1
|
Lu K, Lan X, Folkersma R, Voet VSD, Loos K. Borax Cross-Linked Acrylamide-Grafted Starch Self-Healing Hydrogels. Biomacromolecules 2024; 25:8026-8037. [PMID: 39582338 PMCID: PMC11632664 DOI: 10.1021/acs.biomac.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The biocompatibility and renewability of starch-based hydrogels have made them popular for applications across various sectors. Their tendency to incur damage after repeated use limits their effectiveness in practical applications. Improving the mechanical properties and self-healing of hydrogels simultaneously remains a challenge. This study introduces a new self-healing hydrogel, synthesized by grafting acrylamide onto starch using ceric ammonium nitrate (CAN) as an initiator, followed by borax cross-linking. We systematically examined how the starch-to-monomer ratio, borax concentration, and CAN concentration impact the grafting reactions and overall performance of the hydrogels. The addition of borax significantly reinforced the strength of the hydrogel; the maximum storage modulus increased by 1.8 times. Thanks to dynamic borate ester and hydrogen bonding, the hydrogel demonstrated remarkable recovery properties and responsiveness to temperature. We expect that the present research could broaden the application of starch-based hydrogels in agriculture, sensors, and wastewater treatment.
Collapse
Affiliation(s)
- Kai Lu
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Xiaohong Lan
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
| | - Rudy Folkersma
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Vincent S. D. Voet
- Circular
Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 3, 9747AG Groningen, The Netherlands
| |
Collapse
|
2
|
Qin Q, Zeng S, Duan G, Liu Y, Han X, Yu R, Huang Y, Zhang C, Han J, Jiang S. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chem Soc Rev 2024; 53:9306-9343. [PMID: 39143951 DOI: 10.1039/d4cs00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches. In the "bottom-up" strategy, various forms of regenerated cellulose-based materials and nanocellulose-based high-strength materials assembled by different methods are discussed. Under the "top-down" approach, the focus is on the development of reinforced cellulose-based materials derived from wood, bamboo, rattan and straw. Furthermore, a brief overview of the potential applications fordifferent types of strong cellulose-based materials is given, followed by a concise discussion on future directions.
Collapse
Affiliation(s)
- Qin Qin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Yu Q, Wang W, Deng N, Su B, Zhao W, Zhao C. Janus Amphipathic Dressing With Liquid Self-Pumping and Blood-Clot Anti-Adhesion for Satisfactory Hemostasis. Adv Healthc Mater 2024; 13:e2400993. [PMID: 38850126 DOI: 10.1002/adhm.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Ideal hemostatic materials for the emergency rescue of war and traffic accident sufferers are essential to significantly control hemorrhage, reduce patient discomfort, and improve the survival ratio. However, most hemostats absorb blood quickly in contact with the wound; and then, adhere to blood clots, resulting in breaking scabs and tearing the wound when the materials are removed. Herein, an effective Janus amphipathic hemostatic dressing (Fiber@Gel/Ca2+/KL) with a fiber layer (polylactic acid/carboxymethyl chitosan) and a hydrogel layer (polyvinyl alcohol, carboxymethyl chitosan, Ca2+, and kaolin) is reported. Such a composite dressing unidirectionally drains the excessive serum from its hydrophobic side (fiber layer) to its hydrophilic side (hydrogel layer), so-called self-pumping, thereby further concentrating coagulated factors (including red blood cells and platelets). Further, Ca2+ diffused from the hydrogel layer subsequently activates platelets and coagulation cascade. Besides, the Fiber@Gel/Ca2+/KL exhibits specific blood-clot anti-adhesion property on the fiber layer, making the dressing easily and safely peel off from the wound. It is believed that this novel hemostatic dressing with good hemostatic performance, easy clots removal, and excellent biocompatibility is expected to be used as a safe and efficient hemostatic dressing in clinical applications.
Collapse
Affiliation(s)
- Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| | - Ningyue Deng
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baihai Su
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610054, China
| |
Collapse
|
4
|
Zeng Q, Wang Y, Javeed A, Chen F, Li J, Guan Y, Chen B, Han B. Preparation and properties of polyvinyl alcohol/chitosan-based hydrogel with dual pH/NH 3 sensor for naked-eye monitoring of seafood freshness. Int J Biol Macromol 2024; 263:130440. [PMID: 38417763 DOI: 10.1016/j.ijbiomac.2024.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
To address the issue of food spoilage causing health and economic loss, we developed a pH/NH3 dual sensitive hydrogel based on polyvinyl alcohol/chitosan (PVA/CS) containing chitosan-phenol red (CP). The CP was synthesized via Mannich reaction and immobilized it in PVA/CS hydrogel through freezing/thawing method to prepare the final PVA/CS/CP hydrogel. The synthesis of CP was confirmed by 1H NMR, FT-IR, XRD, UV-vis, and XPS. The characteristics of hydrogel were evaluated by FT-IR, XRD, SEM, mechanical properties, thermal stability, leaching, and color stability tests. The PVA/CS/CP hydrogel showed distinctly different color at various pH and NH3 vapor levels (yellow to purple). The hydrogel exhibited obvious color changes (ΔE = 46.95) in response to shrimp spoilage, stored at 4 °C. It showed positive and strong correlation between the ΔE values of the indicator hydrogel and total volatile basic nitrogen (TVB-N) as (R2 = 0.9573) and with pH as (R2 = 0.8686), respectively. These results clearly show that the PVA/CS/CP hydrogel could be applied for naked-eye real-time monitoring of seafood freshness in intelligent packaging.
Collapse
Affiliation(s)
- Qiuyu Zeng
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yifan Wang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ansar Javeed
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fengyun Chen
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiaxing Li
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yating Guan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Baiyu Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
5
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Synthesis of cellulose nanofiber/polysiloxane-polyurea composite materials with self-healing and reprocessing properties. Int J Biol Macromol 2023; 227:203-213. [PMID: 36549607 DOI: 10.1016/j.ijbiomac.2022.12.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Inspired by the self-recoverability ability of organisms, various self-healing materials have been developed. However, most reinforced fillers are faced with the problem that mechanical strength and self-healing efficiency of materials cannot be improved simultaneously. Here we first prepared new polysiloxane-polyurea (PDMS-PU) and used it as matrix resin to prepare cellulose nanofiber (CNF)/PDMS-PU composite materials with high mechanical properties. CNFs increased the tensile strength of PDMS-PU by 38.87 % and CNF/PDMS-PU composite materials maintained the great bending resistance, transparency and reprocessing properties of PDMS-PU. Moreover, the introduction of CNFs did not reduce the self-healing efficiency of PDMS-PU, and PDMS-PU containing disulfide bonds with CNF content of 1 % (CNF/PDMS-IPDI-S-1 %) with healing efficiency of 95.58 %, and the tensile strength after three recycling processing was still as high as 92.55 % of the original. CNFs reinforced PDMS-PU composite materials are expected to replace PDMS materials in advanced engineering fields that require high strength durability and good formability.
Collapse
|
7
|
Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, Sanchez de Val JEM. The Relationship of Rheological Properties and the Performance of Silk Fibroin Hydrogels in Tissue Engineering Application. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Tanpichai S, Boonmahitthisud A, Soykeabkaew N, Ongthip L. Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydr Polym 2022; 286:119192. [DOI: 10.1016/j.carbpol.2022.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
|
9
|
Tanpichai S, Phoothong F, Boonmahitthisud A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep 2022; 12:8920. [PMID: 35618796 PMCID: PMC9134984 DOI: 10.1038/s41598-022-12688-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cellulose, the most abundant biopolymer on Earth, has been widely attracted owing to availability, intoxicity, and biodegradability. Environmentally friendly hydrogels were successfully prepared from water hyacinth-extracted cellulose using a dissolution approach with sodium hydroxide and urea, and sodium tetraborate decahydrate (borax) was used to generate cross-linking between hydroxyl groups of cellulose chains. The incorporation of borax could provide the superabsorbent feature into the cellulose hydrogels. The uncross-linked cellulose hydrogels had a swelling ratio of 325%, while the swelling ratio of the cross-linked hydrogels could achieve ~ 900%. With increasing borax concentrations, gel fraction of the cross-linked hydrogels increased considerably. Borax also formed char on cellulose surfaces and generated water with direct contact with flame, resulting in flame ignition and propagation delay. Moreover, the cross-linked cellulose-based hydrogels showed antibacterial activity for gram-positive bacteria (S. aureus). The superabsorbent cross-linked cellulose-based hydrogels prepared in this work could possibly be used for wound dressing, agricultural, and flame retardant coating applications.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Cellulose and Bio-Based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Farin Phoothong
- Program of Petrochemical and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anyaporn Boonmahitthisud
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
|
11
|
Su H, Wang B, Sun Z, Wang S, Feng X, Mao Z, Sui X. High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid. Carbohydr Polym 2022; 277:118878. [PMID: 34893281 DOI: 10.1016/j.carbpol.2021.118878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/15/2022]
Abstract
We have demonstrated, for the first time, high-efficient non-destructive and non-derivative dissolution of cellulose could be achieved in cryogenic aqueous phosphoric acid. Cellulose from different sources and of varying degree of polymerization from 200 (MCC) to 2200 (cotton fabric) could be dissolved completely to afford solutions containing 5 wt%-18 wt% cellulose, from which ultra-strong and tough cellulose films of tensile strength as high as 707 MPa could be obtained using water as the coagulant. These solutions can be stored at -18 °C for extended time without noticeable degradation while desired degree of polymerization is also attainable by tuning the storage conditions. The findings of this work call for renewal attention on phosphoric acid as a promising cellulose solvent for being non-toxic, non-volatile, easy to handle, and cost-effective.
Collapse
Affiliation(s)
- Hui Su
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Bijia Wang
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China.
| | - Zhouquan Sun
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Sali Wang
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Xueling Feng
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
12
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|