1
|
Nguyen LKT, Do MH, Duong PD, Tran TMD, Ngo TQN, Nguyen XT, Le VD, Nguyen CH, Fajgar R, Nguyen TD. In situ synthesis of gold nanoparticles embedded in a magnetic nanocomposite of glucosamine/alginate for enhancing recyclable catalysis performance of nitrophenol reduction. NANOSCALE ADVANCES 2024:d4na00979g. [PMID: 39720124 PMCID: PMC11664256 DOI: 10.1039/d4na00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
In this study, we introduce an in situ synthesis technique for incorporating gold nanoparticles (AuNPs) into a magnetic nanocomposite made of glucosamine and alginate (GluN/Alg) via ionotropic gelation. GluN acted as a reducing agent for gold ions, leading to the formation of AuNPs which embedded in the nanocomposite Fe3O4@GluN/Alg. Analytical techniques confirmed the crystallite structure of the nanocomposite AuNPs/Fe3O4@GluN/Alg, which had an average size of 30-40 nm. This nanocomposite demonstrated high catalytic efficiency in reducing 2-, 3-, and 4-nitrophenols, exhibiting rapid kinetics with pseudo-first order rate constants between 1.16 × 10-3 s-1 and 2.29 × 10-3 s-1. The reduction rates and recyclability for nitrophenols followed the order: 4-nitrophenol > 2-nitrophenol ∼ 3-nitrophenol. These results indicate that the nanocomposite holds significant promise for customized applications in environment and medicine, positioning it as a highly versatile material.
Collapse
Affiliation(s)
- Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Manh-Huy Do
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Phuoc-Dat Duong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Thi-My-Duyen Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thi-Quynh-Nhu Ngo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Xuan-Thom Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Cao-Hien Nguyen
- Department of Chemical Technology, Ho Chi Minh City University of Industry and Trade Ho Chi Minh City 700000 Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague Czech Republic
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| |
Collapse
|
2
|
Dang CH, Nguyen LKT, Tran MT, Le VD, Ty NM, Pham TNH, Vu-Quang H, Chi TTK, Giang TTH, Tu NTT, Nguyen TD. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1227-1237. [PMID: 39376727 PMCID: PMC11457073 DOI: 10.3762/bjnano.15.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.
Collapse
Affiliation(s)
- Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Minh-Trong Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Ty
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - T Ngoc Han Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
3
|
Ricart D, Dorado AD, Lao-Luque C, Baeza M. Microflow injection analysis based on modular 3D platforms and colorimetric detection for Fe(III) monitoring in a wide concentration range. Mikrochim Acta 2023; 191:3. [PMID: 38041754 PMCID: PMC10693521 DOI: 10.1007/s00604-023-06029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 12/03/2023]
Abstract
A modular microflow injection analysis (microFIA) system for the determination of Fe(III) in a bioleaching reactor has been designed, developed and validated. The different modules of the analyzer (mixer, diluter, disperser and detector) were 3D-printed. Fe(III) quantification is due by measuring the color intensity of the chelate formed between Fe(III) and salicylic acid at 525 nm. The device has been designed to dilute, disperse and detect high Fe(III) concentrations in the form of an inexpensive multi-step photometric flow cell that uses an light-emitting diode (LED) as a light source and an light-dependent resistor (LDR) as a light intensity detector. This microFIA system has been shown to be suitable for automatic and continuous determination of Fe(III) in the operation of a bioreactor for the oxidation of Fe(II). The device has a good repeatability (less than 5% of coefficient of variation in the whole range of concentrations) and accuracy of around 100%. The analyzer features an exceptional wide linear range, between 25 and 6000 mg·L-1. The device was successfully applied to the determination of Fe(III) in real samples. The obtained results proved that the method is applicable for accurate, precise, rapid, and low-cost colorimetric analysis and didn't show significant differences with a conventional UV-Vis method.
Collapse
Affiliation(s)
- David Ricart
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Antonio David Dorado
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Conxita Lao-Luque
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Mireia Baeza
- GENOCOV Research Group, Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·Lers, 08193, Bellaterra, Spain.
| |
Collapse
|
4
|
Sun Y, Xu G, Wang Y, Song P, Zhang Y, Xia L. Surface plasmon-assisted catalytic reduction of p-nitrothiophenol for the detection of Fe 2+ by surface-enhanced Raman spectroscopy. Anal Biochem 2023; 680:115314. [PMID: 37678582 DOI: 10.1016/j.ab.2023.115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Herein, we developed a concise, time-efficient, and high selective assay for detecting Fe2+ through its triggered surface plasmon-assisted reduction reaction of p-nitrothiophenol (PNTP) to p,p'-dimercaptoazobenzene (DMAB) on the surface of gold nanoparticles (AuNPs) based on surface-enhanced Raman scattering (SERS) spectroscopy. When Fe2+ was added to the PNTP-AuNPs system, the appearance of three characteristic peaks at 1142, 1392, and 1440 cm-1 attributed to DMAB demonstrated that Fe2+ induced the catalytic coupling reaction of PNTP. The Raman intensity ratio of the peak at 1142 cm-1 to the peak at 1336 cm-1 and the concentration of Fe2+ presented a good linear response from 10 to 100 μM with a limit of detection (LOD) of 0.35 μM. More importantly, the entire detection process can be completed within 2 min and further successfully used for the detection of Fe2+ in river water.
Collapse
Affiliation(s)
- Ye Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Guangda Xu
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yue Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yao Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, People's Republic of China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
5
|
Tu NTT, Vo TLA, Ho TTT, Dang KPT, Le VD, Minh PN, Dang CH, Tran VT, Dang VS, Chi TTK, Vu-Quang H, Fajgar R, Nguyen TLH, Doan VD, Nguyen TD. Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:781-792. [PMID: 37441001 PMCID: PMC10334209 DOI: 10.3762/bjnano.14.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
We present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques. The nanocomposite exhibited high catalytic performance in degrading the pollutants methyl orange and rhodamine B. The antibacterial activity of the nanocomposite is pH-dependent, related to the alterations in surface properties of the nanocomposite at different pH values. At pH 6, the nanocomposite demonstrated the highest antibacterial activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - T Lan-Anh Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - T Thu-Trang Ho
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Phan Nhat Minh
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| | - Vinh-Thien Tran
- Faculty of Environment Ho Chi Minh City University of Natural Resources and Environment, 236B Le Van Sy Street, Tan Binh District, Ho Chi Minh City 700000, Vietnam
| | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague, Czech Republic
| | - Thi-Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| |
Collapse
|
6
|
Simultaneous square wave voltammetry detection of azo dyes using silver nanoparticles assembled on carbon nanofibers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Nguyen CH, Banh KS, Le VD, Nguyen MT, Dang CH, Vinh Thien T, Doan VD, Hoang D, Thi Kim Chi T, Nguyen TD. Ultrasound-assisted synthesis of gold nanoparticles supported on β-cyclodextrin for catalytic reduction of nitrophenols. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Huynh BA, Doan VD, Nguyen VC, Nguyen AT, Le VT. Highly sensitive and selective colorimetric detection of Pb(ii) ions using Michelia tonkinensis seed extract capped gold nanoparticles. RSC Adv 2022; 12:27116-27124. [PMID: 36276021 PMCID: PMC9501858 DOI: 10.1039/d2ra04981c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized via a green and environmentally-friendly approach and applied as a colorimetric probe for detecting Pb2+ ions in aqueous solution. Instead of toxic chemicals, Michelia tonkinensis (MT) seed extract was used for reducing Au3+ and stabilizing the formed AuNPs. The synthesis conditions, including temperature, reaction time, and Au3+ ion concentration, were optimized at 90 °C, 40 min, and 1.25 mM, respectively. The physicochemical properties of the produced MT-AuNPs were assessed by means of transmission electron microscopy, X-ray diffraction, field emission scanning electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. The characterization results revealed that the MT-AuNPs exhibited a spherical shape with a size of about 15 nm capped by an organic layer. The colorimetric assay based on MT-AuNPs showed excellent sensitivity and selectivity toward Pb2+ ions with the limit of detection value of 0.03 μM and the limit of quantification of 0.09 μM in the linear range of 50-500 μM. The recoveries of inter-day and intra-day tests were 97.84-102.08% and 98.78-102.34%, respectively. The MT-AuNPs probe also demonstrated good and reproducible recoveries (98.71-101.01%) in analyzing Pb2+ in drinking water samples, indicating satisfactory practicability and operability of the proposed method.
Collapse
Affiliation(s)
- Bao An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Ho Chi Minh City 700000 Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University 03 Quang Trung Danang City 550000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| |
Collapse
|
9
|
A Highly Sensitive and Selective Quinazoline-Based Colorimetric Probe for Naked-Eye Detection of Fe3+ Ions. J Fluoresc 2022; 32:2309-2318. [DOI: 10.1007/s10895-022-03016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
|
10
|
Saadati A, Farshchi F, Hasanzadeh M, Liu Y, Seidi F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv 2022; 12:21836-21850. [PMID: 36091189 PMCID: PMC9358409 DOI: 10.1039/d2ra02820d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools in the environmental and biomedical diagnosis of As(iii).
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No. 4365 - Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
11
|
Dong X, Wang M, Tang Y. Green synthesis of fluorescent carbon nanospheres from chrysanthemum as a multifunctional sensor for permanganate, Hg(II), and captopril. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120886. [PMID: 35063823 DOI: 10.1016/j.saa.2022.120886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
A simple and green method for the synthesis of fluorescent carbon nanospheres (CNs) was proposed using chrysanthemum as a natural precursor and ethylenediamine as the co-reagent. The prepared CNs show strong blue fluorescence in water with quantum yield of 13.7 %, and distinguished fluorescent stability against photobleaching and ion strength. Meanwhile, the fluorescence signal of CNs is reversible and sensitive to temperature in the range of 20-80 °C, which makes CNs useful as a temperature sensor. More importantly, the CNs can serve as excellent fluorescent sensors for detecting MnO4- and Hg2+ with the detection limit of 0.72 and 0.26 μM, respectively. MnO4- quenches the fluorescence of CNs through inner filter effect and static quenching mechanism, while Hg2+ forms a stable complex with the amino group on the surface of CNs, resulting in the fluorescence quenching of CNs. However, the stronger affinity between Hg2+ and captopril (Cap) results in the fluorescence quenched by Hg2+ recovery after the addition of Cap. Thus, the CNs-Hg2+ system is employed as a novel sensitive and selective fluorescence "turn-on" sensor for Cap in the range of 0-75 μM. Inspired by the sensing results, the developed sensors were successfully used for the determination of MnO4-, Hg2+ in river water samples and Cap in the pharmaceutical and urine samples.
Collapse
Affiliation(s)
- Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| |
Collapse
|
12
|
Díaz-García V, Contreras-Trigo B, Rodríguez C, Coelho P, Oyarzún P. A Simple Yet Effective Preanalytical Strategy Enabling the Application of Aptamer-Conjugated Gold Nanoparticles for the Colorimetric Detection of Antibiotic Residues in Raw Milk. SENSORS 2022; 22:s22031281. [PMID: 35162026 PMCID: PMC8837955 DOI: 10.3390/s22031281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022]
Abstract
The misuse of antibiotics in the cattle sector can lead to milk contamination, with concomitant effects on the dairy industry and human health. Biosensors can be applied in this field; however, the influence of the milk matrix on their activity has been poorly studied in light of the preanalytical process. Herein, aptamer-conjugated gold nanoparticles (nanoaptasensors) were investigated for the colorimetric detection in raw milk of four antibiotics used in cattle. The effect of milk components on the colorimetric response of the nanoaptasensors was analyzed by following the selective aggregation of the nanoparticles, using the absorption ratio A520/A720. A preanalytical strategy was developed to apply the nanoaptasensors to antibiotic-contaminated raw milk samples, which involves a clarification step with Carrez reagents followed by the removal of cations through dilution, chelation (EDTA) or precipitation (NaHCO3). The colorimetric signals were detected in spiked samples at concentrations of antibiotics as low as 0.25-fold the maximum residue limits (MRLs) for kanamycin (37.5 μg/L), oxytetracycline (25 μg/L), sulfadimethoxine (6.25 μg/L) and ampicillin (1 μg/L), according to European and Chilean legislation. Overall, we conclude that this methodology holds potential for the semiquantitative analysis of antibiotic residues in raw milk obtained directly from dairy farms.
Collapse
|
13
|
Nguyen THA, Nguyen VC, Phan TNH, Le VT, Vasseghian Y, Trubitsyn MA, Nguyen AT, Chau TP, Doan VD. Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. CHEMOSPHERE 2022; 287:132271. [PMID: 34547560 DOI: 10.1016/j.chemosphere.2021.132271] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 05/12/2023]
Abstract
In this study, novel biogenic silver (AgNPs) and gold nanoparticles (AuNPs) were developed using a green approach with Ganoderma lucidum (GL) extract. The optimization of synthesis conditions for the best outcomes was conducted. The prepared materials were characterized and their applicability in catalysis, antibacterial and chemical sensing was comprehensively evaluated. The GL-AgNPs crystals were formed in a spherical shape with an average diameter of 50 nm, while GL-AuNPs exhibited multi-shaped structures with sizes ranging from 15 to 40 nm. As a catalyst, the synthesized nanoparticles showed excellent catalytic activity (>98% in 9 min) and reusability (>95% after five recycles) in converting 4-nitrophenol to 4-aminophenol. As an antimicrobial agent, GL-AuNPs were low effective in inhibiting the growth of bacteria, while GL-AgNPs expressed strong antibacterial activity against all the tested strains. The highest growth inhibition activity of GL-AgNPs was observed against B. subtilis (14.58 ± 0.35 mm), followed by B. cereus (13.8 ± 0.52 mm), P. aeruginosa (12.38 ± 0.64 mm), E. coli (11.3 ± 0.72 mm), and S. aureus (10.41 ± 0.31 mm). Besides, GL-AgNPs also demonstrated high selectivity and sensitivity in the colorimetric detection of Fe3+ in aqueous solution with a detection limit of 1.85 nM. Due to the suitable thickness of the protective organic layer and the appropriate particle size, GL-AgNPs validated the triple role as a high-performance catalyst, antimicrobial agent, and nanosensor for environmental monitoring and remediation.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Ho Chi Minh City, 70000, Viet Nam
| | - Van-Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Nhu Huynh Phan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | | | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong, Ho Chi Minh City, 70000, Viet Nam
| | - Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam.
| |
Collapse
|
14
|
Doan VD, Phan TL, Le VT, Vasseghian Y, Evgenievna LO, Tran DL, Le VT. Efficient and fast degradation of 4-nitrophenol and detection of Fe(III) ions by Poria cocos extract stabilized silver nanoparticles. CHEMOSPHERE 2022; 286:131894. [PMID: 34416589 DOI: 10.1016/j.chemosphere.2021.131894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a simple and environment-friendly method has been successfully applied for the production of silver nanoparticles (AgNPs) using Poria cocos extract. The reaction time of 60 min, the temperature of 90 °C, and silver ion concentration of 2.0 mM were identified as the best condition for the PC-AgNPs fabrication. The XRD analysis confirmed a highly crystalline face-centered cubic structure of the biosynthesized material. The PC-AgNPs were presented separately in a spherical shape with an average crystal size of 20 nm, as endorsed by the TEM and FE-SEM measurements. The presence and crucial role of biomolecules in stabilizing the nanoparticles were elucidated by FTIR, EDX, and DLS techniques. The prepared biogenic nanoparticles were further applied for the reduction of 4-nitrophenol (4-NP) and colorimetric detection of Fe3+ ions. The study results proved that PC-AgNPs exhibited superior catalytic activity and reusability in the conversion of 4-NP by NaBH4. The complete reduction of 4-NP could be achieved in 10 min with the pseudo-first-order rate constant of 0.466 min-1, and no significant performance loss was found when the material was reused five times. The colorimetric probe based on PC-AgNPs displayed outstanding sensitivity and selectivity towards Fe3+ ions with a detection limit of 1.5 μM in a linear range of 0-250 μM. Additionally, the applicability of the developed assay was explored for testing Fe3+ ions in tap water. PC-AgNPs have a great potential for further applications as a promising catalyst for reducing nitrophenols and biosensors for the routine monitoring of Fe3+ in water.
Collapse
Affiliation(s)
- Van-Dat Doan
- Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Viet Nam
| | - Thanh Long Phan
- Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Lebedeva Olga Evgenievna
- Department of General Chemistry, Belgorod State National Research University, 308015, Belgorod, Russian Federation
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Van Tan Le
- Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Viet Nam.
| |
Collapse
|
15
|
Mercaptosuccinic-Acid-Functionalized Gold Nanoparticles for Highly Sensitive Colorimetric Sensing of Fe(III) Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of reliable and highly sensitive methods for heavy metal detection is a critical task for protecting the environment and human health. In this study, a qualitative colorimetric sensor that used mercaptosuccinic-acid-functionalized gold nanoparticles (MSA-AuNPs) to detect trace amounts of Fe(III) ions was developed. MSA-AuNPs were prepared using a one-step reaction, where mercaptosuccinic acid (MSA) was used for both stabilization, which was provided by the presence of two carboxyl groups, and functionalization of the gold nanoparticle (AuNP) surface. The chelating properties of MSA in the presence of Fe(III) ions and the concentration-dependent aggregation of AuNPs showed the effectiveness of MSA-AuNPs as a sensing probe with the use of an absorbance ratio of A530/A650 as an analytical signal in the developed qualitative assay. Furthermore, the obvious Fe(III)-dependent change in the color of the MSA-AuNP solution from red to gray-blue made it possible to visually assess the metal content in a concentration above the detection limit with an assay time of less than 1 min. The detection limit that was achieved (23 ng/mL) using the proposed colorimetric sensor is more than 10 times lower than the maximum allowable concentration for drinking water defined by the World Health Organization (WHO). The MSA-AuNPs were successfully applied for Fe(III) determination in tap, spring, and drinking water, with a recovery range from 89.6 to 126%. Thus, the practicality of the MSA-AuNP-based sensor and its potential for detecting Fe(III) in real water samples were confirmed by the rapidity of testing and its high sensitivity and selectivity in the presence of competing metal ions.
Collapse
|
16
|
Lim SH, Ly NH, Lee JA, Kim JE, La SW, Huong VT, Tran TG, Ho NT, Noh SM, Son SJ, Joo SW. Nanopatterned Polymer Molds Using Anodized Aluminum Templates for Anti-Reflective Coatings. Polymers (Basel) 2021; 13:polym13193333. [PMID: 34641158 PMCID: PMC8512740 DOI: 10.3390/polym13193333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
This work introduces a facile geometry-controlled method for the fabrication of embossed and engraved polymeric moth-eye-inspired nanostructures in imprinting molds using anodic aluminum oxide (AAO) templates, resulting in a novel anti-reflective transparent coating. The moth-eye nanostructures are prepared directly on the surface of a flexible polyethylene terephthalate (PET) substrate. As a prerequisite procedure, a UV-curable polyurethane acrylate resin is spun on the PET. The shape of the moth-eye nanostructures can then be adjusted by controlling the size and shape of the nanopores in the AAO templates. Both embossed and concaved polymer moth-eye nanostructures were successfully mounted on a PET substrate. Embossed polymer replica molds were prepared using the AAO master templates in combination with an imprinting process. As revealed by field-emission electron microscope (FE-SEM) images, conical nanopatterns in the AAO template with a diameter of ~90 nm and a depth of ~100 nm, create a homogeneous embossed morphology in the polymer moth-eye nanostructure. The polymeric molds with the depths of 300 and 500 nm revealed the amalgamated structures in their apexes. In addition, a dip-imprinting process of the polymeric layers was implemented to yield a concaved mold by assembly on the surface of the 100 nm embossed polymer mold substrate. Considering that the embossed structures may be crumbled due to their protuberant shapes, the concaved geometries can have an advantage of stability in a certain application concerning physical degradation along with a higher transmission by ~2%, despite somewhat nonuniform structure. The experimental and theoretical results of this study indicate that this polymer layer has the potential for use in anti-reflective coating applications in transparent films.
Collapse
Affiliation(s)
- Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam 13120, Korea; (S.H.L.); (N.H.L.); (J.A.L.); (J.E.K.)
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, Korea; (S.H.L.); (N.H.L.); (J.A.L.); (J.E.K.)
| | - Jung A. Lee
- Department of Chemistry, Gachon University, Seongnam 13120, Korea; (S.H.L.); (N.H.L.); (J.A.L.); (J.E.K.)
| | - Ji Eun Kim
- Department of Chemistry, Gachon University, Seongnam 13120, Korea; (S.H.L.); (N.H.L.); (J.A.L.); (J.E.K.)
| | - Se-Woong La
- Department of Chemistry, Soongsil University, Seoul 06978, Korea; (S.-W.L.); (V.T.H.); (T.-G.T.); (N.T.H.)
| | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul 06978, Korea; (S.-W.L.); (V.T.H.); (T.-G.T.); (N.T.H.)
| | - Thi-Giang Tran
- Department of Chemistry, Soongsil University, Seoul 06978, Korea; (S.-W.L.); (V.T.H.); (T.-G.T.); (N.T.H.)
| | - Ngoc Thanh Ho
- Department of Chemistry, Soongsil University, Seoul 06978, Korea; (S.-W.L.); (V.T.H.); (T.-G.T.); (N.T.H.)
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea
- Correspondence: (S.M.N.); (S.J.S.); (S.-W.J.); Tel.: +82-2-820-0434 (S.-W.J.)
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, Korea; (S.H.L.); (N.H.L.); (J.A.L.); (J.E.K.)
- Correspondence: (S.M.N.); (S.J.S.); (S.-W.J.); Tel.: +82-2-820-0434 (S.-W.J.)
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, Korea; (S.-W.L.); (V.T.H.); (T.-G.T.); (N.T.H.)
- Correspondence: (S.M.N.); (S.J.S.); (S.-W.J.); Tel.: +82-2-820-0434 (S.-W.J.)
| |
Collapse
|
17
|
Kumbhakar P, Ambekar RS, Mahapatra PL, Sekhar Tiwary C. Quantifying instant water cleaning efficiency using zinc oxide decorated complex 3D printed porous architectures. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126383. [PMID: 34329007 DOI: 10.1016/j.jhazmat.2021.126383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Industrialization harms the quality of water; therefore, cleaning and monitoring water sources are essential for sustainable human health and aquatic life. An increase in active surface area and porosity can result in quick and efficient cleaning activity. 3D printing can build porous architecture with controlled porosity and active surface area. Here, catalytically active ZnO nanosheets were grown on the surface of 3D printed architecture (Schwarzites and Weissmuller) with different porosity and surface area. The Weissmuller structure along with ZnO, has shown better catalytic performance due to its higher porosity (~69%) and high active surface area, compared to Schwarzites structure. Synergistic effect of adsorption and photodegradation has resulted in ~95% removal efficiency of mixed dye within 10 min by Weissmuller structure. The dye degradation efficiency was determined using colorimetric measurements with a regular smartphone for real-time quantitative investigation of dye removal efficiency. Most importantly, decorated 3D printed structures exhibit high structural stability without residuals (ZnO nanosheets) in water after performing the recycling experiment. Therefore, the decorated 3D printing structures and colorimetric detection method will offer a user-friendly versatile technique for analysis of removal efficiency of toxic components in different polluted water sources without using high-end sophisticated instruments and complicated procedures.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rushikesh S Ambekar
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preeti Lata Mahapatra
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Chandra Sekhar Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
18
|
Le VT, Duong TG, Le VT, Phan TL, Huong Nguyen TL, Chau TP, Doan VD. Effective reduction of nitrophenols and colorimetric detection of Pb(ii) ions by Siraitia grosvenorii fruit extract capped gold nanoparticles. RSC Adv 2021; 11:15438-15448. [PMID: 35424067 PMCID: PMC8698254 DOI: 10.1039/d1ra01593a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
This study presents a simple and green approach for the synthesis of Siraitia grosvenorii fruit extract capped gold nanoparticles (SG-AuNPs). The SG-AuNPs samples prepared under the optimized conditions were characterized by various techniques (UV-Vis, XRD, FTIR, HR-TEM, EDX, DLS). The biosynthesized nanoparticles were then studied for the reduction of 2-nitrophenol (2-NP) and 3-nitrophenols (3-NP) and for colorimetric detection of Pb2+ ions. The characterization results revealed that the crystals of SG-AuNPs were spherical with an average size of 7.5 nm. The FTIR and DLS analyses proved the presence of the biomolecule layer around AuNPs, which played an important role in stabilizing the nanoparticles. The SG-AuNPs showed excellent catalytic activity in the reduction of 3-NP and 2-NP, achieving complete conversion within 14 min. The catalytic process was endothermic and followed pseudo-first-order kinetics. The activation energy was determined to be 10.64 and 26.53 kJ mol-1 for 2-NP and 3-NP, respectively. SG-AuNPs maintained high catalytic performance after five recycles. The fabricated material was also found to be highly sensitive and selective to Pb2+ ions with the detection limit of 0.018 μM in a linear range of 0-1000 μM. The practicality of the material was validated through the analyses of Pb2+ in mimic pond water samples. The developed nanoparticles could find tremendous applications in environmental monitoring.
Collapse
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang City 550000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University 03 Quang Trung Da Nang City 550000 Vietnam
| | - Truong Giang Duong
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Van Tan Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thanh Long Phan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thi Lan Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University Ho Chi Minh City 700000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
19
|
Shape recoverable, Au nanoparticles loaded nanocellulose foams as a recyclable catalyst for the dynamic and batch discoloration of dyes. Carbohydr Polym 2021; 258:117693. [PMID: 33593566 DOI: 10.1016/j.carbpol.2021.117693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 01/12/2023]
Abstract
An environmental benign in-situ formation and growth of gold nanoparticles (AuNPs) on TEMPO-oxidized cellulose nanofibrils (TOCNF) is reported here. With the active functional groups (aldehyde and carboxyl), TOCNF served as a synchronized reducing and supporting agent for the formation of AuNPs. The entire synthesis process was completed within 30 s under microwave irradiation and regarded as ultra-fast. As obtained AuNPs@TOCNF nanohybrid suspension was freeze-dried to form strong water-activated shape recovery 3D foam. Internal morphology and porosity of the foam were studied by SEM and BET. AuNPs@TOCNF foams exhibited excellent catalytic activity for the discoloration of cationic and anionic dyes in batch and dynamic column processes. The spent foams can be easily recovered and reused up to five cycles with more than 98 % efficiency. During the catalytic processes, no obvious deterioration of the foam structure was observed. Practical applicability of the nanocatalyst was evaluated by treating spiked sea water sample.
Collapse
|