. The successful large-scale fermentation made HCLase_M28 a promising enzyme for industrial production of CS oligosaccharides.
Collapse
Affiliation(s)
- Ruibao Ju
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
24
|
Gaspar-Pintiliescu A, Stefan LM, Mihai E, Sanda C, Manoiu VS, Berger D, Craciunescu O. Antioxidant and antiproliferative effect of a glycosaminoglycan extract from Rapana venosa marine snail. PLoS One 2024; 19:e0297803. [PMID: 38359063 PMCID: PMC10868805 DOI: 10.1371/journal.pone.0297803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Marine glycosaminoglycans (GAG) isolated from different invertebrates, such as molluscs, starfish or jellyfish, have been described as unique molecules with important pharmacological applications. Scarce information is available on GAG extract from Rapana venosa marine snail. The aim of this study was to isolate a GAG extract from R. venosa marine snail and to investigate its physicochemical, antioxidant and antiproliferative properties for further biomedical use. The morphology, chemical and elemental composition of the extract were established as well as the sulfate content and N- to O-sulfation ratio. Fourier transform infrared (FTIR) spectra indicated that GAG extract presented similar structural characteristics to bovine heparan sulfate and chondroitin sulfate. The pattern of extract migration in agarose gel electrophoresis and specific digestion with chondroitinase ABC and heparinase III indicated the presence of a mixture of chondroitin sulfate-type GAG, as main component, and heparan sulfate-type GAG. Free radical scavenging and ferric ion reducing assays showed that GAG extract had high antioxidant activity, which slightly decreased after enzymatic treatment. In vitro MTT and Live/Dead assays showed that GAG extract had the ability to inhibit cell proliferation in human Hep-2 cell cultures, at cytocompatible concentrations in normal NCTC clone L929 fibroblasts. This capacity decreased after enzymatic digestion, in accordance to the antioxidant activity of the products. Tumoral cell migration was also inhibited by GAG extract and its digestion products. Overall, GAG extract from R. venosa marine snail exhibited antioxidant and antiproliferative activities, suggesting its potential use as novel bioactive compound for biomedical applications.
Collapse
Affiliation(s)
- Alexandra Gaspar-Pintiliescu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena Mihai
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Catalina Sanda
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Vasile S. Manoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Bucharest, Romania
| | - Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
25
|
Su J, Wu H, Yin C, Zhang F, Han F, Yu W. The hydrophobic cluster on the surface of protein is the key structural basis for the SDS-resistance of chondroitinase VhChlABC. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:93-101. [PMID: 38433971 PMCID: PMC10902247 DOI: 10.1007/s42995-023-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/07/2023] [Indexed: 03/05/2024]
Abstract
The application of chondroitinase requires consideration of the complex microenvironment of the target. Our previous research reported a marine-derived sodium dodecyl sulfate (SDS)-resistant chondroitinase VhChlABC. This study further investigated the mechanism of VhChlABC resistance to SDS. Focusing on the hydrophobic cluster on its strong hydrophilic surface, it was found that the reduction of hydrophobicity of surface residues Ala181, Met182, Met183, Ala184, Val185, and Ile305 significantly reduced the SDS resistance and stability. Molecular dynamics (MD) simulation and molecular docking analysis showed that I305G had more conformational flexibility around residue 305 than wild type (WT), which was more conducive to SDS insertion and binding. The affinity of A181G, M182A, M183A, V185A and I305G to SDS was significantly higher than that of WT. In conclusion, the surface hydrophobic microenvironment composed of six residues was the structural basis for SDS resistance. This feature could prevent the binding of SDS and the destruction of hydrophobic packaging by increasing the rigid conformation of protein and reducing the binding force of SDS-protein. The study provides a new idea for the rational design of SDS-resistant proteins and may further promote chondroitinase research in the targeted therapy of lung diseases under the pressure of pulmonary surfactant. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00201-1.
Collapse
Affiliation(s)
- Juanjuan Su
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Hao Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Chengying Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Fengchao Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| |
Collapse
|
26
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
28
|
Truzzi E, Bertelli D, Bilia AR, Vanti G, Maretti E, Leo E. Combination of Nanodelivery Systems and Constituents Derived from Novel Foods: A Comprehensive Review. Pharmaceutics 2023; 15:2614. [PMID: 38004592 PMCID: PMC10674267 DOI: 10.3390/pharmaceutics15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Novel Food is a new category of food, regulated by the European Union Directive No. 2015/2283. This latter norm defines a food as "Novel" if it was not used "for human consumption to a significant degree within the Union before the date of entry into force of that regulation, namely 15 May 1997". Recently, Novel Foods have received increased interest from researchers worldwide. In this sense, the key areas of interest are the discovery of new benefits for human health and the exploitation of these novel sources of materials in new fields of application. An emerging area in the pharmaceutical and medicinal fields is nanotechnology, which deals with the development of new delivery systems at a nanometric scale. In this context, this review aims to summarize the recent advances on the design and characterization of nanodelivery systems based on materials belonging to the Novel Food list, as well as on nanoceutical products formulated for delivering compounds derived from Novel Foods. Additionally, the safety hazard of using nanoparticles in food products, i.e., food supplements, has been discussed in view of the current European regulation, which considers nanomaterials as Novel Foods.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Giulia Vanti
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| |
Collapse
|
29
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
30
|
Shukla P, Sinha R, Anand S, Srivastava P, Mishra A. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Appl Biochem Biotechnol 2023; 195:7132-7157. [PMID: 36961510 DOI: 10.1007/s12010-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shubhankar Anand
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
31
|
Mizuta H, Kawahara S, Tsutsumi N, Miyamoto N. Quantification of orally administered chondroitin sulfate oligosaccharides in human plasma and urine. Glycobiology 2023; 33:755-763. [PMID: 37440435 DOI: 10.1093/glycob/cwad054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Chondroitin sulfate has been widely administered orally to improve knee osteoarthritis. Chondroitin sulfate also has various biological properties, such as anti-inflammatory, immunomodulatory, anti-oxidative, and antitumor activity. However, chondroitin sulfate absorption in the digestive system and bioavailability remains controversial owing to its large molecular weight. In this study, we aimed to evaluate the absorption of chondroitin sulfate oligosaccharides, depolymerized chondroitin sulfate with low molecular weight, in oral administration to humans. Four types of chondroitin sulfate with varying molecular weight [chondroitin sulfate tetrasaccharide (MW. 980), CSOS-1 (MW. 1,500), CSOS-2 (MW. 2,800), and HMWCS (MW. 70,000)] were orally administered and quantified in plasma and urine. Exogenous chondroitin sulfate in these samples was quantified using a high-performance liquid chromatography system equipped with a fluorescence detector. Quantitative changes of administered chondroitin sulfate tetrasaccharide showed similar patterns in plasma and urine, therefore it was presumed that the amount of exogenous chondroitin sulfate excreted in urine reflects its quantitative profile in blood. Considering urinary exogenous chondroitin sulfate as a parameter of intestinal chondroitin sulfate absorption, urinary contents of orally administered chondroitin sulfate with varying molecular weight were compared. Consequently, the amount of urinary exogenous chondroitin sulfate in 24 h after administration was higher in the chondroitin sulfate oligosaccharides group than that in the high molecular weight chondroitin sulfate group. Additionally, in the molecular weight distribution, urinary exogenous chondroitin sulfate after chondroitin sulfate oligosaccharides administration showed a lower content of chondroitin sulfate oligosaccharides with a higher molecular weight than that observed before administration. In summary, our results demonstrated for the first time that lower molecular weight of chondroitin sulfate is more efficiently absorbed through the digestive tract in human, and the improvement of its bioavailability is expected.
Collapse
Affiliation(s)
- Hiroko Mizuta
- Fine Chemical Lab., Marukyou Bio Foods Co., Ltd., 2-1-40, Nishi-Miyanosawa 4-jo, Teine, Sapporo, Hokkaido, 006-0004, 42-1-40 Nishi-Miyanosawa, Teine, Sapporo, Hokkaido 006-0004, Japan
| | - Shota Kawahara
- Fine Chemical Lab., Marukyou Bio Foods Co., Ltd., 2-1-40, Nishi-Miyanosawa 4-jo, Teine, Sapporo, Hokkaido, 006-0004, 42-1-40 Nishi-Miyanosawa, Teine, Sapporo, Hokkaido 006-0004, Japan
| | - Naonobu Tsutsumi
- Fine Chemical Lab., Marukyou Bio Foods Co., Ltd., 2-1-40, Nishi-Miyanosawa 4-jo, Teine, Sapporo, Hokkaido, 006-0004, 42-1-40 Nishi-Miyanosawa, Teine, Sapporo, Hokkaido 006-0004, Japan
| | - Nobuyuki Miyamoto
- Fine Chemical Lab., Marukyou Bio Foods Co., Ltd., 2-1-40, Nishi-Miyanosawa 4-jo, Teine, Sapporo, Hokkaido, 006-0004, 42-1-40 Nishi-Miyanosawa, Teine, Sapporo, Hokkaido 006-0004, Japan
| |
Collapse
|
32
|
Graciela CQ, José Juan EC, Gieraldin CL, Xóchitl Alejandra PM, Gabriel AÁ. Hyaluronic Acid-Extraction Methods, Sources and Applications. Polymers (Basel) 2023; 15:3473. [PMID: 37631529 PMCID: PMC10459667 DOI: 10.3390/polym15163473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, a compilation of articles in databases on the extraction methods and applications of hyaluronic acid (HA) was carried out. HA is a highly hydrated component of different tissues, including connective, epithelial, and neural. It is an anionic, linear glycosaminoglycan (GAG) primarily found in the native extracellular matrix (ECM) of soft connective tissues. Included in the review were studies on the extraction methods (chemical, enzymatical, combined) of HA, describing advantages and disadvantages as well as news methods of extraction. The applications of HA in food are addressed, including oral supplementation, biomaterials, medical research, and pharmaceutical and cosmetic industry applications. Subsequently, we included a section related to the structure and penetration routes of the skin, with emphasis on the benefits of systems for transdermal drug delivery nanocarriers as promoters of percutaneous absorption. Finally, the future trends on the applications of HA were included. This final section contains the effects before, during, and after the application of HA-based products.
Collapse
Affiliation(s)
- Callejas-Quijada Graciela
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Escobar-Chávez José Juan
- Unidad de Investigación Multidisciplinaria, Laboratorio 12: Sistemas Transdérmicos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico;
| | - Campos-Lozada Gieraldin
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Pérez-Marroquín Xóchitl Alejandra
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Aguirre-Álvarez Gabriel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
33
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
34
|
Abdel-Rahman RM, Abdel-Mohsen AM. Marine Biomaterials: Hyaluronan. Mar Drugs 2023; 21:426. [PMID: 37623707 PMCID: PMC10456333 DOI: 10.3390/md21080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Collapse
Affiliation(s)
- Rasha M. Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| | - A. M. Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| |
Collapse
|
35
|
Raschip IE, Fifere N, Lazar MM, Hitruc GE, Dinu MV. Ice-Templated and Cross-Linked Xanthan-Based Hydrogels: Towards Tailor-Made Properties. Gels 2023; 9:528. [PMID: 37504407 PMCID: PMC10378831 DOI: 10.3390/gels9070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The use of polysaccharides with good film-forming properties in food packaging systems is a promising area of research. Xanthan gum (XG), an extracellular polysaccharide, has many industrial uses, including as a common food additive (E415). It is an effective thickening agent, emulsifier, and stabilizer that prevents ingredients from separating. Nevertheless, XG-based polymer films have some disadvantages, such as poor mechanical properties and high hydrophilic features, which reduce their stability when exposed to moisture and create difficulties in processing and handling. Thus, the objective of this work was to stabilize a XG matrix by cross-linking it with glycerol diglycidyl ether, 1,4-butanediol diglycidyl ether, or epichlorohydrin below the freezing point of the reaction mixture. Cryogelation is an ecological, friendly, and versatile method of preparing biomaterials with improved physicochemical properties. Using this technique, XG-based cryogels were successfully prepared in the form of microspheres, monoliths, and films. The XG-based cryogels were characterized by FTIR, SEM, AFM, swelling kinetics, and compressive tests. A heterogeneous morphology with interconnected pores, with an average pore size depending on both the nature of the cross-linker and the cross-linking ratio, was found. The use of a larger amount of cross-linker led to both a much more compact structure of the pore walls and to a significant decrease in the average pore size. The uniaxial compression tests indicated that the XG-based cryogels cross-linked with 1,4-butanediol diglycidyl ether exhibited the best elasticity, sustaining maximum deformations of 97.67%, 90.10%, and 81.80%, respectively.
Collapse
Affiliation(s)
- Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Nicusor Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Gabriela-Elena Hitruc
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
36
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023; 308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom, G12 8QQ
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India.
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
37
|
Silva MB, Pinto LDLDS, Medeiros LH, Souza AA, Chavante SF, Filgueira LGA, Camara RBG, Sassaki GL, Rocha HAO, Andrade GPV. Chondroitin Sulfate from Oreochromis niloticus Waste Reduces Leukocyte Influx in an Acute Peritonitis Model. Molecules 2023; 28:molecules28073082. [PMID: 37049845 PMCID: PMC10096408 DOI: 10.3390/molecules28073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.
Collapse
Affiliation(s)
- Marianna Barros Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Lívia de Lourdes de Sousa Pinto
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luiz Henrique Medeiros
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Airton Araújo Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus de Parnamirim, Parnamirim 59143-455, RN, Brazil
| | - Suely Ferreira Chavante
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Guimarães Alves Filgueira
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Rafael Barros Gomes Camara
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Parana (UFPR), Curitiba 81531-980, PR, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Giulianna Paiva Viana Andrade
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
38
|
Galvez-Martin P, Soto-Fernandez C, Romero-Rueda J, Cabañas J, Torrent A, Castells G, Martinez-Puig D. A Novel Hyaluronic Acid Matrix Ingredient with Regenerative, Anti-Aging and Antioxidant Capacity. Int J Mol Sci 2023; 24:ijms24054774. [PMID: 36902203 PMCID: PMC10002543 DOI: 10.3390/ijms24054774] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Hyaluronic acid (HA) and proteoglycans (such as dermatan sulphate (DS) and chondroitin sulphate (CS)) are the main components of the extracellular matrix of the skin, along with collagen and elastin. These components decrease with age, which implies a loss of skin moisture causing wrinkles, sagging and aging. Currently, the external and internal administration of effective ingredients that can reach the epidermis and dermis is the main alternative for combating skin aging. The objective of this work was to extract, characterise and evaluate the potential of an HA matrix ingredient to support anti-aging. The HA matrix was isolated and purified from rooster comb and characterised physicochemically and molecularly. In addition, its regenerative, anti-aging and antioxidant potential and intestinal absorption were evaluated. The results show that the HA matrix is composed of 67% HA, with an average molecular weight of 1.3 MDa; 12% sulphated glycosaminoglycans, including DS and CS; 17% protein, including collagen (10.4%); and water. The in vitro evaluation of the HA matrix's biological activity showed regenerative properties in both fibroblasts and keratinocytes, as well as moisturising, anti-aging and antioxidant effects. Furthermore, the results suggest that the HA matrix could be absorbed in the intestine, implying a potential oral as well as topical use for skin care, either as an ingredient in a nutraceutical or a cosmetic product.
Collapse
Affiliation(s)
- Patricia Galvez-Martin
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-904-908
| | | | - Jessica Romero-Rueda
- Health & Biomedicine Department, Leitat Technological Centre, E-08028 Barcelona, Spain
| | - Jesus Cabañas
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
| | - Anna Torrent
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
| | - Gloria Castells
- Pharmacy Analysis Service, Department of Pharmacology, Therapeutics and Toxicology, Faculty of Veterinary, E-08193 Bellaterra, Spain
| | | |
Collapse
|
39
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
40
|
Alcântara LO, de Sousa JR, Andrade FK, Teixeira EH, Cerqueira MÂ, da Silva ALC, Souza Filho MDSM, de Souza BWS. Extraction and characterization of hyaluronic acid from the eyeball of Nile Tilapia (Oreochromis niloticus). Int J Biol Macromol 2023; 226:172-183. [PMID: 36495987 DOI: 10.1016/j.ijbiomac.2022.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/04/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is a biopolymer of enormous value aggregation for in general industry. The vitreous humor of the eyeball from Nile tilapia contains appreciable amounts of hyaluronic acid. In this sense, the aim of this work was to extract and characterize hyaluronic acid from the eyeball of the Nile tilapia for biomedical applications, adding value to fish industry residues. The characterization by infra-red (FTIR), 13C nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) confirmed that hyaluronic acid was obtained. The gel permeation chromatography (GPC) showed that the obtained material presents a low molecular mass (37 KDa). Thermogravimetry (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis showed that the materials present a thermal stability superior to the commercial hyaluronic acid from Streptococcus equi, with a partially crystalline character. The cytotoxicity assay (MTT method) with fibroblast cells (L929) demonstrated that the extracted biopolymer besides not being cytotoxic, was able to stimulate cell proliferation. Therefore, the hyaluronic acid extracted from this source of residue constitutes a product with biotechnological potential, which has adequate quality for wide biomedical applications.
Collapse
Affiliation(s)
- Lyndervan Oliveira Alcântara
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Juliana Rabelo de Sousa
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Graduate Program of Chemical Engineering, Federal University of Ceara, Campus do Pici, 709, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Edson Holanda Teixeira
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, UFC, CEP: 60430-160 Fortaleza, CE, Brazil
| | - Miguel Ângelo Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, 907 CEP: 60451-970, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
41
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
42
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Sacramento MMA, Borges J, Correia FJS, Calado R, Rodrigues JMM, Patrício SG, Mano JF. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front Bioeng Biotechnol 2022; 10:1041102. [PMID: 36568299 PMCID: PMC9773402 DOI: 10.3389/fbioe.2022.1041102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.
Collapse
Affiliation(s)
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fernando J. S. Correia
- Laboratory of Scientific Illustration, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia G. Patrício
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
44
|
The synthesis of hyaluronic acid related oligosaccharides and elucidation of their antiangiogenic activity. Carbohydr Res 2022; 522:108701. [DOI: 10.1016/j.carres.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
45
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
46
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
47
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Potent antioxidant and anti-inflammatory bioactivities of fish roe-derived extracts. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Galla R, Ruga S, Ferrari S, Saccone S, Saccuman L, Invernizzi M, Uberti F. In vitro analysis of the effects of plant-derived chondroitin sulfate from intestinal barrier to chondrocytes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
49
|
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral delivery of insulin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2145-2164. [PMID: 35773232 DOI: 10.1080/09205063.2022.2096527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Subcutaneous administration of insulin has been practiced for the clinical supervision of diabetes pathogenesis but it is often ineffective to imitate the glucose homeostasis and is always invasive. Therefore, it causes patient discomfort and infection of local tissue. These issues lead to finding an alternative route for insulin delivery that could be effective, promising, and non-invasive. However, delivery of insulin orally is the most suitable route but the rapid breakdown of insulin by the gastrointestinal enzymes becomes a major barrier to this method. Therefore, nanocarriers (which guard insulin against degradation and facilitate its uptake) are preferred for oral insulin delivery. Among various categories of nanocarriers, bio-polymeric nanocarriers draw special attention owing to their hydrophilic, non-toxic, and biodegradable nature. This review provides a detailed overview of insulin-loaded biopolymer-based nanocarriers, which give future direction in the optimization and development of a clinically functional formulation for their effective and safe delivery.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- Department of Biotechnology, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
50
|
Jellyfish Polysaccharides for Wound Healing Applications. Int J Mol Sci 2022; 23:ijms231911491. [PMID: 36232791 PMCID: PMC9569628 DOI: 10.3390/ijms231911491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded “jellyfishication” of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients.
Collapse
|