1
|
Zhao Y, Aru V, Wang D, Wang P, Qin P, Jiang Q, Li Z, Engelsen SB, Zhao X. Deciphering the interplay between pectin structural variability, intestinal bioavailability and gut microbiota metabolism: A review. Carbohydr Polym 2025; 360:123596. [PMID: 40399010 DOI: 10.1016/j.carbpol.2025.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/23/2025]
Abstract
Pectins are parts of fruits, vegetables and other plant-based foods in the human daily diet. They are resilient to gastric digestion but undergo fermentation primarily in the large intestine, peaking in the cecum. The depolymerization of the pectins induced by the gut microbiota generally facilitates the subsequent fermentation of sugar monomers, during which SCFAs are primarily generated to exert multiple beneficial functions. Given structural heterogeneity of pectins and intricate process of microbial metabolism, it is crucial to elucidate how the multi-scale structure of pectins impacts their gut fermentation behavior. This review delves into distinct structural domains and fine structural characteristics of pectins, describes their degradation mechanism and bioavailability in the gastrointestinal tract, and provides an overview of the associated pectinolytic enzymes, gut microbiota community, and microbial metabolites. Moreover, recent advances are summarized in the relationships between gut fermentability and various structural parameters of pectins, including molecular size, esterification degree, monosaccharides composition and molecular conformation. Furthermore, how the structural complexity of pectins influences the interplay between saccharolytic metabolism and proteolytic metabolism during microbial fermentation is proposed. This work would help to unravel the "pectin structure - gut microbiota - host health" interactions, thereby guiding the design of functional foods targeting specific microorganisms in future personalized diets.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Frederiksberg C 1958, Denmark
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qianqian Jiang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Zudi Li
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | | | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
2
|
Li S, Tan H, Yang J, Yao H, Nie X, Peng X, Liu Q, Yang W, Liu G, Nie Q, Bian S, Huang X, Yin JY, Cui SW, Nie SP. Effects of Three Homogalacturonan-Type Pectins on Mice with Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:13075-13088. [PMID: 40376805 DOI: 10.1021/acs.jafc.4c11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Pectin, a class of dietary fiber, has received increasing attention in recent years for its ameliorative effects on metabolic diseases. However, the structural variability of pectin leads to differential effects on these diseases. The intrinsic mechanism by which pectin, derived from different sources, differentially influences metabolic syndrome by interacting with gut microbiota and host metabolism remains elusive and warrants thorough investigation. To address this, we investigated the effects of HG-type pectins from apple, citrus, and pomelo on phenotypic expressions, inflammatory factors, oxidative stress, and serum hormone levels in mice with metabolic syndrome. In addition, we sought to identify pivotal bacterial species and metabolites by integrating genomics and metabolomics approaches. Our exploration also extended to the relationship between structural characteristics of pectins, gut microbiota, and metabolic syndrome. Our findings revealed that the three pectins diversely improved metabolic syndrome in mice, which correlated with gut microbiota and their beneficial metabolites. Notably, all three pectins were closely associated with Bacteroides and Bacteroides acidifaciens. Besides, the potential mediators of the therapeutic effects included Bacteroides, Lactococcus, and Lachnoclostriclum for apple pectin; Colidextribacter, Bacteroides, Lachnospiraceae_NK4A136_group, and Lachnoclostriclum for citrus pectin; and Lachnospiraceae_NK4A136_group, Bacteroides, and Mucispirillum for pomelo pectin. Metabolites such as arachidonic acid, kynurenic acid, lithocholic acid, deoxycholic acid, and indoleacetic acid, linked to these microbes, may serve as the mediators of pectin's benefits. Ultimately, the molecular weight, degree of esterification, and monosaccharide composition of pectins significantly influenced the outcomes. This study may contribute to a more nuanced understanding that can inform targeted nutritional strategies to modulate gut microbiota for metabolic syndrome management.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Hong Yao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xinke Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaomao Peng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qionglian Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Wanyu Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Guohui Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Zhao Y, Wang P, Wang D, Zhao W, Wang J, Ge Z, Liu Y, Zhao X. Gut microbiota and metabolic profile affected by pectic domains during in vitro rat fecal fermentation: A comparative study between different glycans rich in pectic monosaccharides. Carbohydr Polym 2025; 356:123365. [PMID: 40049951 DOI: 10.1016/j.carbpol.2025.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 05/13/2025]
Abstract
This study aimed to investigate in vitro rat fecal fermentation behavior of pectic polymers and glycans that constitute typical pectic fragments, i.e. homogalacturonan (HG), arabinan (AB), arabinogalactan (AG), rhamnogalacturonan (RG), and xyloglucan (XG). Results showed that galacturonic acid proportion of HG (73.85 mol%) was the highest, followed by pectin (67.99 mol%), whereas arabinose (70.23 mol%) and galactose (86.22 mol%) enriched in AB and AG, respectively. Absolute quantitative microbiome revealed that Bacteroides showed dramatic growth in RG and AG; higher absolute abundances of Bifidobacterium (5.06E+09 and 3.36E+09 copies/g feces, respectively) were found in AB and XG; Escherichia Shigella, Enterococcus, and Klebsiella were inhibited after fermentation with pectin and HG by >95 %. Untargeted metabolomics indicated that the differential metabolite in AG and RG were 7-ketodeoxycholic acid and 9,10-epoxyoctadecanoic acid, respectively, both of which were positively related to arabinose and galactose (p < 0.001). Besides, another characteristic monosaccharide, rhamnose was positively correlated with succinic acid (p < 0.05), and Parvibacter (p < 0.001). Overall, this work help to understand the interactions among pectin structure, gut microbiota and metabolites, thereby guiding the targeted design of the nutrient-directed pectins in future personalized diets.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Vegetable Postharvest Processing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
4
|
Zhang WY, Liao JS, Qi JR. Citrus endogenous components as prebiotics: Advances in extraction, digestion, mechanisms, and delivery. Food Res Int 2025; 208:116141. [PMID: 40263823 DOI: 10.1016/j.foodres.2025.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The large number of by-products during the processing of citrus fruits exert significant pressure on the environment. Citrus by-products contain a variety of bioactive compounds that promote gut health and maintain microbial homeostasis. Therefore, recycling and reuse of these by-products is considered an excellent way to reduce environmental pressure. The purification and characterization methods of bioactive compounds (such as pectin, dietary fiber, polyphenols, essential oils, and limonin) extracted from citrus by-products in recent years are summarised. Subsequently, we summarize the digestive behavior (digestion, absorption, metabolism, and excretion) of these components, focusing on the mechanisms of action through which they exert prebiotic activity. This highlights the interactions between citrus by-product bioactives and gut microbiota, as well as the health effects on the host gut. Additionally, we provide a brief overview of the delivery systems for the active ingredients based on pectin from citrus sources. The results show that extraction methods can significantly affect the composition and structure of citrus by-products, which in turn affects digestive properties and eventually leads to differences in prebiotic activity. Notably, gut microbiota plays a key role in the metabolism and bioactivity of citrus actives. Besides, the innovative embedding methods can markedly enhance their prebiotic potential. Therefore, a comprehensive understanding of the relationship between the extraction, structure, and prebiotic activity of citrus by-products, as well as their delivery methods, is essential to advancing the use of citrus by-products in human health.
Collapse
Affiliation(s)
- Wei-Yun Zhang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Li S, Peng X, Wang Z, Chen C, Li X, Nie Q, Huang X, Bian S, Yin J, Cui SW, Tan H, Nie S. Interaction between Bacteroides and HG-type pectins with different molecular weights. Int J Biol Macromol 2025; 308:142363. [PMID: 40120915 DOI: 10.1016/j.ijbiomac.2025.142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Pectins, a complex class of polysaccharides, are prominently represented by HG-chains, which are both abundant and extensively studied. Bacteroides species exhibit a remarkable ability to metabolize plant- and animal-derived polysaccharides, including the degradation of HG-type pectins through polysaccharide utilization locus (PUL). However, the effects of structurally diverse HG-type pectins on PUL expression, metabolite production, and metabolic pathways of Bacteroides remain unclear. Addressing this, this study chose HG-type pectins with different molecular weights from citrus (CP) and pomelo (PP), identified Bacteroides species capable of utilizing these pectins, studied the resulting metabolites through non-targeted metabolomics coupled with short-chain fatty acids analysis, and examined the activation of PUL and metabolic pathways by transcriptomic studies. The results showed that Bacteroides thetaiotaomicron A4 and Bacteroides caccae K9 could utilize HG-type pectins with different molecular weights. The production of propionic acid by Bacteroides thetaiotaomicron A4 was significantly affected by the molecular weight of pectins. Utilizing CP, B. thetaiotaomicron A4 enriched metabolites such as carbohydrates, amino acids, peptides, amines, and significantly enhanced pathways such as sphingolipid metabolism and drug metabolism (other enzymes) through PUL75, PUL63, and PUL55. In contrast, when using PP, B. thetaiotaomicron A4 enriched similar metabolites and further upregulated pathways related to sphingolipid metabolism and pyrimidine metabolism. The molecular weight of HG-type pectins differentially affected the expression of carbohydrate-active enzymes and metabolic pathways, resulting in different metabolite profiles. This study aims to contribute to the understanding of structure-activity relationship between pectins and gut microbiota and to inform precision nutrition strategies.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaomao Peng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Zengbo Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Huizi Tan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Xia C, Xu X, Zhang R, Su D, Jia X, Deng M, Lee YK, Zhang M, Huang F. Effects of molecular weight on simulated digestion and fecal fermentation of polysaccharides from longan pulp in vitro. Int J Biol Macromol 2025; 306:141711. [PMID: 40043979 DOI: 10.1016/j.ijbiomac.2025.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
The gastrointestinal digestion and fermentation in vitro of longan polysaccharide (LP) and its degraded products (DLP-1, DLP-4, and DLP-8) with different molecular weights (Mw) were investigated. Results indicated that four polysaccharides were only slightly degraded in the gastrointestinal digestion and mainly utilized by gut microbiota in the colon. Among them, DLP-8 with the lowest Mw was easily utilized by intestinal bacteria accompanied by the highest production of acetic and butyric acids. The DLP-8 group exhibited the best growth of beneficial bacteria including Dialister, Bifidobacterium, and Bacteroides. Correlation analysis further verified that the modulatory effect of longan polysaccharide on gut microbiota was structure-dependent, and Mw performed a key role in selectively regulating gut microbial composition. These results showed the smaller Mw longan polysaccharides were more readily fermented leading to modulation of gut microbiota in vitro.
Collapse
Affiliation(s)
- Chunmei Xia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
7
|
Huang HB, Zhu YB, Yu DX. Use of pectin-supplemented enteral nutrition in intensive care: A systematic review and meta-analysis. Clin Nutr ESPEN 2025; 68:62-70. [PMID: 40315989 DOI: 10.1016/j.clnesp.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Pectin is a water-soluble dietary fiber that has been widely used in hospitalized patients. However, there is insufficient high-quality evidence to support its use in critically ill patients. Therefore, we aimed to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of pectin-supplemented enteral nutrition (PSEN) on diarrhea and other important outcomes in this patient population. METHODS We searched PubMed, Embase, China National Knowledge Infrastructure, Wanfang, and the Cochrane database for relevant articles from inception to Oct 15, 2023. Studies were included if they focused on adult ICU patients receiving PSEN compared to controls. The primary outcome was diarrhea. We assessed study quality and performed subgroup analysis, sensitivity analysis, GRADE system and trial sequential analysis (TSA) to explore potential heterogeneity among the included studies. RESULTS Twelve trials with 1,405 patients were included. Overall, PSEN significantly reduced the risk of diarrhea (odds ratio [OR] = 0.40; 95 % CI, 0.30-0.54; P < 0.00001). This finding was confirmed in further subgroup and sensitivity analyses. Of note, PSEN significantly reduced the risk of diarrhea in patients who did not use PPIs but not in those who did. PSEN also significantly reduced infectious complications (OR = 0.43; 95 % CI, 0.26-0.70; P = 0.0007), ICU length of stay (MD = -3.59 days; 95 % CI, -7.13 to -0.05; P = 0.05), and hospital length of stay (MD = -6.79 days; 95 % CI, -10.24 to -3.34; P = 0.0001). In addition, PSEN significantly reduced intestinal intolerance symptoms (vomiting [OR = 0.27; 95 % CI, 0.15-0.48], feeding intolerance [OR = 0.39; 95 % CI, 0.22-0.68], abdominal distension [OR = 0.22; 95 % CI, 0.22-0.46] and severe constipation [OR = 0.20; 95 % CI, 0.12-0.35]) and nutrition status (shorter time to target EN amount [MD = -1.81 days; 95 % CI, -2.18 to -1.44] and prealbumin changes [MD = -1.81 days; 95 % CI, -2.18 to -1.44]) but did not affect mortality (OR = 0.86; 95 % CI, 0.56-1.33) in this patient population. TSA and sensitivity analyses confirmed the primary findings. CONCLUSIONS PSEN significantly had better feeding intolerance, and improved important clinical outcomes. Further studies with better PSEN protocol are required to validate our findings.
Collapse
Affiliation(s)
- Hui-Bin Huang
- Department of Critical Care Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yi-Bing Zhu
- Department of Critical Care Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Da-Xing Yu
- Department of Critical Care Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
8
|
Xu Q, Lv Y, Yuan X, Huang G, Guo Z, Tan J, Qiu S, Wang X, Wei C. Simulated Gastrointestinal Digestion and In Vitro Fecal Fermentation of Purified Pyracantha fortuneana (Maxim.) Li Fruit Pectin. Foods 2025; 14:1529. [PMID: 40361612 PMCID: PMC12071275 DOI: 10.3390/foods14091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Pyracantha fortuneana, an underutilized wild plant, has been found to have a high nutritional value. This study used simulated digestion and fecal fermentation models to investigate the digestive properties of the purified acidic pectin polysaccharide of Pyracantha fortuneana and its impact on the gut microbiota and metabolites. Pyracantha fortuneana polysaccharide (PFP) is mainly composed of rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara), with a molecular weight (Mw) of 851.25 kDa. Following simulated digestion, the Mw of PFP remained consistent. The reduced sugar content showed minimal change, suggesting that PFP exhibits resistance to gastrointestinal digestion and can effectively reach the colon. Following fecal fermentation, the molecular weight, monosaccharide, and carbohydrate contents of PFP decreased, while the short-chain fatty acid content increased. This suggests that PFP is susceptible to degradation by microorganisms and can be metabolized into acetic acid and n-butyric acid, contributing to the regulation of intestinal health. Meanwhile, PFP promotes the reproduction of beneficial bacteria such as Bacteroides, Dialister, and Dysgonomonas, inhibits the growth of harmful bacteria like Proteus, and generates metabolites such as thiamine, leonuriside A, oxoadipic acid, S-hydroxymethylglutathione, and isonicotinic acid, which exert beneficial effects on human health. These results indicate that PFP has great potential in regulating the gut microbiota and generating beneficial metabolites to promote intestinal functional health and can be used as a prebiotic to prevent diseases by improving intestinal health.
Collapse
Affiliation(s)
- Qingrui Xu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yiyi Lv
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaohui Yuan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Guichun Huang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Zhongxia Guo
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jiana Tan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaodan Wang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Zhang X, Cui Y, Zhang X, Zhang Z, Yu Q, Li T, Li S. Preparation and structure-function relationships of homogalacturonan-rich and rhamnogalacturonan-I rich pectin: A review. Int J Biol Macromol 2025; 304:140775. [PMID: 39924012 DOI: 10.1016/j.ijbiomac.2025.140775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Pectin has multiple functions and is widely used in the food industry. It is an acidic heteropolysaccharide found in most plants, mainly consisting of two regions: homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). HG and RG-I rich pectin have unique structures and functional properties, which can be obtained through specific preparation methods. Some emerging physics assisted preparation strategies are more advantageous for preparing specific structures with higher purity and efficiency than traditional preparation methods. HG and RG-I rich pectin have unique processing and functional properties, but sometimes a proper ratio of HG and RG-I pectin may have better effects than individuals. Therefore, it is speculated that there may be some synergistic effects between the two pectin structures. A comprehensive understanding of the preparation, structure, and functional relationship of HG and RG-I rich pectin is crucial for the efficient preparation of pectin with targeted functions.
Collapse
Affiliation(s)
- Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qianhui Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
10
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2025; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Keung WS, Zhang WH, Luo HY, Chan KC, Chan YM, Xu J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr Polym 2025; 352:123209. [PMID: 39843110 DOI: 10.1016/j.carbpol.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Natural polysaccharides have complex structural properties and a wide range of health-promoting effects. Accumulating evidence suggests that the effects are significantly mediated through fermentation by gut microbiota. In recent years, the relationship between the structures of natural polysaccharides and their properties in regulating gut microbiota has garnered significant research attention as researchers attempt to precisely understand the role of gut microbiota in the bioactivities of natural polysaccharides. Progress in this niche, however, remains limited. In this review, we first provide an overview of current research investigating this structure-property relationship. We then present a detailed correlation analysis between the structural characteristics of 159 purified natural polysaccharides and their effects on gut microbiota reported over the past two decades. The analysis revealed that diverse gut bacteria show specific correlations with the molecular weight, glycosidic linkages, and monosaccharide composition of natural polysaccharides. Multifaceted molecular mechanisms, including carbohydrate binding, enzymatic degradation, and cross-feeding, were proposed to be collectively involved in these correlations. Finally, we offer our perspective on future studies to further improve our understanding of the relationship between polysaccharide structure and gut microbiota regulation.
Collapse
Affiliation(s)
- Wing-Shan Keung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
12
|
Xiong F, Li HY, Yao HL, Ou YH, Chan ASC, Wang SP, Li HJ, Lan WJ. A galacturonic acid-rich polysaccharide from Citrus medica 'fingered' alleviated the dextran sulfate sodium-induced ulcerative colitis. Int J Biol Macromol 2025; 294:139506. [PMID: 39761893 DOI: 10.1016/j.ijbiomac.2025.139506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Ulcerative colitis (UC) treatment is often limited by adverse reactions and high recurrence rates, highlighting the need for safer, more effective therapies. Citrus medica 'Fingered' (C. medica), known for its anti-inflammatory properties, remains underexplored, particularly its polysaccharide components. This study investigated the intestinal protective effects of C. medica polysaccharides extracted via hot water (HWE-CP) and characterized a primary fraction's structure. The dextran sulfate sodium -induced UC mouse model was used to evaluate the intestinal protective activity of HWE-CP, and one of the main fractions was characterized using HPGPC, HPAEC, FTIR, TGA, methylation, and NMR. The results indicated HWE-CP alleviated the UC symptoms in mice by reducing weight loss and disease activity, increasing colon length, minimizing intestinal mucosal damage, strengthening the intestinal barrier, lowering inflammatory factor expression, and balancing gut flora. The primary fraction, HWE-CP-2A, had a molecular weight of 38.28 kDa and comprise Rha, Ara, Gal, and GalA with molar rations of 1.57: 4.46: 2.50: 91.47. Its main chain was →[4)-α-D-GalAp-6-O-CH3(1]5 → 3,4)-α-D-GalAp-6-O-CH3, with α-D-GalAp-(1→) linked to the main chain via the C-3 bond. The polymerization degree was around 25. This study provides evidence for the structural with anti-UC relationships of HWE-CP and lays the foundation for the development of its related products.
Collapse
Affiliation(s)
- Feng Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hong-Yi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Hong-Liang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Yang-Hui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Macau Centre for Research and Development in Chinese Medicine, University of Macau, 999078, Macao
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Zhao T, Liu S, Shuai Y, Zhang X, Chen M, Pei S, Duan Y, Wang S, Lu Y, Wang Z, Gong G, Huang L. Influence of in vitro pectin fermentation on the human fecal microbiome and O-glycosylation of HT29-MTX cells. Int J Biol Macromol 2025; 284:137710. [PMID: 39581420 DOI: 10.1016/j.ijbiomac.2024.137710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Pectin is a structurally complex heteropolysaccharide that affects intestinal microorganisms and mucin O-glycans. The present study employed an in vitro model to investigate dynamic changes in microbiota during pectin fermentation. Residual pectin fragments arising from its fermentation were applied to HT29-MTX cells to study the effect of pectin structure on mucin O-glycosylation. Prevotella, Bacteroides, and Parabacteroides were found to preferentially degrade galactose, arabinose, and on the rhamnogalacturonan RG-I side chain region and methyl esterification groups of pectin. Bifidobacterium, Enterococcus, Megamonas, and Dorea metabolized the galacturonic HG region on pectin to produce butyrate. All pectin fragments were found to up-regulate total O-glycans (1.55-2.73 fold) and neutral O-glycans (1.11-1.49 fold) on HT29-MTX mucins. The large HG fragment (81.04 kDa) increased significantly the amount of non-fucosylated glycans (by 2.46-fold); whereas the small HG fragment (16.02 kDa) promoted fucosylated (by 9.25 fold), and especially di-fucosylated O-glycans. Collectively, these results demonstrate that gut microorganisms degrade pectin fragments in the following order of utilization: RG-I, RG-II, and HG. The small fragment of HG improves the expression of fucosylated O-glycans in HT29-MTX cells, mainly owing to an increase in di-fucosylated O-glycans.
Collapse
Affiliation(s)
- Tong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Sining Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutong Shuai
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xinyi Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Min Chen
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Sijie Pei
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxi Duan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Mi S, Shen M, Liu Z, Yu Y, Shan H, Cao J, McClements DJ, Cao C, Xu X, Yuan B. A glutenin protein corona ameliorated TiO 2 nanoparticle-induced gut barrier dysfunction and altered the gut microbiota composition. Food Funct 2024; 15:12101-12117. [PMID: 39575505 DOI: 10.1039/d4fo04355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Previously, we found that glutenin proteins formed a protein corona around food-grade titanium dioxide (TiO2) nanoparticles. The protein corona would alter the gastrointestinal behavior and biological activity of the nanoparticles. Here, in this study, the influence of protein corona formation on the adverse effects of TiO2 nanoparticles on gut barrier function using in vitro and in vivo assays and the potential mechanism were investigated and elucidated. Our findings showed that the presence of the protein corona mitigated gut barrier injury caused by TiO2 nanoparticles while increasing gene expression for tight junction proteins; for example, in vitro gastrointestinal digestion and fermentation experiments showed that the glutenin-TiO2 protein corona was relatively stable to digestion and influenced the composition of the gut microbiota. Specifically, the glutenin-TiO2 protein corona increased the relative abundance of beneficial bacteria such as Bifidobacterium, Parasutterella, and Bacillus while reducing the relative abundance of harmful bacteria like Streptococcus. Moreover, the formation of the protein corona reduced the cytotoxicity of the TiO2 nanoparticles to Caco-2 and RAW264.7 cells. Mechanistically, we found that the presence of the glutenin-TiO2 protein corona decreased the production of reactive oxygen species and increased the mitochondrial membrane potential in both Caco-2 and RAW264.7 cells compared to TiO2 nanoparticles alone. This study provides valuable mechanistic insights into the potential biological effects of protein corona formation around food inorganic nanoparticles in the food industry.
Collapse
Affiliation(s)
- Shichao Mi
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Mingyang Shen
- College of Life Science, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Zimo Liu
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | - Honghong Shan
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jin Cao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | - Biao Yuan
- Department of Food Quality and Safety, National Research and Development Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
15
|
Yang Y, Zhou Y, Wang L, Ai C, Fu Y, Song S. Photoelectrocatalytic degradation of hyaluronic acid and regulation effects of its degradation products on gut microbiota in vitro. Int J Biol Macromol 2024; 283:137813. [PMID: 39557272 DOI: 10.1016/j.ijbiomac.2024.137813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/19/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
Hyaluronic acid (HA) has multiple biological activities which are closely related to its molecular weight. In the present study, the photoelectrocatalytic method was established for HA degradation and the influences of bias potentials, H2O2 additions and reaction times on the degradation results were investigated to optimize the reaction condition. Moreover, a series of analysis methods, such as FT-IR and NMR were used to analyze chemical compositions of the degradation products, revealing that photoelectrocatalytic degradation did not damage the structural blocks of HA obviously. Then 11 oligosaccharides with polymerization degrees from 2 to 8 in the degradation products were identified by mass spectroscopy and their reducing ends were all GlcA or AraA. In addition, in the photoelectrocatalytic degradation of HA, ·OH were identified as the most influential among the produced free radicals, and it could be proposed that ·OH specifically targeted the anomeric carbon of GlcA, resulting in the disaggregation of polysaccharides chain. Furthermore, the results of in vitro fermentation with fecal microbiota demonstrated that HA and its degradation products regulated microbiota structure discriminately, indicating their possible different outcomes as nutritional supplements and agents.
Collapse
Affiliation(s)
- Yunning Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Youxian Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Linlin Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinghuan Fu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Zhao Y, Wang Y, Ma Q, Wang D, Jiang Q, Wang P, Ge Z, Wang J, Qin P, Zhao X. Different microbiota modulation and metabolites generation of five dietary glycans during in vitro gut fermentation are determined by their monosaccharide profiles. Food Res Int 2024; 196:115011. [PMID: 39614537 DOI: 10.1016/j.foodres.2024.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 12/01/2024]
Abstract
Dietary oligo- and polysaccharides modulate gut microbiota and thus exert prebiotic activity, which is determined by their heterogeneous structure. To explore the correlations between monosaccharide profile and microbial community, simulated gut fermentation of different glycans, including arabinan (ArB), galactooligosaccharide (GOS), arabinogalactan (ArG), rhamnogalacturonan (RhG), and xyloglucan (XyG) that are characterized by typical sugar residues were performed. Results showed that RhG displayed high contents of galacturonic acid (344.79 mg/g), rhamnose (171.70 mg/g), and galactose (151.77 mg/g), and the degradation ratio of them after fermentation was 73.87 %, 84.96 %, and 87.11 %, respectively. Meanwhile, the relative abundance of glycan-degrading bacteria Bacteroides in the RhG was boosted from 4 h (4.97 %) to 48 h (36.45 %). Butyrate-generating bacteria Megasphaera (56.69 %) and Bifidobacterium (28.02 %) are dominant genera in the ArB, which generated the highest concentration of carbohydrate-metabolite (94.58 mmol/L) in terms of acetate, propionate, butyrate and valerate, followed by the ArG (87.36 mmol/L). However, ammonia generation of the ArG increased rapidly, representing the highest content of protein-metabolite (66.36 mmol/L) including ammonia, isobutyrate, and isovalerate. As compared, metabolites generated from protein and carbohydrates grow steadily at a low level during the XyG fermentation. Correlation analysis further indicated that Bacteroides was positively correlated with propionate (p < 0.001), galacturonic acid (p < 0.001), and rhamnose (p < 0.05), while Bifidobacterium has positive correlation with butyrate and arabinose (p < 0.01). Overall, monosaccharides composition in the different oligo- and polysaccharides induces distinct responses of the dominant microbiota and thus modulates the subsequent fermentation metabolites of carbohydrate and protein, promoting a deep understanding of the structure-fermentation relationship of dietary glycans.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Qiancheng Ma
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Qianqian Jiang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China.
| |
Collapse
|
17
|
Fan H, Li R, Zhang Y, Xu X, Pan S, Liu F. Effect of H 2O 2/ascorbic acid degradation and gradient ethanol precipitation on the physicochemical properties and biological activities of pectin polysaccharides from Satsuma Mandarin. Int J Biol Macromol 2024; 280:135843. [PMID: 39306161 DOI: 10.1016/j.ijbiomac.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this work, three degraded polysaccharides (DMPP-40, DMPP-60, DMPP-80) were successfully obtained by H2O2/ascorbic acid degradation and gradient ethanol precipitation from Satsuma mandarin peel pectin (MPP), and their physicochemical properties, antioxidant and prebiotic activities were investigated. The molecular weight of MPP, DMPP-40, DMPP-60, DMPP-80 were determined to be 336.83 ± 10.57, 18.93 ± 0.54, 26.07 ± 0.83 and 8.71 ± 0.27 kDa, respectively. The ethanol concentration significantly affected the physicochemical properties of DMPPs. DMPP-60 showed the highest yield (69.07 %) and uronic acid content (64.85 %), DMPP-80 showed the lowest molecular weight (8.71 kDa), and the composition and proportion of monosaccharides of DMPPs were significantly different. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (1H NMR) confirmed that DMPPs exhibited similar functional groups, while X-ray diffraction (XRD) indicated that DMPP-40 possessed some crystallographic sequences. Scanning electron microscopy (SEM) images directly verified the fragmented structure and reduced surface area of DMPPs. Besides, the H2O2/ascorbic acid treatment could obviously reduce the apparent viscosity and thermal stability of MPP. Meanwhile, the results of bioactivity assay showed that DMPPs possessed better antioxidant activity and probiotics pro-proliferative effects compared with MPP. DMPP-80 could significantly inhibit lipopolysaccharides (LPS)-stimulated production of inflammatory factors (including nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in RAW264.7 cells. Results suggest that the H2O2/ascorbic acid combined with gradient ethanol precipitation has potential applications in degradation and separation of MPP to improve its biological activities.
Collapse
Affiliation(s)
- Hekai Fan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
Yu YH, Wu LB, Liu X, Zhao LC, Li LQ, Jin MY, Yu X, Liu F, Li Y, Li L, Yan JK. In vitro simulated digestion and fermentation characteristics of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel. Food Chem 2024; 452:139606. [PMID: 38744127 DOI: 10.1016/j.foodchem.2024.139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Luo-Bang Wu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Li-Chao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
19
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Huang J, Wang H, Chen H, Liu Z, Zhang X, Tang H, Wei S, Zhou W, Yang X, Liu Y, Zhao L, Yuan Q. Structural analysis and in vitro fermentation characteristics of an Avicennia marina fruit RG-I pectin as a potential prebiotic. Carbohydr Polym 2024; 338:122236. [PMID: 38763717 DOI: 10.1016/j.carbpol.2024.122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal β-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-β-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.
Collapse
Affiliation(s)
- Jinwen Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huiqi Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaqun Chen
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zidong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuedong Zhang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hao Tang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shiying Wei
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Qingxia Yuan
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
21
|
Xia C, Zhang R, Jia X, Dong L, Ma Q, Zhao D, Kun Lee Y, Sun Z, Huang F, Zhang M. In vitro human gut microbiota fermentation of litchi pulp polysaccharides as affected by Lactobacillus pre-treatment. Food Chem 2024; 445:138734. [PMID: 38401310 DOI: 10.1016/j.foodchem.2024.138734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
In this study, litchi polysaccharides were obtained from unfermented or fermented pulp by Lactobacillus fermentum (denoted as LP and LPF, respectively). The differences between LP and LPF in the colonic fermentation characteristics and modulatory of gut microbiota growth and metabolism were investigated with an in vitro fecal fermentation model. Results revealed that the strategies of gut bacteria metabolizing LP and LPF were different and LPF with lower molecular weight (Mw) was readily utilized by bacteria. The monosaccharide utilization sequence of each polysaccharide was Ara > Gla > GalA > GlcA ≈ Glu ≈ Man. Moreover, LPF promoted stronger proliferation of Bifidobacterium, Megamonas, Prevotella, and Bacteroides and higher SCFAs production (especially acetic and butyric acids) than LP. Correlation analysis further revealed that Mw could represent an essential structural feature of polysaccharides associated with its microbiota-regulating effect. Overall, Lactobacillus fermentation pre-treatment of litchi pulp promoted the fermentation characteristics and prebiotic activities of its polysaccharide.
Collapse
Affiliation(s)
- Chunmei Xia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zhida Sun
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
22
|
Huo Z, Li J, Li X, Xiao H, Lin Y, Ma Y, Li J, Yang H, Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int J Biol Macromol 2024; 271:132580. [PMID: 38788871 DOI: 10.1016/j.ijbiomac.2024.132580] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Li H, He W, Xu S, Wang R, Ge S, Xu H, Shan Y, Ding S. Grafting chlorogenic acid enhanced the antioxidant activity of curdlan oligosaccharides and modulated gut microbiota. Food Chem X 2024; 21:101075. [PMID: 38205160 PMCID: PMC10776644 DOI: 10.1016/j.fochx.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, the effects of grafting chlorogenic acid (CA) on the antioxidant and probiotic activities of curdlan oligosaccharides (CDOS) were investigated. CDOS with degrees of polymerization of 3-6 was first obtained by degradation of curdlan with hydrogen peroxide and then grafted with CA using a free radical-mediated method under an ultrasonication-assisted Fenton system. The thermal stability and antioxidant ability of CDOS were enhanced after grafting with CA. In vitro fermentation, supplementation of CDOS-CA stimulated the proliferation of Prevotella and Faecalibacterium while inhibiting the growth of harmful microbiota. Notably, the concentration of total short-chain fatty acids and the relative abundance of beneficial bacteria markedly increased after fermentation of CDOS-CA, indicating that CA grafting could improve the probiotic activity of CDOS. Overall, the covalent binding of CDOS and CA could enhance the antioxidant and probiotic activities of CDOS, suggesting potential improvements in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| | - Wenjiang He
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou, 510520, China
| | - Saiqing Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai Ge
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Haishan Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Yang Shan
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shenghua Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| |
Collapse
|
24
|
Rodríguez-García A, Arroyo A, García-Vicente R, Morales ML, Gómez-Gordo R, Justo P, Cuéllar C, Sánchez-Pina J, López N, Alonso R, Puig N, Mateos MV, Ayala R, Gómez-Garre D, Martínez-López J, Linares M. Short-Chain Fatty Acid Production by Gut Microbiota Predicts Treatment Response in Multiple Myeloma. Clin Cancer Res 2024; 30:904-917. [PMID: 38109212 PMCID: PMC10870002 DOI: 10.1158/1078-0432.ccr-23-0195] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The gut microbiota plays important roles in health and disease. We questioned whether the gut microbiota and related metabolites are altered in monoclonal gammopathies and evaluated their potential role in multiple myeloma and its response to treatment. EXPERIMENTAL DESIGN We used 16S rRNA sequencing to characterize and compare the gut microbiota of patients with monoclonal gammopathy of undetermined significance (n = 11), smoldering multiple myeloma (n = 9), newly diagnosed multiple myeloma (n = 11), relapsed/refractory multiple myeloma (n = 6), or with complete remission (n = 9). Short-chain fatty acids (SCFA) were quantified in serum and tested in cell lines. Relevant metabolites were validated in a second cohort of 62 patients. RESULTS Significant differences in alpha- and beta diversity were present across the groups and both were lower in patients with relapse/refractory disease and higher in patients with complete remission after treatment. Differences were found in the abundance of several microbiota taxa across disease progression and in response to treatment. Bacteria involved in SCFA production, including Prevotella, Blautia, Weissella, and Agathobacter, were more represented in the premalignant or complete remission samples, and patients with higher levels of Agathobacter showed better overall survival. Serum levels of butyrate and propionate decreased across disease progression and butyrate was positively associated with a better response. Both metabolites had antiproliferative effects in multiple myeloma cell lines. CONCLUSIONS We demonstrate that SCFAs metabolites and the gut microbiota associated with their production might have beneficial effects in disease evolution and response to treatment, underscoring its therapeutic potential and value as a predictor.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Andrés Arroyo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rubén Gómez-Gordo
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Pablo Justo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Clara Cuéllar
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - José Sánchez-Pina
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Nieves López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rafael Alonso
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Noemí Puig
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María-Victoria Mateos
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Rosa Ayala
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Department of Physiology, Medicine School, Universidad Complutense, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
25
|
Zhao Y, Bi J, Zhao X, Engelsen SB, Wu X, Ma Y, Guo Y, Du Q, Yi J. New insight into pectic fractions of cell wall: Impact of extraction on pectin structure and in vitro gut fermentation. Int J Biol Macromol 2023; 253:127515. [PMID: 37865353 DOI: 10.1016/j.ijbiomac.2023.127515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 09/16/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Pectic polysaccharides modulate gut fermentation ability, which is determined by structural characteristics. In this work, apple pectins were extracted by HCl (HAEP), NaOH (AEP), cellulase (EAEP), and in parallel cell wall pectic fractions were sequentially extracted by water (WEP), chelator (CEP) and NaOH (NEP). The aim is to comprehensively compare the impact of extraction on pectin structure and gut fermentation behavior. Results showed that high content of galacturonic acid (90.65 mol%) and large molecular weight (675 kg/mol) were detected in the HAEP. Molecular morphology of the HAEP presented high linearity, while AEP, EAEP and WEP exhibited compact filamentous structures with highly branched patterns. The AEP was characterized by high yield (33.1 g/100 g d.b.), moderate molecular weight (304 kg/mol) and large extent of rhamnogalacturonan-I region (24.88 %) with low degree of branching (1.77). After in vitro simulated gut fermentation for 24 h, total content of short-chain fatty acid (SCFA) generated with the AEP supplement increased to 36.8 mmol/L, followed by EAEP, HAEP and WEP (25.2, 24.2 and 20.3 mmol/L, respectively). Meanwhile, WEP simultaneously produced the highest ammonia content (22.4 mmol/L). This investigation suggests that the fermentation of AEP produces more beneficial SCFA and less ammonia, thus indicating a better gut fermentation property.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Søren Balling Engelsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuxia Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qianqian Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
26
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Sun Y, Hu Y, Hu D, Xiao Z, Wang H, Huang J, Mao J. Microbiota regulation by different Akebia trifoliata fruit juices upon human fecal fermentation in vitro. Food Sci Biotechnol 2023; 32:2093-2104. [PMID: 37860745 PMCID: PMC10581979 DOI: 10.1007/s10068-023-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 10/21/2023] Open
Abstract
Three different Akebia trifoliata fruit juices were prepared, and their effects on modulation of human fecal microbiota were elucidated through an anaerobic fermentation in vitro. Results indicated that the introduction of inoculatedly-fermented Akebia trifoliata fruit juice promoted short-chain fatty acids productivity. Fecal microbiota analysis demonstrated up-regulations for abundances of Limosilactobacillus, Megamonas, Bifidobacterium, and Escherichia_Shigella, and down-regulations for numbers of Bacteroides, Prevotella_9, Parasutterella, and Sutterella. Correlation analysis confirmed relationships among sample components, short-chain fatty acids productivity, and microbial abundances, suggesting that sugars and organic acids stimulated growth of Actinobacteriota and suppressed proliferation of Proteobacteria, thus uncovering the underlying mechanism for the better ability of inoculatedly-fermented Akebia trifoliata fruit juice to regulate microbiota structure. Besides, clusters of orthologous groups of proteins analysis indicated that metabolite biosynthesis, energy metabolism, homeostasis maintenance and other physiological functions were ameliorated. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01308-y.
Collapse
Affiliation(s)
- Yuhao Sun
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Yaru Hu
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Danqi Hu
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Zhuqian Xiao
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Hongpeng Wang
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Jianwei Mao
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| |
Collapse
|
28
|
Malinowska AM, Majcher M, Hooiveld GJ, Przydatek H, Szaban M, Kurowiecka A, Schmidt M. Experimental Capacity of Human Fecal Microbiota to Degrade Fiber and Produce Short-Chain Fatty Acids Is Associated with Diet Quality and Anthropometric Parameters. J Nutr 2023; 153:2827-2841. [PMID: 37573016 DOI: 10.1016/j.tjnut.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) are considered beneficial to human health. The associations between bacterial capacity to produce SCFAs, diet, and health are not fully understood. OBJECTIVE We aimed to evaluate the capacity of human fecal microbiota to produce SCFAs and to metabolize soluble and insoluble fiber and to study its associations with human diet, anthropometric parameters, and carbohydrate and lipid metabolism. METHODS A cross-sectional study was carried out with 200 adult participants. Diet was evaluated using food records. Capacity to produce acetate, butyrate, and propionate and to degrade soluble fiber were assessed in an ex vivo experiment where fecal samples were inoculated in a pectin-containing broth. Fecal β-glucosidase activity was measured to assess potential to degrade insoluble fiber. RESULTS The main dietary determinants of high capacity to metabolize fiber were high intake of vegetables, fruits, nuts, and seeds. After adjusting analyses for confounders, glucose and lipid parameters were not significantly associated with any of the studied microbial capacities, but the capacity to produce propionic acid was significantly associated with hip circumference (β = -0.018, P = 0.044), which was seen especially in people eating healthy. CONCLUSIONS We confirmed that high intake of fiber-rich products is positively associated with the capacity of fecal microbiota to degrade soluble and insoluble dietary fiber and that people eating healthy food might benefit from enhanced microbial capacity to produce propionic acid.
Collapse
Affiliation(s)
- Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
| | - Malgorzata Majcher
- Department of Food Chemistry and Instrumental Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Guido Jej Hooiveld
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hanna Przydatek
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Marta Szaban
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Kurowiecka
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
29
|
Cao W, Guan S, Yuan Y, Wang Y, Mst Nushrat Y, Liu Y, Tong Y, Yu S, Hua X. The digestive behavior of pectin in human gastrointestinal tract: a review on fermentation characteristics and degradation mechanism. Crit Rev Food Sci Nutr 2023; 64:12500-12523. [PMID: 37665605 DOI: 10.1080/10408398.2023.2253547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pectin is widely spread in nature and it develops an extremely complex structure in terms of monosaccharide composition, glycosidic linkage types, and non-glycosidic substituents. As a non-digestible polysaccharide, pectin exhibits resistance to human digestive enzymes, however, it is easily utilized by gut microbiota in the large intestine. Currently, pectin has been exploited as a novel functional component with numerous physiological benefits, and it shows a promising prospect in promoting human health. In this review, we introduce the regulatory effects of pectin on intestinal inflammation and metabolic syndromes. Subsequently, the digestive behavior of pectin in the upper gastrointestinal tract is summarized, and then it will be focused on pectin's fermentation characteristics in the large intestine. The fermentation selectivity of pectin by gut bacteria and the effects of pectin structure on intestinal microecology were discussed to highlight the interaction between pectin and bacterial community. Meanwhile, we also offer information on how gut bacteria orchestrate enzymes to degrade pectin. All of these findings provide insights into pectin digestion and advance the application of pectin in human health.
Collapse
Affiliation(s)
- Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Stuttgart, Germany
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Bender C, Stoll D, Huch M, Weinert C, Dötsch A, Dräger H, Keller J, Kulling S, Bunzel M. Time-dependent fermentation of different structural units of commercial pectins with intestinal bacteria. Carbohydr Polym 2023; 308:120642. [PMID: 36813335 DOI: 10.1016/j.carbpol.2023.120642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Many of the proposed health-related properties of pectins are based on their fermentability in the large intestine, but detailed structure-related studies on pectin fermentation have not been reported so far. Here, pectin fermentation kinetics were studied with a focus on structurally different pectic polymers. Therefore, six commercial pectins from citrus, apple, and sugar beet were chemically characterized and fermented in in vitro fermentation assays with human fecal samples over different periods of time (0 h, 4 h, 24 h, 48 h). Structure elucidation of intermediate cleavage products showed differences in fermentation speed and/or fermentation rate among the pectins, but the order in which specific structural pectic elements were fermented was comparable across all pectins. Neutral side chains of rhamnogalacturonan type I were fermented first (between 0 and 4 h), followed by homogalacturonan units (between 0 and 24 h) and, at last, the rhamnogalacturonan type I backbone (between 4 and 48 h). This indicates that fermentation of different pectic structural units might take place in different sections of the colon, potentially affecting their nutritional properties. For the formation of different short-chain fatty acids, mainly acetate, propionate, and butyrate, and the influence on microbiota, there was no time-dependent correlation regarding the pectic subunits. However, an increase of members of the bacterial genera Faecalibacterium, Lachnoclostridium, and Lachnospira was observed for all pectins.
Collapse
Affiliation(s)
- Caroline Bender
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dominic Stoll
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Melanie Huch
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Christoph Weinert
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Andreas Dötsch
- Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Hannah Dräger
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabine Kulling
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
31
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
32
|
Zhao R, Zhang C, Yu L, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function. Polymers (Basel) 2023; 15:2103. [PMID: 37177246 PMCID: PMC10180753 DOI: 10.3390/polym15092103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Hyaluronan (HA) has various biological functions and is used extensively as a dietary supplement. Previous studies have shown that the probiotic effects of polysaccharides are closely associated with their molecular properties. The intestinal microbiota has been demonstrated to degrade HA; however, the regulatory effects of different molecular weights (MW) of HA on gut microbiota and metabolites are unknown. In the present study, we performed in vitro fermentation of human-derived feces for three MWs of HA (HA1, 32.3 kDa; HA2, 411 kDa; and HA3, 1510 kDa) to investigate the differences in the fermentation properties of HA with different MWs. We found that gut microbiota can utilize all HAs and, consequently, produce large amounts of short-chain fatty acids (SCFAs). In addition, we showed that all three HA MWs promoted the growth of Bacteroides, Parabacteroides, and Faecalibacterium, with HA1 being more effective at promoting the growth of Bacteroides. HAs have various regulatory effects on the structure and metabolites of the gut microbiota. Spearman's correlation analysis revealed that alterations in gut microbiota and their metabolites were significantly correlated with changes in metabolic markers. For instance, HA1 enriched α-eleostearic acid and DL-3-aminoisobutyric acid by regulating the abundance of Bacteroides, and HA3 enriched Thymidin by regulating Faecalibacterium. Collectively, the fermentation properties of HA vary across MW, and our results provide insights into the potential association between the MW of HA and its fermentation characteristics by the gut microbiota. These findings provide insights into the influence of the gut microbiota and HAs on the health of the host.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Yang T, Fan X, Li D, Zhao T, Wu D, Liu Z, Long D, Li B, Huang X. High Antioxidant Capacity of Lacticaseibacillus paracasei TDM-2 and Pediococcus pentosaceus TCM-3 from Qinghai Tibetan Plateau and Their Function towards Gut Modulation. Foods 2023; 12:foods12091814. [PMID: 37174356 PMCID: PMC10178559 DOI: 10.3390/foods12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Probiotic supplementation is a key therapeutic strategy for promoting gut health and maintaining gut homeostasis by modulating functional microbiota. In this study, we isolated two lactic acid bacteria (LAB) strains, Pediococcus pentosaceus TCM-3 and Lacticaseibacillus paracasei TDM-2, from Qinghai-Tibetan plateau, and evaluated their probiotic properties and antioxidant bioactivity. In which, TDM-2 had higher T-AOC activity than either TCM-3 or LGG (4.10 μmol/mL vs. 3.68 and 3.53 μmol/mL, respectively, p < 0.05). These strains have shown high antioxidant activity compared to the LAB strains and were found to be acid and bile salt tolerant, confronting the safety issues of antibiotic resistance and the capability of surviving in simulated gastric and intestinal juices. In vitro fermentation experiments with human gut microbiota revealed significant differences in microbial community composition between samples supplemented with TCM-3 and TDM-2 and those without. The addition of these two strains resulted in an enrichment of beneficial taxa, such as the Pediococcus, Lactobacillus, and Clostridium_sensu_strictos at the genus level, and Firmicutes and Proteobacteria at the phylum level. Notably, the TCM-3 group exhibited higher short-chain fatty acid production than the TDM-2 group and untreated controls (acetic acid at 12 h: 4.54 mmol L-1 vs. 4.06 mmol L-1 and 4.00 mmol L-1; acetic acid at 24 h: 4.99 mmol L-1 vs. 4.90 mmol L-1 and 4.82 mmol L-1, p < 0.05). These findings demonstrate that LAB supplementation with high antioxidant capacity and probiotic properties can promote gut health by modulating functional microbiota and is enriching for beneficial taxa. Our study provides guidance for therapeutic strategies that use novel LAB strains to maintain gut homeostasis and functional microbiota modulation.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xueni Fan
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730033, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
| |
Collapse
|
34
|
Cao Z, Liu Z, Zhang N, Bao C, Li X, Liu M, Yuan W, Wu H, Shang H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int J Biol Macromol 2023; 240:124422. [PMID: 37068539 DOI: 10.1016/j.ijbiomac.2023.124422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.
Collapse
Affiliation(s)
- Zihang Cao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Chenguang Bao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Li
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
35
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
36
|
Feng S, Yi J, Ma Y, Bi J. The role of amide groups in the mechanism of acid-induced pectin gelation: A potential pH-sensitive hydrogel based on hydrogen bond interactions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
37
|
Fang F, He Y, Zhao J, Zhang Y, Chen C, He H, Wu Q, Hu M, Nie S, Xie M, Hu J. Effects of boiling and steaming process on dietary fiber components and in vitro fermentation characteristics of 9 kinds of whole grains. Food Res Int 2023; 164:112328. [PMID: 36737921 DOI: 10.1016/j.foodres.2022.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Whole grains (WGs) are considered as the representative sources of dietary fiber (DF). Thermal treatments can change the properties of DF, and potentially affecting the gut microbiota as well as human health. In this study, DF content and in vitro fermentation characteristics of 9 kinds of WGs (highland barley, barley, buckwheat, proso millet, quinoa, sorghum, coix seed, foxtail millet, and oats) after boiling and steaming treatments were compared. It was found that boiling and steaming treatments could both increase DF content in these grains, except for barley and foxtail millet. Processed WGs could regulate beneficial microbial genus, such as Bifidobacterium, Prevotella, Megamona and Megasphaera. Oats, quinoa, highland barley, and buckwheat after boiling treatment can produce more total short-chain fatty acids (SCFAs) than steaming treatment (p < 0.05), while barley, foxtail millet and coix seed showed opposite results. This study can provide data support for the design of WGs diets and the development of WGs products which are beneficial for gut health.
Collapse
Affiliation(s)
- Fang Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuxin He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jutang Zhao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Quanyong Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mengwei Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
38
|
Wu J, Yu C, Shen S, Ren Y, Cheng H, Xiao H, Liu D, Chen S, Ye X, Chen J. RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2160-2172. [PMID: 36648986 DOI: 10.1021/acs.jafc.2c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the fermentation characteristics of high rhamnogalacturonan I pectic polysaccharides (RGI) and free-radical degraded RGI (DRGI) were evaluated by a human fecal batch-fermentation model, and their structural properties were also investigated. As a result, the Mw of RGI decreased from 246.8 to 11.6 kDa, and the branches were broken dramatically. Fermentation showed that RGI degraded faster and produced more acetate and propionate than DRGI. Both of them reduced the Firmicutes/Bacteroidetes ratio and promoted the development of Bacteroides, Bifidobacterium, and Lactobacillus, bringing benefits to the gut ecosystem. However, the composition and metabolic pathways of the microbiota in RGI and DRGI were different. Most of the dominant bacteria of RGI (such as [Eubacterium]_eligens_group) participated in carbohydrate utilization, leading to better performance in glucolipid metabolism and energy metabolism. This work elucidated that large molecular weight matters in the gut microbiota modulatory effect of RGI-type pectic polysaccharides in vitro.
Collapse
Affiliation(s)
- Jiaxiong Wu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- NingboTech University, Ningbo315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
39
|
Zou X, Cai J, Xiao J, Zhang M, Jia X, Dong L, Hu K, Yi Y, Zhang R, Huang F. Purification, Characterization and Bioactivity of Different Molecular-Weight Fractions of Polysaccharide Extracted from Litchi Pulp. Foods 2023; 12:194. [PMID: 36613408 PMCID: PMC9818915 DOI: 10.3390/foods12010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Litchi polysaccharides are a kind of macromolecular polymers with various biological activities and a wide range of molecular weights. In this study, two separate fractions, with average molecular weights of 378.67 kDa (67.33%) and 16.96 kDa (6.95%), which were referred to as LP1 and LP2, respectively, were separated using an ultrafiltration membrane. Their physicochemical properties, and immunomodulatory and prebiotic activity were compared. The results revealed that LP2 contained more neutral sugar, arabinose, galactose and rhamnose, but less uronic acid, protein, mannose and glucose than LP1. Compared with LP1, LP2 possessed higher solubility and lower apparent viscosity. LP2 exhibited stronger stimulation on macrophage secretion of NO, TNF-α and IL-6, as well as better proliferation of Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus casei and Bifidobacterium adolescentis. These results suggest that an ultrafiltration membrane might be used to prepare a highly-active polysaccharide fraction from litchi pulp that may be used for food or drug development.
Collapse
Affiliation(s)
- Xiaoqin Zou
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaxin Cai
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaxi Xiao
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingwei Zhang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuchao Jia
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lihong Dong
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yang Yi
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ruifen Zhang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fei Huang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
40
|
Guan S, Hua X, Wang Z, Yuan Y, Yang R. Performance of ultrahigh methoxylated pectin as the delivery material in the simulated in vitro digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Yu W, Yang Y, Chen H, Zhou Q, Zhang Y, Huang X, Huang Z, Li T, Zhou C, Ma Z, Wu Q, Lin H. Effects of dietary chitosan on the growth, health status and disease resistance of golden pompano (Trachinotus ovatus). Carbohydr Polym 2023; 300:120237. [DOI: 10.1016/j.carbpol.2022.120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
42
|
Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. Int J Biol Macromol 2022; 223:663-672. [PMID: 36368360 DOI: 10.1016/j.ijbiomac.2022.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Zizyphus jujube polysaccharide was extracted with hot water, ultrahigh pressure, deep eutectic solvent (DES) and ultrahigh pressure-assisted DES. Comparative analyses were conducted on the yield, physicochemical properties and prebiotic activity of four polysaccharides (JP-H, JP-U, JP-D and JP-UD). The yield of JP-UD (10.42 %) was 3.3 times that of JP-H (3.12 %), and its sugar content was the highest. JP-UD possessed the lowest Mw, while JP-H possessed the highest. Four JPs were acidic pyranose and mainly composed of galacturonic acid, arabinose and galactose. NMR results demonstrated that they contained not only similar glycosidic linkage but also the specific glycosidic linkage of →4)-α-D-Glcp-(l→ appeared in JP-U and JP-UD, the esterified units of GalA and CONH2 group appeared in JP-D and JP-UD, and the Terminal β-D-Galp and →4)-α-GalpA-(1→ appeared in JP-UD. JPs showed different proliferation effects on four lactobacillus strains, among which JP-UD exhibited the strongest prebiotic activity. Zizyphus jujube polysaccharides have great potential for application in the functional food and medical industry.
Collapse
|
43
|
The Sustainability of Sweet Potato Residues from Starch Processing By-Products: Preparation with Lacticaseibacillus rhamnosus and Pediococcus pentosaceus, Characterization, and Application. Foods 2022; 12:foods12010128. [PMID: 36613345 PMCID: PMC9818312 DOI: 10.3390/foods12010128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The effects of Lacticaseibacillus rhamnosus and Pediococcus pentosaceus on the nutritional-functional composition, structure, in vitro saliva-gastrointestinal digestion, and colonic fermentation behaviors of fermented sweet potato residues (FSPR) were investigated. The FSPR was obtained under the condition of a solid-to-liquid ratio of 1/10, inoculation quantity of 1.5%, mixed bacteria ratio 1:1, fermentation time of 48 h, and fermentation temperature of 37 °C. The FSPR showed higher contents of soluble dietary fiber (15.02 g/100 g), total polyphenols content (95.74 mg/100 g), lactic acid (58.01 mg/g), acetic acid (1.66 mg/g), volatile acids (34.26%), and antioxidant activities. As exhibited by FTIR and SEM, the higher peak intensity at 1741 cm-1 and looser structure were observed in FSPR. Further, the FSPR group at colonic fermentation time of 48 h showed higher content of acetic acid (1366.88 µg/mL), propionic acid (40.98 µg/mL), and butyric acid (22.71 µg/mL), which were the metabolites produced by gut microbiota using dietary fiber. Meanwhile, the abundance of Bifidobacterium and Lacticaseibacillus in the FSPR group was also improved. These results indicated that FSPR potentially developed functional foods that contributed to colonic health.
Collapse
|
44
|
Castellarin I, Higuera Coelho R, Zukowski E, Ponce NMA, Stortz C, Gerschenson LN, Fissore EN. Effect of ultrasonic pretreatments on the characteristics of pectin extracted from
Salustiana orange
cultivated in Argentina. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ivana Castellarin
- Departamento de Industrias‐ITAPROQ (CONICET‐UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
| | - Ricardo Higuera Coelho
- Departamento de Industrias‐ITAPROQ (CONICET‐UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Agencia Nacional de Promoción Científica y Tecnológica ANPCyT Ciudad Autónoma de Buenos Aires Argentina
| | - Enzo Zukowski
- Departamento de Industrias‐ITAPROQ (CONICET‐UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Agencia Nacional de Promoción Científica y Tecnológica ANPCyT Ciudad Autónoma de Buenos Aires Argentina
| | - Nora Marta Andrea Ponce
- Departamento de Química Orgánica‐CIHIDECAR, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET Ciudad Autónoma de Buenos Aires Argentina
| | - Carlos Stortz
- Departamento de Química Orgánica‐CIHIDECAR, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET Ciudad Autónoma de Buenos Aires Argentina
| | - Lía Noemí Gerschenson
- Departamento de Industrias‐ITAPROQ (CONICET‐UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET Ciudad Autónoma de Buenos Aires Argentina
| | - Eliana Noemí Fissore
- Departamento de Industrias‐ITAPROQ (CONICET‐UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
45
|
A homogalacturonan from Lonicera japonica Thunb. disrupts angiogenesis via epidermal growth factor receptor and Delta-like 4 associated signaling. Glycoconj J 2022; 39:725-735. [PMID: 36306024 DOI: 10.1007/s10719-022-10088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 01/09/2023]
Abstract
A homogeneous polysaccharide named as LJW2F2 was extracted and purified from the flowers of Lonicera japonica Thunb. Structural characteristic indicated that LJW2F2 was a homogalacturonan composed of α-1,4-D-galacturonic acid with a molecular weight of 7.2 kDa. Previous investigation suggested that homogalacturonan might impede angiogenesis, however the mechanism is still vague. Here we reported that LJW2F2 significantly disrupted capillary-like tube formation of human microvascular endothelia cells (HMEC-1) on matrigel as well as the cells migration. Mechanism study revealed that LJW2F2 might inactivate phosphorylation of epidermal growth factor receptor (EGFR), subsequently suppress Raf, mitogen-activated protein kinase (MEK) and extracellular-related kinase (ERK) phosphorylation. Moreover, LJW2F2 markedly decreased the expression of Notch1 and Delta-like ligand 4 (Dll4). Therefore, our results suggested that LJW2F2 might be a potential angiogenesis inhibitor via disturbing multiple signaling pathways.
Collapse
|
46
|
Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins. Foods 2022; 11:foods11233877. [PMID: 36496685 PMCID: PMC9739951 DOI: 10.3390/foods11233877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within Lachnospiraceae in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.
Collapse
|
47
|
Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107958] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Jian S, Zhang L, Ding N, Yang K, Xin Z, Hu M, Zhou Z, Zhao Z, Deng B, Deng J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front Microbiol 2022; 13:1044986. [PMID: 36504773 PMCID: PMC9733673 DOI: 10.3389/fmicb.2022.1044986] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) act as a biological system converting organic waste into protein and fat with great potential application as pet food. To evaluate the feasibility of BSFL as a protein and fat source, 20 healthy beagle dogs were fed three dietary treatments for 65 days, including (1) a basal diet group (CON group), (2) a basal diet that replaced 20% chicken meal with defatted black soldier fly larvae protein group (DBP group), and (3) a basal diet that replaced 8% mixed oil with black soldier fly larvae fat group (BF group). This study demonstrated that the serum biochemical parameters among the three groups were within the normal range. No difference (p > 0.05) was observed in body weight, body condition score, or antioxidant capacity among the three groups. The mean IFN-γ level in the BF group was lower than that in the CON group, but there was no significant difference (p > 0.05). Compared with the CON group, the DBP group had decreasing (p < 0.05) apparent crude protein and organic matter digestibility. Furthermore, the DBP group had decreasing (p < 0.05) fecal propionate, butyrate, total short-chain fatty acids (SCFAs), isobutyrate, isovalerate, and total branched-chain fatty acids (BCFAs) and increased (p < 0.05) fecal pH. Nevertheless, there was no difference (p > 0.05) in SCFAs or BCFAs between the CON and BF groups. The fecal microbiota revealed that Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were significantly enriched in the DBP group, and Terrisporobacter and Ralstonia were significantly enriched in the BF group. The fecal metabolome showed that the DBP group significantly influenced 18 metabolic pathways. Integrating biological and statistical correlation analysis on differential fecal microbiota and metabolites between the CON and DBP groups found that Lachnoclostridium, Clostridioides, and Enterococcus were positively associated with biotin. In addition, Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were positively associated with niacinamide, phenylalanine acid, fumaric acid, and citrulline and negatively associated with cadavrine, putrescine, saccharopine, and butyrate. In all, 20% DBP restrained the apparent CP and OM digestibility, thereby affecting hindgut microbial metabolism. In contrast, 8% BF in the dog diet showed no adverse effects on body condition, apparent nutrient digestibility, fecal microbiota, or metabolic profiles. Our findings are conducive to opening a new avenue for the exploitation of DBP and BF as protein and fat resources in dog food.
Collapse
Affiliation(s)
- Shiyan Jian
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ning Ding
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Kang Yang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Minhua Hu
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhidong Zhou
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhihong Zhao
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Baichuan Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Yuan Q, Lv K, Huang J, Sun S, Fang Z, Tan H, Li H, Chen D, Zhao L, Gao C, Liu Y. Simulated digestion, dynamic changes during fecal fermentation and effects on gut microbiota of Avicennia marina (Forssk.) Vierh. fruit non-starch polysaccharides. Food Chem X 2022; 16:100475. [PMID: 36263243 PMCID: PMC9574768 DOI: 10.1016/j.fochx.2022.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Avicennia marina fruit non-starch polysaccharides (AMFPs) were obtained and analyzed. Dynamic changes of AMFPs during simulated digestion and fermentation were revealed. AMFPs were not digested by the digestive juice but were utilized by gut microbiota. Beneficial microbiota, such as Mistuokella, and Prevotella were obviously increased. Harmful bacteria were obviously inhibited and SCFA levels were obviously promoted.
Grey mangrove (Avicennia marina (Forssk.) Vierh.) fruit is a traditional folk medicine and health food consumed in many countries. In this study, its polysaccharides (AMFPs) were obtained and analyzed by chemical and instrumental methods, with the results indicating that AMFPs consisted of galactose, galacturonic acid, arabinose, and rhamnose in a molar ratio of 4.99:3.15:5.38:1.15. The dynamic changes in AMFPs during the digestion and fecal fermentation processes were then investigated. The results confirmed that AMFPs were not depolymerized by gastric acid and various digestive enzymes. During fermentation, 56.05 % of the AMFPs were utilized by gut microbiota. Galacturonic acid, galactose, and arabinose from AMFPs, were mostly consumed by gut microbiota. AMFPs obviously decreased harmful bacteria and increased some beneficial microbiota, including Megasphaera, Mistuokella, Prevotella, and Megamonas. Furthermore, AMFPs obviously increased the levels of various short-chain fatty acids. These findings suggest that AMFPs have potential prebiotic applications for improving gut health.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jinwen Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Shujing Sun
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ziyu Fang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hongjie Tan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| |
Collapse
|
50
|
Influence of starch with different degrees and order of gelatinization on the microstructural and mechanical properties of pectin cryogels: A potential pore morphology regulator. Int J Biol Macromol 2022; 222:533-545. [PMID: 36174855 DOI: 10.1016/j.ijbiomac.2022.09.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022]
Abstract
The applications of cryogels are defined by their porous morphology as well as mechanical properties. To achieve efficient regulation of porous properties for pectin cryogels, we selected starch as a potential polysaccharide regulator. Pectin/starch composite cryogels with different degrees of gelatinization were formulated, and two ways of starch gelatinization were considered: starch gelatinization occurred before or after pectin crosslinking during forming the hydrogel network. The results showed that high gelatinized starch (73.8 %-100.0 %) rendered pectin cryogels with denser pore morphology and higher mechanical strength. The pore diameter transferred from 160-200 μm to 40-60 μm with the degree of gelatinization, while the total porosity decreased by about 15 % and the specific surface area increased by about 100 m2/g. When starch gelatinization occurred before pectin crosslinking, the hydrogen bond interactions between gelatinized starch and pectin were formed to accelerate the gelation rate of the pectin Ca2+-dependent network. When gelatinization occurred after pectin crosslinking, the pre-formed pectin network delayed the breakdown of the starch crystalline structure during gelatinization. The qualitative regulation of the pore morphology in pectin cryogels by incorporating starches with varying degrees of gelatinization was confirmed.
Collapse
|