1
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
2
|
Sao K, Risbud MV. Sdc4 deletion perturbs intervertebral disc matrix homeostasis and promotes early osteopenia in the aging mouse spine. Matrix Biol 2024; 131:46-61. [PMID: 38806135 DOI: 10.1016/j.matbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States
| | - Makarand V Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States.
| |
Collapse
|
3
|
Matoušková Z, Orsághová K, Srb P, Pytelková J, Kukačka Z, Buša M, Hajdušek O, Šíma R, Fábry M, Novák P, Horn M, Kopáček P, Mareš M. An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans. Int J Mol Sci 2024; 25:2240. [PMID: 38396918 PMCID: PMC10889554 DOI: 10.3390/ijms25042240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
Collapse
Affiliation(s)
- Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Praha, Czech Republic
| | - Katarína Orsághová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Praha, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Jana Pytelková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Zdeněk Kukačka
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Biopticka Laborator, Mikulasske Namesti 4, 32600 Plzen, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| |
Collapse
|
4
|
Maszota-Zieleniak M, Samsonov SA. Molecular Dynamics Simulation-Based Prediction of Glycosaminoglycan Interactions with Drug Molecules. Methods Mol Biol 2024; 2714:143-153. [PMID: 37676597 DOI: 10.1007/978-1-0716-3441-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of long linear anionic periodic polysaccharides. Their biological activities are very broad including tissue remodeling, regulation of cell proliferation, cell migration, cell differentiation, participation in bacterial/viral infections, and immune response. They can interact with many important biomolecular partners in the extracellular matrix of the cell including small drug molecules. Recently, several GAG-bioactive small molecule complexes have been experimentally and theoretically studied. Some of these compounds in complexes with GAGs may potentially interfere with protein-GAG or peptide-GAG multimolecular systems affecting the processes of cellular differentiation or have anti-inflammatory, antiviral as well as antithrombotic effects. Although many studies have been conducted on GAG-drug complexes, the molecular mechanisms of the formation of such complexes are still poorly understood. At the same time, the complexity of their physicochemical properties renders the use of both experimental and computational methods to study these molecular systems challenging. Here, we present the molecular dynamics-based protocols successfully employed to in silico analyze GAG-small molecule interactions.
Collapse
|
5
|
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis. Biomedicines 2023; 11:biomedicines11030810. [PMID: 36979788 PMCID: PMC10045161 DOI: 10.3390/biomedicines11030810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders.
Collapse
|
6
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
7
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
8
|
Denamur S, Chazeirat T, Maszota-Zieleniak M, Vivès RR, Saidi A, Zhang F, Linhardt RJ, Labarthe F, Samsonov SA, Lalmanach G, Lecaille F. Binding of heparan sulfate to human cystatin C modulates inhibition of cathepsin L: Putative consequences in mucopolysaccharidosis. Carbohydr Polym 2022; 293:119734. [DOI: 10.1016/j.carbpol.2022.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
|
9
|
In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. J Mol Graph Model 2022; 113:108153. [DOI: 10.1016/j.jmgm.2022.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
10
|
Modeling glycosaminoglycan–protein complexes. Curr Opin Struct Biol 2022; 73:102332. [DOI: 10.1016/j.sbi.2022.102332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
|
11
|
Mitrović A, Senjor E, Jukić M, Bolčina L, Prunk M, Proj M, Nanut MP, Gobec S, Kos J. New inhibitors of cathepsin V impair tumor cell proliferation and elastin degradation and increase immune cell cytotoxicity. Comput Struct Biotechnol J 2022; 20:4667-4687. [PMID: 36147668 PMCID: PMC9459403 DOI: 10.1016/j.csbj.2022.08.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Identification of novel potent inhibitors of lysosomal cysteine peptidase cathepsin V. New inhibitors of cathepsin V demonstrated antitumor activity. They impair tumor cell proliferation and elastase degradation and increase immune cell cytotoxicity. Cathepsin V inhibitor impaired conversion of immunosuppressive factor cystatin F to its active monomeric form.
Cathepsin V is a human lysosomal cysteine peptidase with specific functions during pathological processes and is as such a promising therapeutic target. Peptidase inhibitors represent powerful pharmacological tools for regulating excessive proteolytic activity in various diseases. Cathepsin V is highly related to cathepsin L but differs in tissue distribution, binding site morphology, substrate specificity, and function. To validate its therapeutic potential and extend the number of potent and selective cathepsin V inhibitors, we used virtual high-throughput screening of commercially available compound libraries followed by an evaluation of kinetic properties to identify novel potent and selective cathepsin V inhibitors. We identified the ureido methylpiperidine carboxylate derivative, compound 7, as a reversible, selective, and potent inhibitor of cathepsin V. It also exhibited the most preferable characteristics for further evaluation with in vitro functional assays that simulate the processes in which cathepsin V is known to play an important role. Compound 7 exerted significant effects on cell proliferation, elastin degradation, and immune cell cytotoxicity. The latter was increased because compound 7 impaired conversion of immunosuppressive factor cystatin F to its active monomeric form. Taken together, our results present novel potent inhibitors of cathepsin V and provide new hit compounds for detailed development and optimization. Further, we demonstrate that cathepsin V is a potential target for new approaches to cancer therapy.
Collapse
Affiliation(s)
- Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
- Corresponding author at: Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Jukić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lara Bolčina
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Maszota-Zieleniak M, Zsila F, Samsonov SA. Computational insights into heparin-small molecule interactions: Evaluation of the balance between stacking and non-stacking binding modes. Carbohydr Res 2021; 507:108390. [PMID: 34271478 DOI: 10.1016/j.carres.2021.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Glycosaminoglycans (GAGs), anionic periodic linear polysaccharides, are involved in a manifold of key biochemical processes ongoing in the extracellular matrix via establishing direct intermolecular interactions with diverse classes of biopolymers as well as with bioactive small molecules. Due to their acidic nature, they are capable of binding positively charged ligands, which, in turn could affect their binding with protein and peptide targets, modulating a number of physiologically important signaling pathways. Therefore, it is of great significance to improve our understanding on the molecular basis underlying GAG-small molecule interactions. In this study, we applied in silico approaches (molecular dynamics and free energy calculations) complemented with circular dichroism and absorption spectroscopy to characterize the complex formation between heparin, one of the principal members of GAG family, and twenty different cationic ligands including therapeutic drugs, alkaloids and organic dyes. In particular, the oligomerization propensity of ligands prior to heparin binding, binding free energy parameters, effects of the ionic strength are rigorously described. Based on the performed analysis, the ligands are classified into three main groups depending on their heparin binding and oligomerization properties. The computational data agree and provide rationale for the corresponding experimental findings, contributing to the general knowledge of the physico-chemical nature of ligand-GAG intermolecular interactions.
Collapse
Affiliation(s)
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
13
|
Shi D, Sheng A, Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front Mol Biosci 2021; 8:639666. [PMID: 33768117 PMCID: PMC7985165 DOI: 10.3389/fmolb.2021.639666] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a family of linear and negatively charged polysaccharides that exist ubiquitously on the human cell surface as well as in the extracellular matrix. GAGs interact with a wide range of proteins, including proteases, growth factors, cytokines, chemokines and adhesion molecules, enabling them to mediate many physiological processes, such as protein function, cellular adhesion and signaling. GAG-protein interactions participate in and intervene in a variety of human diseases, including cardiovascular disease, infectious disease, neurodegenerative diseases and tumors. The breakthrough in analytical tools and approaches during the last two decades has facilitated a greater understanding of the importance of GAG-protein interactions and their roles in human diseases. This review focuses on aspects of the molecular basis and mechanisms of GAG-protein interactions involved in human disease. The most recent advances in analytical tools, especially mass spectrometry-based GAG sequencing and binding motif characterization methods, are introduced. An update of selected families of GAG binding proteins is presented. Perspectives on development of novel therapeutics targeting specific GAG-protein interactions are also covered in this review.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|