1
|
Wang H, Cao Y, Shen L, Wu XL, Zhao DL, Li R, Lin H. Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123775. [PMID: 39731949 DOI: 10.1016/j.jenvman.2024.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage. Notably, the CPZF catalyst with 11% ZIF-67 content (named as CPZF-11%) achieved an impressive 99.7% degradation of TCH within just 10 min under visible light and PMS activation, highlighting its superior catalytic efficiency. The study revealed that CPZF-11% exhibited excellent stability and recyclability, maintaining near 100% degradation rates even after six cycles. This catalytic performance is attributed to the synergistic effect of photogenerated electrons and PMS activation, leading to the formation of reactive oxygen species (ROS) such as sulfate radicals and singlet oxygen. The research further elucidated the degradation pathways and intermediate products through quenching experiments and electron paramagnetic resonance (EPR) analysis. The findings demonstrate the broad applicability of CPZF/Vis/PMS in various water matrices, including tap water and wastewater, underscoring its potential for real-world applications in wastewater treatment. This innovative integration of MOFs and electrospinning offers a promising strategy for developing efficient, recyclable, and high-performance catalysts for environmental remediation.
Collapse
Affiliation(s)
- Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Yuzhen Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
2
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
3
|
Shan X, Lu J, Li C, Wu Q, Li H, Yang S, Guo Y, Song Y, Li R, Tian L. Ultrasensitive solid-state electrochemiluminescence sensor based on lotus root shaped carbon fiber, CdSe QDs and Fe 3O 4 synergically amplify Ru(bpy) 32+ luminophore signal for detection of cyfluthrin. Mikrochim Acta 2024; 191:215. [PMID: 38512545 DOI: 10.1007/s00604-024-06283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10-12 to 1 × 10-6 M. The detection limit of the sensor was 3.3 × 10-13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.
Collapse
Affiliation(s)
- Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Qian Wu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Huiling Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Shuning Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| |
Collapse
|
4
|
Xu H, Hu Q, Zhao T, Zhu J, Lian Z, Jin X. Sodium carboxymethylcellulose/MXene/zeolite imidazolium framework-67-derived 3D porous carbon aerogel for high-performance asymmetric supercapacitors. Carbohydr Polym 2024; 326:121641. [PMID: 38142081 DOI: 10.1016/j.carbpol.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Herein, we propose a carbon/TiO2/Co3O4 (CTC) composite carbon aerogel with a 3D porous conductive network structure derived from sodium carboxymethylcellulose (CMC)/Mxene (Ti3C2Tx)/zeolite imidazolium framework-67 (ZIF-67). Among them, CMC is used as the carbon skeleton, which can reduce the powdering caused by volume change and improve the cycle stability. Ti3C2Tx acts as the conductive agent and dispersant for ZIF-67, exposing more reactive sites while constructing fast conductive channels to enhance electrochemical performance. The microstructure of the CTC carbon aerogel is modulated by controlling the mass ratio of Ti3C2Tx to ZIF-67, and the carbon aerogel with a mass ratio of 2:3 (CTC-2:3) is experimentally demonstrated to have the best electrochemical performance. The CTC-2:3 electrode exhibits a high specific capacitance of 481.7 F g-1 at 1 A g-1 and possesses a rate performance of 78.9 % at 10 A g-1. The assembled asymmetric supercapacitor (ASC, CTC-2:3//Ti3C2Tx) delivers an energy density of 48.4 Wh kg-1 at a power density of 699.8 W kg-1. Moreover, the ASC device maintains 85.3 % initial capacitance and 99.1 % coulombic efficiency after 10,000 GCD cycles, indicating good cycling stability. This facile design pathway provides a new insight for the development of high-performance electrode materials.
Collapse
Affiliation(s)
- Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China
| | - Qiangli Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China
| | - Tao Zhao
- China National Pulp and Paper Research Institute Co., Ltd, Sinolight Specialty Fiber Products Co., Ltd., Langfang, Hebei Province 065000, China
| | - Jingqiao Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China
| | - Zhe Lian
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
| |
Collapse
|
5
|
Yan B, Zhao W, Zhang Q, Kong Q, Chen G, Zhang C, Han J, Jiang S, He S. One stone for four birds: A "chemical blowing" strategy to synthesis wood-derived carbon monoliths for high-mass loading capacitive energy storage in low temperature. J Colloid Interface Sci 2024; 653:1526-1538. [PMID: 37804620 DOI: 10.1016/j.jcis.2023.09.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Biomass-derived carbon materials are promising electrode materials for capacitive energy storage. Herein, inspired by the hierarchical structure of natural wood, carbon monoliths built up by interconnected porous carbon nanosheets with enriched vertical channels were obtained via zinc nitrate (Zn(NO3)2)-assisted synthesis and served as thick electrodes for capacitive energy storage. Zn(NO3)2 is proved to function as expansion agent, activator, dopant, and precursor of the template. The dense and micron-scale thickness walls of wood were expanded by Zn(NO3)2 into porous and interconnected nanosheets. The pore volume and specific surface area were increased by more than 430 %. The initial specific capacitance and rate performance of the optimized carbon monolith was approximately three times that of the pristine dense carbon framework. The assembled symmetric supercapacitor possessed a high initial specific capacitance of 4564 mF cm-2 (0-1.7 V) at -40 °C. Impressively, the robust device could be cycled more than 100,000 times with little capacitance attenuation. The assembled zinc-ion hybrid capacitor (0.2-2 V) delivered a large specific capacitance of 4500 mF cm-2 at -40 °C, approximately 74 % of its specific capacitance at 25 °C. Our research paves a new avenue to design thick carbon electrodes with high capacitive performance by multifunctional Zn(NO3)2 for low-temperature applications.
Collapse
Affiliation(s)
- Bing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Qinying Kong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guoqing Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhang Q, Feng L, Liu Z, Jiang L, Lan T, Zhang C, Liu K, He S. High Rate Performance Supercapacitors Based on N, O Co-Doped Hierarchical Porous Carbon Foams Synthesized via Chemical Blowing and Dual Templates. Molecules 2023; 28:6994. [PMID: 37836840 PMCID: PMC10574032 DOI: 10.3390/molecules28196994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
N, O Co-Doped porous carbon materials are promising electrode materials for supercapacitors. However, it is still a challenge to prepare high capacitance performance N, O Co-Doped porous carbon materials with balanced pore structure. In this work, a simple chemical blowing method was developed to produce hierarchal porous carbon materials with Zn(NO3)2·6H2O and Fe(NO3)3·9H2O as the foaming agents and precursors of dual templates. Soybean protein isolate served as a self-doping carbon source. The amount of Fe(NO3)3·9H2O influenced the microstructure, element content and capacitance performance of the obtained porous carbon materials. The optimized sample CZnFe-5 with the addition of 5% Fe(NO3)3·9H2O displayed the best capacitance performance. The specific capacitance reached 271 F g-1 at 0.2 A g-1 and retained 133 F g-1 at 100 A g-1. The CZnFe-5//CZnFe-5 symmetric supercapacitors delivered a maximum energy density of 16.83 Wh kg-1 and good stability with capacitance retention of 86.33% after 40,000 cycles tests at 50 A g-1. The symmetric supercapacitors exhibited potential applications in lighting LED bulbs with a voltage of 3 V. This work provides a new strategy for the synthesis of hierarchical porous carbon materials for supercapacitors from low-cost biomass products.
Collapse
Affiliation(s)
- Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Li Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| | - Zhenlu Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| | - Longjun Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; (L.J.); (T.L.)
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.F.); (Z.L.)
| |
Collapse
|
7
|
Yang D, Xu P, Tian C, Li S, Xing T, Li Z, Wang X, Dai P. Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules 2023; 28:6377. [PMID: 37687208 PMCID: PMC10489653 DOI: 10.3390/molecules28176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.
Collapse
Affiliation(s)
- Dehong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Xu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaofan Tian
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Sen Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tao Xing
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Zhi Li
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
| | - Pengcheng Dai
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
8
|
Yan Y, Ma X, Xia Y, Feng H, Liu S, He C, Ding Y. Mechanism of highly efficient electrochemical degradation of antibiotic sulfadiazine using a layer-by-layer GNPs/PbO 2 electrode. ENVIRONMENTAL RESEARCH 2023; 217:114778. [PMID: 36368374 DOI: 10.1016/j.envres.2022.114778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
A PbO2 electrode integrating electrocatalytic and adsorptive functions was successfully fabricated by embedding layer-by-layer graphene nanoplatelets (GNPs) into β-PbO2 active layer (GNPs/PbO2) and employed as anode for high-efficient removal of sulfadiazine (SDZ). In electrochemical degradation experiments, SDZ was quickly enriched on the surface of GNPs/PbO2 film via adsorption and then oxidized by ⋅OH in-site. In terms of the electrocatalytic performance and adsorption of electrode, the optimal electrodeposition time for each β-PbO2 outer layer was 4 min (GNPs/PbO2-4). Compared with conventional PbO2 electrode, the layer-by-layer GNPs resulted in the smaller crystal size and denser surface of PbO2 electrode, thus facilitating the generation of active oxygen species. At the same time, the specific surface area, oxygen evolution potential (OEP) of the anode were enhanced and the charge-transfer resistance was reduced. For GNPs/PbO2-4 anode, the optimal conditions of electrochemical oxidation of SDZ were identified as initial pH 9, 50 mg/L of SDZ and 20 mA/cm2 of current density using response surface methodology (RSM), 98.15% of SDZ could be removed in this case. The contribution of radical oxidation and non-radical oxidation to SDZ removal was about 79% and 21%, respectively. Moreover, the reaction pathways of SDZ on the GNPs/PbO2-4 electrode involving hydroxylation, radical reaction and ring cleavage were speculated. Finally, the continuous SDZ degradation and accelerated service lifetime test suggested that the GNPs/PbO2-4 electrode was shown to be stable and repeatable, and the Pb2+ concentration was measured to ensure the safety of the treated solution. Consequently, the above findings provide an innovative way to design and prepare an effective and stable PbO2 electrode for electrochemical degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shengjue Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Cong He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Shan X, Lu J, Wu Q, Sun Z, Zhang X, Li C, Yang S, Li H, Tian L. Solid-state electrochemiluminescence sensor based on the carbon fibers derived from ZIFs-containing electrospun fibers for chlorpyrifos detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Ling C, Wu S, Dong T, Dong H, Wang Z, Pan Y, Han J. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127082. [PMID: 34488104 DOI: 10.1016/j.jhazmat.2021.127082] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfide-modified zero-valent iron (S-Fe0) is regarded as a promising method to enhance the catalytic activity of Fe0 for peroxymonosulfate (PMS) activation. However, the roles of sulfidation and the application of the sulfidation treatment method are worth to further investigation. In our study, the effects of the S/Fe ratio, Fe0 dosage, and initial pH on sulfadiazine (SDZ) removal were investigated. The characterization of S-Fe0 with SEM, XPS, contact angle and Tafel analysis confirmed that the formation of sulfur species on the Fe0 surface could enhance the catalytic performance of Fe0. S2- played the major role and SO32- played the minor role in accelerating the conversion of Fe3+ to Fe2+. EPR tests, radical quenching and quantitative determination experiments identified •OH as playing the major role and SO4•- also playing an important role in SDZ removal in S-Fe0/PMS system. Sulfidation produced no notable change in the role of •OH and SO4•-. A possible degradation pathway of SDZ was proposed. Effect of sulfidation on various sizes of Fe0 was also studied which demonstrated that the smaller sizes of Fe0 (< 8 µm) were more effective in the sulfidation method treatment. S-Fe0/PMS system also showed a good performance in removing antibiotics in natural fresh water.
Collapse
Affiliation(s)
- Chen Ling
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuai Wu
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tailu Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haifan Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhengxiao Wang
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuwei Pan
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jiangang Han
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, PR China.
| |
Collapse
|
11
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Hou C, Fu L, Wang Y, Chen W, Chen F, Zhang S, Wang J. Co-MOF-74 based Co 3O 4/cellulose derivative membrane as dual-functional catalyst for colorimetric detection and degradation of phenol. Carbohydr Polym 2021; 273:118548. [PMID: 34560960 DOI: 10.1016/j.carbpol.2021.118548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022]
Abstract
Smart nanomaterials that can simultaneously detect and eliminate contaminants in water environment are significant for health protection. To achieve such goal, Co-MOF-74 was in-situ assembled on regenerated cellulose membranes followed by calcination process, thus achieving dual-functional Co3O4/cellulose derivative membrane (Co3O4/CDM) catalyst. The Co3O4 morphology was readily controlled by further recrystallization of the deposited MOF precursor. Combining the high enrichment ability of cellulose membrane and outstanding peroxidase-active of Co3O4, the fast color reaction for phenol was accomplished within 10 min by Co3O4/CDM with the assistance of H2O2 and 4-aminoantipyrine (4-AAP). Moreover, the Co3O4/CDM also portrayed an excellent degradation property for phenol elimination via sulfate radical-advanced oxidation processes (SR-AOPs). The degradation efficiency of phenol reached 93% in 20 min, and the possible mineralization mechanism was proposed based on the XPS and LC-MS analysis. Thus, Co-MOF-74 derived Co3O4/CDM shows excellent properties in aiding the colorimetric detection and degradation of phenol in aqueous solutions.
Collapse
Affiliation(s)
- Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Linhui Fu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Wenqiang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Fang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
13
|
Pan Y, Bu Z, Li J, Wang W, Wu G, Zhang Y. Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: Efficiency, the role of sulfur species, and mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02171-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|