1
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
2
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Rao KM, Prasad MS, Rosaiah P, Karim MR, Han SS. Sustainable supercapacitors of sulfur-doped carbon from environmentally friendly sodium lignosulfonate impregnated with bacterial cellulose. Int J Biol Macromol 2024; 282:137067. [PMID: 39481719 DOI: 10.1016/j.ijbiomac.2024.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The use of sustainable natural sources to fabricate porous carbon materials has garnered significant interest in energy storage. This study proposes a method for synthesizing sulfur-doped porous carbon (S‑carbon) materials via the carbonization of bacterial cellulose (BC) impregnated with sodium lignosulfonate (LS), which functions as a renewable source of both carbon and sulfur, eliminating the need for external activation processes. The carbonization process yielded S‑carbon with a notable sulfur content of 1.4 % and a high specific surface area of 650 m2/g. Transmission electron microscopy (TEM) images reveal fibrous carbon structures with mesopores and micropores in the S‑carbon material. Electrochemically, S‑carbon exhibited an impressive specific capacitance of 272.6 F g-1 at a current density of 1 A/g and demonstrated outstanding cycling stability, retaining 86 % of its capacitance after 5000 cycles at a current density of 6 A/g in a 3 M KOH electrolyte. The development of sulfur-doped fibrous carbon from BC-LS offers promising potential as a sustainable electrode material for supercapacitors.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mooni Siva Prasad
- Department of Chemistry, Marri Laxman Reddy institute of Technology and Management (MLRITM), Dundigal, Hyderabad, Telangana 500043, India
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
4
|
Wang F, Qu T, Yang H, Yang H, Ou Y, Zhang Q, Cheng F, Hu F, Liu H, Xu Z, Gong C. Fabrication of Dual-Functional Bacterial-Cellulose-Based Composite Anion Exchange Membranes with High Dimensional Stability and Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2751-2762. [PMID: 38178809 DOI: 10.1021/acsami.3c15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Anion exchange membranes (AEMs) are increasingly becoming a popular research area due to their ability to function with nonprecious metals in electrochemical devices. Nevertheless, there is a challenge to simultaneously optimize the dimensional stability and ionic conductivity of AEMs due to the "trade-off" effect. Herein, we adopted a novel strategy of combining filling and cross-linking using functionalized bacterial cellulose (PBC) as a dual-functional porous support and brominated poly(phenylene oxide) (Br-PPO) as the cross-linking agent and filler. The PBC nanofiber framework together with cross-linking can provide a reliable mechanical support for the subsequent filled polymer, thus improving the mechanical properties and effectively limiting the size change of the final quaternized-PPO (QPPO)-filled PBC composite membrane. The composite membrane showed a very low swelling ratio of only 10.35%, even at a high water uptake (81.83% at 20 °C). Moreover, the existence of multiple -NR3+ groups in the cross-link bonds between BC and Br-PPO can provide extra OH- ion transport sites, contributing to the increase in ionic conductivity. The final membrane demonstrated a hydroxide ion conductivity of 62.58 mS cm-1, which was remarkably higher than that of the pure QPPO membrane by up to 235.93% (80 °C). The successful preparation of the PBC3/QPPO membrane provides an effective avenue to tackle the trade-off effect through a dual-functional strategy.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Huiyu Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Quanyuan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
5
|
Smirnov MA, Vorobiov VK, Fedotova VS, Sokolova MP, Bobrova NV, Smirnov NN, Borisov OV. A Polyelectrolyte Colloidal Brush Based on Cellulose: Perspectives for Future Applications. Polymers (Basel) 2023; 15:4526. [PMID: 38231953 PMCID: PMC10708233 DOI: 10.3390/polym15234526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. Additionally, we discuss our own perspectives on investigating composites with CPEBs. Herein, polyacrylic acid (PAA) was grafted onto the surface of cellulose nanofibers (CNFs) employing a "grafting from" approach. The effect of the PAA shell on the morphological structure of a composite with polypyrrole (PPy) was investigated. The performance of as-obtained CNF-PAA/PPy as organic electrode material for supercapacitors was examined. Furthermore, this research highlights the ability of CNF-PAA filler to act as an additional crosslinker forming a physical sub-network due to the hydrogen bond interaction inside chemically crosslinked polyacrylamide (PAAm) hydrogels. The enhancement of the mechanical properties of the material with a concomitant decrease in its swelling ratio compared to a pristine PAAm hydrogel was observed. The findings were compared with the recent theoretical foundation pertaining to other similar materials.
Collapse
Affiliation(s)
- Michael A. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Vitaly K. Vorobiov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Veronika S. Fedotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Maria P. Sokolova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Natalya V. Bobrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Nikolay N. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254 CNRS/UPPA, 64053 Pau, France
| |
Collapse
|
6
|
Liang S. Advances in drug delivery applications of modified bacterial cellulose-based materials. Front Bioeng Biotechnol 2023; 11:1252706. [PMID: 37600320 PMCID: PMC10436498 DOI: 10.3389/fbioe.2023.1252706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Bacterial cellulose (BC) is generated by certain species of bacteria and comprises polysaccharides with unique physical, chemical, and mechanical characteristics. Due to its outstanding biocompatibility, high purity, excellent mechanical strength, high water absorption, and highly porous structure, bacterial cellulose has been recently investigated for biomedical application. However, the pure form of bacterial cellulose is hardly used as a biomedical material due to some of its inherent shortcomings. To extend its applications in drug delivery, modifications of native bacterial cellulose are widely used to improve its properties. Usually, bacterial cellulose modifications can be carried out by physical, chemical, and biological methods. In this review, a brief introduction to bacterial cellulose and its production and fabrication is first given, followed by up-to-date and in-depth discussions of modification. Finally, we focus on the potential applications of bacterial cellulose as a drug delivery system.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
9
|
Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers (Basel) 2023; 15:polym15040853. [PMID: 36850137 PMCID: PMC9961894 DOI: 10.3390/polym15040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer that has been widely investigated due to its useful characteristics, such as nanometric structure, simple production and biocompatibility, enabling the creation of novel materials made from additive BC in situ and/or ex situ. The literature also describes the magnetization of BC biopolymers by the addition of particles such as magnetite and ferrites. The processing of BC with these materials can be performed in different ways to adapt to the availability of materials and the objectives of a given application. There is considerable interest in the electronics field for novel materials and devices as well as non-polluting, sustainable solutions. This sector influences the development of others, including the production and optimization of new equipment, medical devices, sensors, transformers and motors. Thus, magnetic BC has considerable potential in applied research, such as the production of materials for biotechnological electronic devices. Magnetic BC also enables a reduction in the use of polluting materials commonly found in electronic devices. This review article highlights the production of this biomaterial and its applications in the field of electronics.
Collapse
|
10
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
11
|
Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin, Srivastava S, Minkina T, Igwegbe CA, Singh M, Kumar A. Emerging application of nanotechnology for mankind. EMERGENT MATERIALS 2023; 6:439-452. [PMID: 36743193 PMCID: PMC9888745 DOI: 10.1007/s42247-023-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Collapse
Affiliation(s)
- Rahul Kanaoujiya
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Shruti Kumari Saroj
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Alimuddin
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, 500032, Hyderabad, Telangana India
| | - Shekhar Srivastava
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamadi Azikiwe University, P. M. B., 5025 Awka, Nigeria
| | - Mukta Singh
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Aditya Kumar
- Department of Physics, School of Science, IFTM University Moradabad, 244102 Moradabad, India
| |
Collapse
|
12
|
Saboury A, Mohammadi R, Javanbakht S, Ghorbani M. Doxorubicin imprinted magnetic polymethacrylamide as a pH-sensitive anticancer nanocarrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Kamal T, Ul-Islam M, Fatima A, Ullah MW, Manan S. Cost-Effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels 2022; 8:552. [PMID: 36135264 PMCID: PMC9498321 DOI: 10.3390/gels8090552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials and Research, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr Polym 2022; 283:119171. [DOI: 10.1016/j.carbpol.2022.119171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
|
15
|
Ieamviteevanich P, Daneshvar E, Eshaq G, Puro L, Mongkolthanaruk W, Pinitsoontorn S, Bhatnagar A. Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS OMEGA 2022; 7:7572-7584. [PMID: 35284749 PMCID: PMC8908360 DOI: 10.1021/acsomega.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
Engineering and synthesis of novel materials are vital for removing emerging pollutants, such as pharmaceuticals from contaminated water. In this study, a magnetic carbon nanofiber (MCF) fabricated from bacterial cellulose was tested for the adsorption of diclofenac from water. The physical and chemical properties of the synthesized adsorbent were examined by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, energy-dispersive X-ray spectroscopy (EDS), a vibrating sample magnetometer (VSM), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The characterization results showed that the MCF is a carbon nanofiber with a three-dimensional interconnect network, forming a porous material (mesopores and macropores) with a specific surface area of 222.3 m2/g. The removal of diclofenac (10 mg/L) by the MCF (0.75 g/L) was efficient (93.2%) and fast (in 20 min). According to the Langmuir isotherm model fitting, the maximum adsorption capacity of the MCF was 43.56 mg/g. Moreover, continuous adsorption of diclofenac onto MCF was investigated in a fixed-bed column, and the maximum adsorption capacity was found to be 67 mg/g. The finding of this research revealed that the MCF could be a promising adsorbent used to remove diclofenac from water, while it can be easily recovered by magnetic separation.
Collapse
Affiliation(s)
- Pimchanok Ieamviteevanich
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ehsan Daneshvar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Ghada Eshaq
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
- Petrochemicals
Department, Egyptian Petroleum Research
Institute, Nasr City, Cairo 11727, Egypt
| | - Liisa Puro
- Department of Separation Science, LUT School
of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Wiyada Mongkolthanaruk
- Department
of Microbiology, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Supree Pinitsoontorn
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute
of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Amit Bhatnagar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
16
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Santra TS, Lim KT. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications. Bioact Mater 2022; 9:566-589. [PMID: 34820589 PMCID: PMC8591404 DOI: 10.1016/j.bioactmat.2021.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Nanocellulose, a biopolymer, has received wide attention from researchers owing to its superior physicochemical properties, such as high mechanical strength, low density, biodegradability, and biocompatibility. Nanocellulose can be extracted from wide range of sources, including plants, bacteria, and algae. Depending on the extraction process and dimensions (diameter and length), they are categorized into three main types: cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are a highly crystalline and needle-like structure, whereas CNFs have both amorphous and crystalline regions in their network. BNC is the purest form of nanocellulose. The nanocellulose properties can be tuned by chemical functionalization, which increases its applicability in biomedical applications. This review highlights the fabrication of different surface-modified nanocellulose to deliver active molecules, such as drugs, proteins, and plasmids. Nanocellulose-mediated delivery of active molecules is profoundly affected by its topographical structure and the interaction between the loaded molecules and nanocellulose. The applications of nanocellulose and its composites in tissue engineering have been discussed. Finally, the review is concluded with further opportunities and challenges in nanocellulose-mediated delivery of active molecules.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tuhin Subhra Santra
- Deptarment of Engineering Design, Indian Institute of Technology, Madras, 600036, India
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
17
|
Jankau J, Błażyńska‐Spychalska A, Kubiak K, Jędrzejczak-Krzepkowska M, Pankiewicz T, Ludwicka K, Dettlaff A, Pęksa R. Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing. Front Bioeng Biotechnol 2022; 9:805053. [PMID: 35223815 PMCID: PMC8873821 DOI: 10.3389/fbioe.2021.805053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Although new therapeutic approaches for surgery and wound healing have recently made a great progress, there is still need for application of better and use novel methods to enhance biocompatibility as well as recovery and healing process. Bacterial Cellulose (BC) is natural cellulose in the form of nanostructure which has the advantages of being used in human body. The medical application of BC in reconstructive, cardiac and vascular surgery as well as wound healing is still under development, but without proved success of repetitive results. A review of studies on Bacterial Cellulose (BC) since 2016 was performed, taking into account the latest reports on the clinical use of BC. In addition, data on the physicochemical properties of BC were used. In all the works, satisfactory results of using Bacterial Cellulose were obtained. In all presented studies various BC implants demonstrated their best performance. Additionally, the works show that BC has the capacity to reach physiological as well as mechanical properties of relevance for various tissue replacement and can be produced in surgeons as well as patient specific expectations such as ear frames, vascular tubes or heart valves as well as wound healing dressings. Results of those experiments conform to those of previous reports utilizing ADM (acellular dermal matrix) and demonstrate that the use of BC has no adverse effects such as ulceration or extrusion and possesses expected properties. Based on preliminary animal as well as the few clinical data BC fittings are promising implants for various reconstructive applications since they are biocompatible with properties allowing blood flow, attach easily to wound bed and remain in place until donor site is healed properly. Additionally, this review shows that BC can be fabricated into patient specific shapes and size, with capability to reach mechanical properties of relevance for heart valve, ear, and muscle replacement. Bacterial cellulose appears, as shown in the above review, to be one of the materials that allow extensive application in the reconstruction after soft tissue defects. Review was created to show the needs of surgeons and the possibilities of using BC through the eyes and knowledge of biotechnologists.
Collapse
Affiliation(s)
- Jerzy Jankau
- Department of Plastic Surgery Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Jerzy Jankau,
| | | | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Teresa Pankiewicz
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | - Karolina Ludwicka
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Aditya T, Allain JP, Jaramillo C, Restrepo AM. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 2022; 23:610. [PMID: 35054792 PMCID: PMC8776065 DOI: 10.3390/ijms23020610] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.
Collapse
Affiliation(s)
- Teresa Aditya
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Camilo Jaramillo
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
| | - Andrea Mesa Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
19
|
Roig-Sanchez S, Torrecilla O, Floriach-Clark J, Parets S, Levkin PA, Roig A, Laromaine A. One-Step Biosynthesis of Soft Magnetic Bacterial Cellulose Spheres with Localized Nanoparticle Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55569-55576. [PMID: 34766498 PMCID: PMC8631704 DOI: 10.1021/acsami.1c17752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively. Magnetic actuability is conferred by superparamagnetic iron oxide NPs (SPIONs), and their location within the structure was finely tuned with high precision. The size, structure, flexibility and magnetic response of the spheres have been characterized. In addition, the versatility of the methodology allows us to produce actuated spherical structures adding other NPs (Au and Pt) in specific locations, creating Janus structures. The combination of Pt NPs and SPIONs provides moving composite structures driven both by a magnetic field and a H2O2 oxidation reaction. Janus Pt/SPIONs increased by five times the directionality and movement of these structures in comparison to the controls.
Collapse
Affiliation(s)
- Soledad Roig-Sanchez
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Oriol Torrecilla
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jordi Floriach-Clark
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sebastià Parets
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Pavel A. Levkin
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
20
|
Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Tummino ML, Nisticò R, Franzoso F, Bianco Prevot A, Calza P, Laurenti E, Paganini MC, Scalarone D, Magnacca G. The "Lab4treat" Outreach Experience: Preparation of Sustainable Magnetic Nanomaterials for Remediation of Model Wastewater. Molecules 2021; 26:3361. [PMID: 34199539 PMCID: PMC8199662 DOI: 10.3390/molecules26113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
The Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge. The topic is relevant, dealing with the recycling of urban waste and water depollution. The paper is placed within the field of water treatment for contaminant removal; therefore, a rich collection of recent (and less recent) papers dealing with magnetic materials and environmental issues is described in the Introduction section. In addition, the paper contains a detailed description of the experiment and a list of the possible topics which can be developed during the activity. The experimental approach makes the comprehension of scientific phenomena effective, and, from this perspective, the paper can be considered to be an example of interactive teaching.
Collapse
Affiliation(s)
- Maria Laura Tummino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Roberto Nisticò
- Department of Applied Science and Technology DISAT, Polytechnic of Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Flavia Franzoso
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Alessandra Bianco Prevot
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Paola Calza
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Enzo Laurenti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Maria Cristina Paganini
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Dominique Scalarone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Giuliana Magnacca
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
- NIS Interdepartmental Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|