1
|
Soliman W, Ahmed YMZ, Ghitas A, El-Shater AH, Shahat MA. Green building development utilising modified fired clay bricks and eggshell waste. Sci Rep 2025; 15:3367. [PMID: 39870680 PMCID: PMC11772682 DOI: 10.1038/s41598-025-87435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows. To this end, the current study sought to assess whether integrating a specific amount of eggshell waste as CaCO3 filler within bricks consistently produces fired clay bricks with desirable thermal insulation capabilities. By systematically investigating the physicochemical and thermal characteristics of bricks doped with varying eggshell content, this work demonstrates how waste materials can be repurposed to produce sustainable construction materials with superior performance. The results highlight significant improvements in thermal conductivity, diffusivity, and effusivity, alongside favorable changes in porosity, bulk density, and mechanical strength. The XRD analysis revealed that once the firing temperature rises, a high insulation feature arises due to siliceous melt formation. EDX analysis gave important insights into the impact of eggshell dopants on the physicochemical parameters of burnt clay bricks. Compared to pristine brick, CEs7% brick constructed with clay and 7 wt% eggshell exhibited a 38.7% loss on dry shrinkage, an enhancement on average pore size of 78.8%, an apparent porosity of 52.7%, a bulk density of 8.3%, and a compressive strength of 57.5%. The reduced shrinkage enhances stability, while increased pore size and porosity improve thermal insulation, making the bricks more durable and energy-efficient. In this regard, the brick containing 10% eggshell that was fired at 1100°C possessed the greatest drop in heat conductivity (i.e., 50%), thermal diffusivity (30%), and thermal effusivity (30%) as compared to the pure one. Given the aforementioned findings, these additions hold the potential to reduce the energy required for both heating and cooling buildings. This brings us to the conclusion that combining eggshell waste to create calcium silicate makes it feasible to be utilized as a thermal insulation material, paving the way for improved construction materials' performance and sustainability.
Collapse
Affiliation(s)
- Wafaa Soliman
- Geology Department, Faculty of Science, Sohag University, Sohag, Egypt.
| | - Yasser M Z Ahmed
- Refractory and Ceramic Materials Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute, Cairo, Egypt
| | - Ahmed Ghitas
- PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt
| | | | - M Abdelhamid Shahat
- PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt.
| |
Collapse
|
2
|
Hassan H, Ur Rehman Z, Koo BH. Eco-Friendly Fire-Retardant Coating on Cotton Using Layer by Layer Deposition Technique. Molecules 2024; 29:5976. [PMID: 39770063 PMCID: PMC11676173 DOI: 10.3390/molecules29245976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Fire hazards are an increasing concern in several high-tech industries of public importance, particularly where textile fabrics are used in abundance. In this study, a novel layer by layer deposition method was utilized to develop a fire-retardant coating on cotton fabric. The method involves a hybrid cationic solution consisting of chitosan and branched polyethyleneimine, while bentonite clay was used as the anionic species. The treated fabric was characterized using SEM, VFT, and attenuated total reflection Fourier transform infrared spectroscopy (FTIR). SEM and EDS profiling confirmed the successful deposition of the (BPEI/CH + BNT) species on the surface of the cotton fabrics. FTIR analysis shows changes in chemical composition between the uncoated and coated samples, as confirmed by modifications in peaks at 3621 cm-1, 1023.3 cm-1, 1631 cm-1, and 614.8 cm-1. Finally, the thermal degradation behavior of pre-coated and post-coated samples was evaluated using thermogravimetric (TGA) analysis within a temperature range of 25 °C~700 °C, where the highest residue of ~19.83% was observed at 700 °C for the D-BPCB-30BL sample, signifying highly improved thermal stability compared to uncoated cotton.
Collapse
Affiliation(s)
- Hamid Hassan
- Department of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea;
| | - Zeeshan Ur Rehman
- College of Mechatronic Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea
| | - Bon Heun Koo
- College of Mechatronic Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
3
|
Shahat MA, Ghitas A, Almutairi FN, Alresheedi NM. Oxygen enriched PAni-based counter electrode network toward efficient dye-sensitized solar cells (DSSCs). Sci Rep 2024; 14:25977. [PMID: 39472582 PMCID: PMC11522468 DOI: 10.1038/s41598-024-67055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 11/02/2024] Open
Abstract
Dye-sensitized solar cells (DSSCs) have great potential as a renewable energy technology assisting combat climate change due to its low cost, adaptability, and sustainability. Oxygen plasma ion doping is a promising strategy to improve the capacity of a low-cost, platinum-free counter-electrodes (CEs) to absorb photons and drive high-performance DSSCs via generating an abundance of active absorption sites. In this instance, novel PAni-ZnO (PZ) composite layers were designed as a CE material and received various in-situ oxygen plasma dosages, including 0, 2, 4, 6, 8, and 10 min, to improve their physiochemical and microstructural feature for the first time, to the best of our knowledge. Physical evaluations of the microstructure, porosity, morphology, contact angle, roughness, electrical, and optical, electrochemical impedance spectroscopy (EIS) features of CEs were conducted in along with an evaluation of J-V variables. Compared to pristine CE substance, the surface nature of the modified hybrids was gradually enhanced as the plasma level rose, reaching an optimum after 8 min (i.e. 0.2 µm for average pore size and average roughness Ra = 7.21 µm). Expanded plasma treatment doses also improved PV cell performance even further: after 4 min at a plasma level, η = 5.41% was obtained, and after 6 min in a oxygen plasma environment, η = 5.81% was obtained. Mixing high energetic plasma ions increased the mobility of charge carriers in PAni composites along with lowered charge carrier recombination through generating an environment that was conducive to charge dissociation. Therefore, longer lifespans and more effective charge transfer inside the photovoltaic cell as a consequence of the increased mobility less resistive losses. In this respect, following 8 min of plasma surface modification of the PZ CE, the optimized efficiency of 6.31% and Jsc of 15.6 mA/cm2 were obtained. The improvement in efficiency equated to a proportion growth of 77% versus a pristine one. This gain was explained by the reality that suffusing a quantity of oxygen plasma free radicals into the PAni system developed continuous channels that enabled the mixture to move electrons more rapidly, hence raising the photovoltaic efficiency. Overall, this study highlights the advantages of regulating heteroatom species and their co-doping, offering a new perspective for the application of heteroatom-doped CE in DSSCs.
Collapse
Affiliation(s)
- M Abdelhamid Shahat
- PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Cairo, Egypt.
| | - Ahmed Ghitas
- PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Cairo, Egypt
| | - Fahad N Almutairi
- Department of Physics, College of Sciences and Humanities, Shaqra University, 19257, Al Quwayiyah, Saudi Arabia
| | - Nadi Mlihan Alresheedi
- Department of General Studies, Royal Commission for Jubail and Yanbu, Yanbu Industrial College, Yanbu, 30436, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Liu H, Li B, Gong S, Ding H, Fan Y, Yu J. Preparation of strong, UV-blocking and sustainable glucose-cross-linked cellulose plastics via hydroxyl-yne click reaction. Int J Biol Macromol 2024; 265:131008. [PMID: 38513903 DOI: 10.1016/j.ijbiomac.2024.131008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The construction of functional cellulose plastics possessing strong UV-blocking, hydrophilicity, and biodegradability is challenging. Therefore, we provide a novel strategy to successfully prepare sustainable and hydrophilic glucose-cross-linked cellulose (GC) plastics showing effective UV-blocking and excellent mechanical properties via hydroxyl-yne click reaction at room temperature. The results demonstrated that hydroxyl-yne click chemistry enabled efficient crosslinking of cellulose with glucose using 4-dimethylamino pyridine (DMAP) as a catalyst. Moreover, the DMAP residue imparted good UV-shielding properties to GC films exhibiting nearly 100 % UVC (200-275 nm) and 100 % UVB (320-275 nm) shielding ratios. The introduction of glucose imparted superior hydrophilicity (water contact angle of 40.3-43.2°) and improved water adsorption. Additionally, the mechanical properties of the GC films increased with the increasing crosslinking density, and the highest tensile stress was 94 MPa. The water-induced breaking and hydrogen bond reforming strategy led to a stress of 127 MPa and a strain of 25.6 % for the final GC2 film, which were excellent compared to those of the most reported cellulose films. Additionally, GC films were biosafe, exhibited improved oxygen barrier, and good biodegradability. Hence, this study provides a promising and efficient approach for preparing high-performance cellulose plastics.
Collapse
Affiliation(s)
- Haiqin Liu
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Bowen Li
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Sijie Gong
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Haiyang Ding
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Juan Yu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
5
|
Petrisor DC, Etropolska Z, Elenski K, Dimitrova E, Santos J. Efficacy and Safety of Pea Protein and Xyloglucan Versus Simethicone in Functional Abdominal Bloating and Distension. Dig Dis Sci 2024; 69:161-168. [PMID: 37923826 PMCID: PMC10787906 DOI: 10.1007/s10620-023-08155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Functional Abdominal Bloating and Distension (FABD) is a multifaceted condition related in part to trapped gas, with changes in the intestinal barrier and small intestinal bacterial overgrowth (SIBO), which lead to gas production. Currently, there are no treatments targeting the etiology of FABD. METHODS This double-blind, multicenter, randomized study evaluated the safety and efficacy of a product containing xyloglucan and pea proteins (XG + PP) compared with simethicone, both administered orally (three times daily) for 20 consecutive days. Eighty-eight patients with FABD were randomly assigned to the two groups in a 1:1 ratio. Primary outcome was safety; secondary outcomes were (i) efficacy in alleviating the symptoms of FABD and (ii) efficacy in reducing SIBO, as assessed by hydrogen breath test (HBT). RESULTS No Adverse Events or Serious Unexpected Adverse Reactions were reported during the study. XG + PP showed a faster onset of action and a significant reduction in bloating and abdominal pain compared with simethicone. At Day 20, XG + PP drastically reduced abdominal girth when compared with simethicone, with an average reduction of 4.7 cm versus 1.8 cm. At Day 20, the XG + PP arm showed a significant reduction in HBT compared to baseline. CONCLUSIONS This study supports the evidence that FABD patients may benefit from a XG + PP-based treatment that acts on etiology and not just the symptoms.
Collapse
Affiliation(s)
| | - Zlatka Etropolska
- Department of Gastroenterology, Ambulatory Practice for Primary Outpatient Medical Care SANA, Sofia, Bulgaria
| | - Kiril Elenski
- Department of Gastroenterology, BROD - Ambulatory Practice for Primary Medical Care, Plovdiv, Bulgaria
| | - Emiliya Dimitrova
- Department of Gastroenterology, Medical Centre Prolet, Ruse, Bulgaria
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Soliman W, Shahat MA. Optimizing the thermophysical qualities of innovative clay-rGO composite bricks for sustainable applications. Sci Rep 2023; 13:21562. [PMID: 38057409 DOI: 10.1038/s41598-023-48966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023] Open
Abstract
This work concerned the development of a unique reduced graphene oxide (rGO) nano-filler to provide innovative opportunities in enhancing the thermophysical performance of clay composite bricks. Whereas, a series of clay-rGO composite bricks were produced, doped with various levels of rGO nanosheets (i.e., 0, 1, 2, 4, and 6 wt% clay). Each clay-rGO composite's microstructure, shrinkage, morphology, density, porosity, and thermophysical characteristics were carefully investigated, and the thermal conductivity performance was optimized. Incorporation of different levels of rGO NPs to the clay matrix allowed all the peaks intensity to rise relative to the untreated one in the XRD pattern. Meanwhile, the inclusion of these doping resulted in a grew in the crystallite sizes and apparent porosity within the compositions. In this vein, shrinkage fracture of fabricated brick composites varied depending on dopants type and levels during the drying and firing processes. Moreover, there are some changes in chemical compositions, as well as wave shifts, suggesting that functional groups of rGO may have contributed to partially introduce carbonyl groups in clay-rGO composites. Besides, the porous topography and bulk density improved rapidly with respect to the plane of the rGO nanosheets within the composites. The differ-dense microstructure displayed in the SEM micrographs supports these outcomes. Remarkably, clay-(4%)rGO compound not only has an optimum thermal conductivity value (0.43 W/mK), but it also has a high heat capacity (1.94 MJ/m3K). These results revealed the exceptional features of rGO sheets such as large surface area with high porosity within the modified clay composites.
Collapse
Affiliation(s)
- Wafaa Soliman
- Geology Department, Faculty of Science, Sohag University, Sohâg, Egypt
| | - M Abdelhamid Shahat
- PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt.
| |
Collapse
|
7
|
Ingtipi K, Choudhury BJ, Moholkar VS. Kaolin-embedded cellulose hydrogel with tunable properties as a green fire retardant. Carbohydr Polym 2023; 313:120871. [PMID: 37182962 DOI: 10.1016/j.carbpol.2023.120871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
This study reports the synthesis of methylene bisacrylamide (MBA) crosslinked cellulose-kaolin (CMK) composite hydrogels. The internal structures of hydrogels were deduced using network parameters, viz. elastic modulus, average molecular weight, mesh size, and effective crosslink. Meanwhile, combustion behavior was investigated using the cone calorimeter test (CCT), limiting oxygen index (LOI) test, vertical flammability test (VFT), and open fire test (OFT). Our results revealed that kaolin addition improves the fire retardancy of hydrogels but reduces their swelling ability. Hydrogel having cellulose to MBA ratio of 1:2 and 2 % w/v kaolin (CM2K2) produced 63 % wt. char residue and the hydrogel-coated cotton fabric exhibited the lowest heat release rate (HRR) of 26.60 kJ/m2 and total heat release (THR) of 0.9 MJ/m2. The LOI of the cotton fabric surged from 20 % to 34.37 % after hydrogel coating. Kinetic analysis using the isoconversional model yielded the highest activation energy (216 kJ/mol) for the CM2K2 hydrogel, corroborating the increased LOI after kaolin addition. VFT and OFT validated the delay in the burning process and the formation of a char layer, which protected the underlying layer of cotton from burning. Overall, cellulose-kaolin hydrogels developed in this study are effective green fire retardant coatings for flammable materials.
Collapse
|
8
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Villada Y, Taverna ME, Maffi JM, Giletta S, Casis N, Estenoz D. On the use of espina corona gum as a polymeric additive in water-based drilling fluid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Wang X, Hou X, Zou P, Zhang M, Ma L. Development of Cationic Cellulose-Modified Bentonite-Alginate Nanocomposite Gels for Sustained Release of Alachlor. ACS OMEGA 2022; 7:20032-20043. [PMID: 35722019 PMCID: PMC9202269 DOI: 10.1021/acsomega.2c01805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The nanocomposite gel prepared from nanoclay and natural polysaccharides showed a good sustained-release property. Herein, a cationic cellulose-modified bentonite-alginate nanocomposite gel was prepared and used to enhance the sustained release of alachlor. The underlying effect and mechanism of the structure of modified bentonite-alginate nanocomposite gels on the release behavior of alachlor were explored by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric (TG) analysis. The results showed that the release of alachlor from the nanocomposite gels was dominated by Fickian diffusion and closely related to the adsorption capacity and permeability of the matrix. The cationic cellulose intercalated into the interlayer space of bentonite through an ion exchange reaction, which significantly enhanced the hydrophobicity of bentonite and its interaction with alachlor. The stacking aggregation of bentonite nanoplatelets and permeability of the gel network were decreased through the electrostatic interaction between cationic cellulose and alginate molecular chains, thus remarkably enhancing the sustained-release property of the nanocomposite gel. The release kinetics revealed that the release rate of alachlor from the nanocomposite gel first decreased and then increased as the content of bentonite and modified bentonite gradually increased. Also, the best sustained-release property of the nanocomposite gel was obtained at bentonite and modified bentonite additions of about 10%, under which the release time of 50% alachlor (T 50) from bentonite-alginate and modified bentonite-alginate nanocomposite gels was 4.4 and 5.6 times longer than the release time from pure alginate gels, respectively.
Collapse
|
11
|
Wang X, Hou X, Zou P, Zhang M, Ma L. Facile construction of cationic lignin modified bentonite
–
alginate nanocomposite gel for sustained release of alachlor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocheng Wang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Xiaojun Hou
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Peiyu Zou
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Min Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Lin Ma
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| |
Collapse
|
12
|
Tao Y, Wang T, Huang C, Lai C, Ling Z, Zhou Y, Yong Q. Incomplete degradation products of galactomannan from Sesbania cannabina modulated the cecal microbial community of laying hens. J Anim Sci 2022; 100:6550850. [PMID: 35304897 PMCID: PMC9030128 DOI: 10.1093/jas/skac087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Galactomannan and its degradation products have been gaining attention based on their possible means for improving the natural defense of the host through modulation of the bacterial population in the gut. Herein, incomplete degradation products of galactomannan (IDPG) was supplemented into the diet of aged laying hens to investigate the efficacy of IDPG on the gut microbiome. Four treatments with six replicates of twelve 68-wk-old laying hens (Hy-Line variety brown) each were fed a basal diet supplemented with 0%, 0.01%, 0.025%, and 0.05% IDPG for 8 wk. Results showed that the propionate concentration significantly increased in laying hens fed a diet supplemented with 0.025% or 0.05% IDPG relative to the control diet (P < 0.05). Moreover, the results of 16S rRNA gene sequencing revealed that there was a notable elevation of microbiome species diversity due to the addition of IDPG, with a noted enrichment to phyla Bacteroidetes at the expense of Firmicutes and Proteobacteria. Metabolic prediction of the cecal microbiome suggested significant improvements to carbohydrate and lipid metabolism and a significant depletion for energy metabolism and infectious diseases. More importantly, a strong positive correlation between levels of genera Bacteroides, Rikenellaceae_RC9_gut_group, and Prevotellaceae_UCG-001 with high production of propionate was found using multivariate analysis. Our study demonstrated that IDPG acted by mainly enriching the phyla Bacteroidetes in the cecum, increasing species diversity, and cecal propionate concentrations. It seems that IDPG can be used as feed additives in laying hen farming due to its capacity to positively modulate the cecal microbiome and aid improve overall health.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
13
|
Yan X, Cheng S, Ma C, Li J, Wang G, Yang C. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126939. [PMID: 34449342 DOI: 10.1016/j.jhazmat.2021.126939] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Sodium tetraborate pentahydrate (STB) was intercalated into graphene oxide (GO) nanosheets to form a nanocomposite (STB@GO). Subsequently, it was self-assembled on a substrate membrane to prepare STB@GO nanofiltration membrane. The properties of the STB@GO powder samples and the nanofiltration membrane were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), contact angle (CA), and zeta potential. When the STB concentration was 1.0 g/L in the cross-linking reaction, the membrane was described as the STB2@GO membrane and exhibited a large interlayer space (d-spacing = 1.347 nm), high hydrophilicity (CA = 22.2°), and high negative potential (zeta = -18.0 mV). Meanwhile, the pure water flux of the membrane was significantly increased by 56.60% than that of the GO membrane. In addition, the STB2@GO membrane exhibited a favorable capability for dye rejection,98.52% for Evans blue (EB), 99.26% for Victoria blue B (VB), 91.94% for Alizarin yellow (AY), and 93.21% for Neutral red (NR). Furthermore, the STB2@GO membrane performed better in dye separation under various types and concentrations of dye, pH values, and ions in solution. Thus, this study provides a promising method for preparing laminated GO nanofiltration membranes for dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin 300457, China.
| | - Junyu Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Su Y, Fang L, Wang P, Lai C, Huang C, Ling Z, Sun S, Yong Q. Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 342:125955. [PMID: 34547709 DOI: 10.1016/j.biortech.2021.125955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A promising approach for production of value-added xylooligosaccharides (XOS) from poplar was developed by combining hydrothermal pretreatment and endo-xylanase post-hydrolysis. Results showed that the 35.4% XOS (DP 2-6) and 17.6% low DP xylans (DP > 6) were obtained at the identified optimal condition (170 °C, 50 min) for hydrothermal pretreatment. Structural features of low DP xylans generated during the hydrothermal pretreatment were examined, revealing that low DP xylans are mainly comprised of 4-O-methylglucuronic xylan and are involved in lignin carbohydrate complexes. Moreover, higher pretreatment intensity promoted the cleavage of side-chain substituents including arabinose and glucuronic acid groups. The subsequent endo-xylanase hydrolysis of the pretreatment liquor hydrolyzed low DP xylans, contributing to a significant improvement in xylobiose and xylotriose proportions. This combined strategy resulted in a XOS with conversion yield of 44.6% containing 78.7% xylobiose and xylotriose starting from the initial xylan in raw poplar.
Collapse
Affiliation(s)
- Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lingyan Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Peng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
15
|
Bioinspired manufacturing of oriented polysaccharides scaffolds for strong, optical haze and anti-UV/bacterial membranes. Carbohydr Polym 2021; 270:118328. [PMID: 34364591 DOI: 10.1016/j.carbpol.2021.118328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
Here, biomimetic dual esterification strategy was proposed on natural polysaccharides cellulose nanocrystals (CNCs) and galactomannan (GM) in combination with tartaric acid (TA) and benzoic anhydride (BA) respectively. Evaporation-induced self-assembly (EISA) formed the oriented quasinematic structure of the nanocomposites membranes. The CNCs crystallites were modified by TA and intercalated by amorphous polysaccharides, building a complex supramolecular network. Thus, it presents excellent light scattering property with the optical haze of ~90%, which was rarely reported previously. TA and BA simultaneously contributed to satisfying UV adsorption capability for the membranes, showing almost whole-spectra UVA/UVB blocking. Super high mechanical strength (>150 MPa) and toughness (~8 kJ/m3) were revealed by the membranes with high addition amount of BA, together with the efficient antibacterial capability on both Gram-positive and negative bacteria. The diverse optical, mechanical and biological functions displayed by the polysaccharides membranes, propose new horizons on application for packaging, optoelectronic and biomonitoring sensors.
Collapse
|
16
|
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.
Methods
Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.
Results
Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.
Conclusions
Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
Collapse
|
17
|
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym 2021; 261:117884. [PMID: 33766371 DOI: 10.1016/j.carbpol.2021.117884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Due to over-consumption of fossil resources and environmental problems, lignocellulosic biomass as the most abundant and renewable materials is considered as the best candidate to produce biomaterials, biochemicals, and bioenergy, which is of strategic significance and meets the theme of Green Chemistry. Highly efficient and green fractionation of lignocellulose components significantly boosts the high-value utilization of lignocellulose and the biorefinery development. However, heterogeneity of lignocellulosic structure severely limited the lignocellulose fractionation. This paper offers the summary and perspective of the extensive investigation that aims to give insight into the lignocellulose prior-fractionation. Based on the role and structure of lignocellulose component in the plant cell wall, lignocellulose prior-fractionation can be divided into cellulose-first strategy, hemicelluloses-first strategy, and lignin-first strategy, which realizes the selective dissociation and transformation of a component in lignocellulose. Ultimately, the challenges and opportunities of lignocellulose prior-fractionation are proposed on account of the existing problems in the biorefining valorization.
Collapse
Affiliation(s)
- Xiaojun Shen
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
18
|
Ling Z, Gu J, Liu W, Wang K, Huang C, Lai C, Yong Q. Actuating, shape reconstruction, and reinforcement of galactomannan-based hydrogels by coordination bonds induced metal ions capture. Int J Biol Macromol 2020; 165:2721-2730. [DOI: 10.1016/j.ijbiomac.2020.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023]
|
19
|
The Application of Polysaccharides and Their Derivatives in Pigment, Barrier, and Functional Paper Coatings. Polymers (Basel) 2020; 12:polym12081837. [PMID: 32824386 PMCID: PMC7466176 DOI: 10.3390/polym12081837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most abundant natural polymers in nature, polysaccharides have the potential to replace petroleum-based polymers that are difficult to degrade in paper coatings. Polysaccharide molecules have a large number of hydroxyl groups that can bind strongly with paper fibers through hydrogen bonds. Chemical modification can also effectively improve the mechanical, barrier, and hydrophobic properties of polysaccharide-based coating layers and thus can further improve the related properties of coated paper. Polysaccharides can also give paper additional functional properties by dispersing and adhering functional fillers, e.g., conductive particles, catalytic particles or antimicrobial chemicals, onto paper surface. Based on these, this paper reviews the application of natural polysaccharides, such as cellulose, hemicellulose, starch, chitosan, and sodium alginate, and their derivatives in paper coatings. This paper analyzes the improvements and influences of chemical structures and properties of polysaccharides on the mechanical, barrier, and hydrophobic properties of coated paper. This paper also summarizes the researches where polysaccharides are used as the adhesives to adhere inorganic or functional fillers onto paper surface to endow paper with great surface properties or special functions such as conductivity, catalytic, antibiotic, and fluorescence.
Collapse
|