1
|
Babaei-Ghazvini A, Vafakish B, Acharya B. Chiral nematic cellulose nanocrystal films: Sucrose modulation for structural color and dynamic behavior. Int J Biol Macromol 2025; 296:139540. [PMID: 39798762 DOI: 10.1016/j.ijbiomac.2025.139540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces. XRD results indicated a decrease in crystallinity from 84.5 % to 15.6 %, linked to the disruption of CNC alignment by sucrose. Mechanical testing showed reduced tensile strength (138 MPa to 35 MPa) and Young's modulus (1.634 GPa to 70 MPa) with higher sucrose content. Notably, over the storage time, films with 21 % sucrose exhibited dynamic structural coloration caused by localized sucrose recrystallization, leading to pitch shifts and color transitions. These findings demonstrate the tunable optical and mechanical properties of CNC-sucrose films, positioning them as promising materials for sustainable food packaging and responsive coatings.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
2
|
Goyal M, Hassanpour M, Carneiro AAB, Moghaddam L, Shi C, Song X, Zhang Z. Lignin nanoparticles enable and improve multiple functions of photonic films derived from cellulose nanocrystals. J Colloid Interface Sci 2024; 680:492-504. [PMID: 39577246 DOI: 10.1016/j.jcis.2024.11.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Flexible photonic materials derived from cellulose nanocrystals (CNCs) have attracted significant attention, particularly in multifunctional sensors, intelligent detection, and anti-counterfeiting applications. However, the major bottleneck with traditional CNC photonic materials is the provision of flexibility and multifunctional properties which often comes with compromises in optical properties. To address these challenges, we incorporated organosolv lignin nanoparticles (LNPs) and polyethylene glycol (PEG) into CNC films. LNPs were produced from sugarcane bagasse using various solvents, resulting in nanoparticles with distinct structural and chemical properties, such as different sizes and surface chemistries. The addition of LNPs and PEG to CNC films led to enhanced flexibility, strong iridescence, improved thermal stability and superior UV-blocking performance. Interestingly, the intercalation of LNPs significantly improved the strain at break by 89.6 % with slight increase of 7.7 % and 23.1 % in tensile strength and young's modulus respectively. Additionally, distinguished UV-blockage performance of up to 99.9 % in the UVB region and 94 % in the UVA region was also achieved in CNC-LNP-PEG films. The films exhibited varying responses to several organic solvents and HCl gas with reversible color changes. These responses were attributed to the distinct surface chemistries of the LNPs, which influenced their interactions with the CNC matrix through mechanisms such as hydrogen bonding and hydrophobic interactions. This study highlights the potential of CNC-LNP-PEG composite films for advanced applications in chemical safety and anti-counterfeiting measures, demonstrating the importance of composite formulation and processing conditions in achieving desirable properties.
Collapse
Affiliation(s)
- Mansi Goyal
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| | - Morteza Hassanpour
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| | - Andreia Abadia Borges Carneiro
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| | - Lalehvash Moghaddam
- School of Chemistry and Physics, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| | - Changrong Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| |
Collapse
|
3
|
Oliveira JPD, Silva IBD, Costa JDSS, Oliveira JSD, Oliveira EL, Coutinho ML, Almeida MEFD, Landim LB, Silva NMCD, Oliveira CPD. Bibliometric study and potential applications in the development of starch films with nanocellulose: A perspective from 2019 to 2023. Int J Biol Macromol 2024; 277:133828. [PMID: 39084985 DOI: 10.1016/j.ijbiomac.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to perform a bibliometric analysis of starch films with nanocellulose, using the Scopus database and VOSviewer and Bibliometrix software. A total of 258 documents were identified between 2019 and 2023, reflecting a growing interest in research, particularly in journals such as the International Journal of Biological Macromolecules, Polymers, and Carbohydrate Polymers. The most common terms were "starch" (349 occurrences), "cellulose" (207), and "tensile strength" (175). China (58 articles), Brazil (38), and India (33) led scientific production, with authors like Ilyas (13 articles) and Sapuan (10) at the forefront. Approximately 41.7 % of the studies used corn starch. The analysis revealed that 66 % of the studies investigated films with cellulose nanofibrils (CNF), 32 % with cellulose nanocrystals (CNC), and 2 % with bacterial nanocellulose (CB). The majority of studies (94.1 %) used the casting method for film production. Additionally, 35.44 % focused on reinforcing films with nanocellulose, while 7 % developed blends with other biopolymers. About 59.44 % examined the performance of starch films for food packaging, 11.25 % explored practical applications in various foods. Furthermore, 7.94 % incorporated active agents to improve antioxidant and antimicrobial properties, 1.30 % investigated active packaging. Moreover, 2.36 % explored the use of films in materials engineering, and 2.36 % explored biomedical potential. Only 0.40 % evaluated the impact of films on wastewater treatment. The analysis highlights the potential of starch films with nanocellulose, demonstrating their diverse applications and the growing interest in the field.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus Lima Coutinho
- Department of Chemistry, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Lucas Brito Landim
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | | |
Collapse
|
4
|
Cheng Q, Geng H, Zhang C, Zhang X, Tian Y, Cui J. Interfacial Assembly of Free-Standing Polymer-Phenolic Films for Antibacterial and Antiultraviolet Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48607-48618. [PMID: 39186593 DOI: 10.1021/acsami.4c10314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report a facile interfacial assembly strategy for the preparation of flexible polyphenol-based films for antibacterial and antiultraviolet applications. The free-standing films can be instantaneously formed via spraying tannic acid (TA) at the surface of carboxymethyl chitosan (CMCS) solutions. Compared with the traditional casting-evaporation procedure on solid substrates, the liquid interfacial assembly method for the construction of free-standing films is rapid and facile, which prevents the interface separation procedure from the substrates. The thickness and mechanical properties of the films are well controlled by changing the incubation time. The low-field nuclear magnetic resonance was used to analyze the water distributions inside the films and to distinguish the cross-linked structure of CMCS-TA films with different thicknesses, revealing the dynamics of the film formation process. Importantly, the films exhibit outstanding antibacterial and antiultraviolet properties, which are promising in the applications of wound dressings. This study provides a new avenue for the assembly of flexible free-standing films with multifunctionality via a facile and low-cost fabrication process.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Chunyue Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Babaei-Ghazvini A, Vafakish B, Patel R, Falua KJ, Dunlop MJ, Acharya B. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. Int J Biol Macromol 2024; 258:128834. [PMID: 38128804 DOI: 10.1016/j.ijbiomac.2023.128834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The escalating demand for sustainable materials has propelled cellulose into the spotlight as a promising alternative to petroleum-based products. As the most abundant organic polymer on Earth, cellulose is ubiquitous, found in plants, bacteria, and even a unique marine animal-the tunicate. Cellulose polymers naturally give rise to microscale semi-crystalline fibers and nanoscale crystalline regions known as cellulose nanocrystals (CNCs). Exhibiting rod-like structures with widths spanning 3 to 50 nm and lengths ranging from 50 nm to several microns, CNC characteristics vary based on the cellulose source. The degree of crystallinity, crucial for CNC properties, fluctuates between 49 and 95 % depending on the source and synthesis method. CNCs, with their exceptional properties such as high aspect ratio, relatively low density (≈1.6 g cm-3), high axial elastic modulus (≈150 GPa), significant tensile strength, and birefringence, emerge as ideal candidates for biodegradable fillers in nanocomposites and functional materials. The percolation threshold, a mathematical concept defining long-range connectivity between filler and polymer, governs the effectiveness of reinforcement in nanocomposites. This threshold is intricately influenced by the aspect ratio and molecular interaction strength, impacting CNC performance in polymeric and pure nanocomposite materials. This comprehensive review explores diverse aspects of CNCs, encompassing their derivation from various sources, methods of modification (both physical and chemical), and hybridization with heterogeneous fillers. Special attention is devoted to the hybridization of CNCs derived from tunicates (TCNC) with those from wood (WCNC), leveraging the distinct advantages of each. The overarching objective is to demonstrate how this hybridization strategy mitigates the limitations of WCNC in composite materials, offering improved interaction and enhanced percolation. This, in turn, is anticipated to elevate the reinforcing effects and pave the way for the development of nanocomposites with tunable viscoelastic, physicochemical, and mechanical properties.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Matthew J Dunlop
- Tunistrong Technologies Incorporated, 7207 Route 11, Wellington, Charlottetown, PE C0B 20E, Canada.
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
6
|
Kojima K, Kosugi N, Jintoku H, Kobashi K, Okazaki T. Preparing a liquid crystalline dispersion of carbon nanotubes with high aspect ratio. Beilstein J Org Chem 2024; 20:52-58. [PMID: 38230355 PMCID: PMC10790658 DOI: 10.3762/bjoc.20.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
We successfully prepared a surfactant-assisted carbon nanotube (CNT) liquid crystal (LC) dispersion with double-walled CNTs (DWCNTs) having a high aspect ratio (≈1378). Compared to dispersions of single-walled CNTs (SWCNTs) with lower aspect ratio, the transition concentrations from isotropic phase to biphasic state, and from biphasic state to nematic phase are lowered, which is consistent with the predictions of the Onsager theory. An aligned DWCNT film was prepared from the DWCNT dispersion by a simple bar-coating method. Regardless of the higher aspect ratio, the order parameter obtained from the film is comparable to that from SWCNTs with lower aspect ratios. This finding implies that precise control of the film formation process, including a proper selection of substrate and deposition/drying steps, is crucial to maximize the CNT-LC utilization.
Collapse
Affiliation(s)
- Keiko Kojima
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Nodoka Kosugi
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Hirokuni Jintoku
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kazufumi Kobashi
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiya Okazaki
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| |
Collapse
|
7
|
Zhu B, Zhong Y, Wang D, Deng Y. Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods. Foods 2023; 12:4491. [PMID: 38137296 PMCID: PMC10742553 DOI: 10.3390/foods12244491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.
Collapse
Affiliation(s)
| | | | | | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (B.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
8
|
Zhang Y, Chen G, Qin W, Men X, Liu L, Zhang Y, Li Q, Wang L, Zhang H. In Situ Fermentation of an Ultra-Strong, Microplastic-Free, and Biodegradable Multilayer Bacterial Cellulose Film for Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44354-44363. [PMID: 37697629 DOI: 10.1021/acsami.3c10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cellulose-based food packaging has a significant importance in reducing plastic pollution and also ensuring our safety from microplastics. Nonetheless, lignocellulose necessitates sophisticated physical and chemical treatments to be fashioned into a satisfactory food packaging, thus leading to extra consumption and operations. Here, we present a gel-assisted biosynthesis approach for the in situ production of bacterial cellulose (BC) that can be directly applied to food packaging. Komagataeibacter sucrofermentans is homogeneously distributed in the gellan gum (GG)-assisted culture system, and the BC/GG film with an even surface is attained. Then, the BC/GG film is integrated with an antibacterial layer containing a quaternary ammonium chitosan microsphere (QM) through an in situ spray biosynthesis method. The resulting BC/GG/QM multilayer film combines the barrier properties and antibacterial activity. The method for in situ biosynthesis is green, efficient, and convenient to endow the multilayer film with excellent barrier capacity (1.76 g·mm·m-2·d-1·KPa-1 at RH 75%), high mechanical properties (strength 462 MPa), and antibacterial activity (>90% against Escherichia coli O157:H7 and Staphylococcus aureus). In terms of food preservation, the overall performance of the BC/GG/QM multilayer film is better than the commercial petroleum-based film and lignocellulose-derived film. This work proffers a novel strategy to produce a more beneficial and eco-friendly multilayer film via in situ biosynthesis, which manifests great utility in the field of food packaging.
Collapse
Affiliation(s)
- Yibing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guoqiang Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao Men
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yashu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qingtao Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
10
|
Xie H, Wang Y, Ouyang K, Zhang L, Hu J, Huang S, Sun W, Zhang P, Xiong H, Zhao Q. Development of chitosan/rice protein hydrolysates/ZnO nanoparticles films reinforced with cellulose nanocrystals. Int J Biol Macromol 2023; 236:123877. [PMID: 36870658 DOI: 10.1016/j.ijbiomac.2023.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
In the present work, the composite films were obtained by the solution casting method from chitosan and rice protein hydrolysates, reinforced with cellulose nanocrystals (CNC) of different contents (0 %, 3 %, 6 % and 9 %). The influence of different CNC loadings on the mechanical, barrier and thermal properties was discussed. SEM showed the formation of intramolecular interactions between the CNC and film matrices, leading to more compact and homogeneous films. These interactions had a positive influence on the mechanical strength properties, which was reflected in higher breaking force of 4.27 MPa. The elongation dwindled from 132.42 % to 79.37 % with increasing CNC levels. The linkages formed between the CNC and film matrices reduced the water affinity, leading to a reduction in their moisture content, water solubility and water vapor transmission. Thermal stability of the composite films was also improved in the presence of CNC, by increasing maximum degradation temperature from 311.21 to 325.67 °C with increasing CNC contents. The strongest DPPH inhibition of the film was 45.42 %. The composite films exhibited the highest inhibition zone diameter against E. coli (12.05 mm) and S. aureus (12.48 mm), and the hybrid of CNC and ZnO nanoparticles exhibited stronger antibacterial activity than their single existent forms. The present work shows the possibility of obtaining CNC-reinforced films with improved mechanical, thermal and barrier properties.
Collapse
Affiliation(s)
- Hexiang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Yufeng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Liqiong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Juwu Hu
- Jiangxi Academy of Sciences, Jiangxi 330029, China
| | | | - Weiwei Sun
- Hongsheng Beverage Group, Zhejiang 311200, China
| | - Peng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
11
|
Babaei-Ghazvini A, Acharya B. The effects of aspect ratio of cellulose nanocrystals on the properties of all CNC films: tunicate and wood CNCs. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
12
|
Babaei-Ghazvini A, Acharya B. Crosslinked poly (vinyl alcohol) composite reinforced with tunicate, wood, and hybrid cellulose nanocrystals: Comparative physicochemical, thermal, and mechanical properties. Int J Biol Macromol 2023; 227:1048-1058. [PMID: 36460242 DOI: 10.1016/j.ijbiomac.2022.11.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The development of sustainable and biodegradable composites has gained increasing attention in recent years. Effective interaction and adhesion between polymers and fillers are crucial. In this study, the effect of different aspect ratios of cellulose nanocrystals (CNCs) and their hybrid within a crosslinked poly (vinyl alcohol) (PVA) nanocomposite has been investigated to develop biodegradable materials. The physicochemical, thermal, and mechanical properties of the specimens have been studied. SEM images indicate that the addition of CNC reduced the porosity of the films. The XPS results confirmed the significant formation of covalent bonds for all composites except those reinforced with wood-CNC, which showed a lower amount of crosslinking and CC formation. EDS maps reveals that the dispersity of the CNCs could be different depending on the aspect ratio of the CNCs. Results from the solubility in water (SW) tests indicated that the use of hybrid-CNC in a crosslinked system decreased the SW significantly. The crosslinking and addition of CNC to the PVA composite led to improved mechanical properties. Elongation at break (EB) decreased significantly for the crosslinked hybrid-CNC nanocomposite. Overall, the results of this study indicate that the aspect ratio of CNCs as fillers in nanocomposites may contribute to their physicochemical, mechanical, and thermal properties for the development of biodegradable materials.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
13
|
Pasquier E, Mattos BD, Koivula H, Khakalo A, Belgacem MN, Rojas OJ, Bras J. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30236-30245. [PMID: 35727693 PMCID: PMC9815692 DOI: 10.1021/acsami.2c07579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 ± 1 cm3/m2·day) and water vapor (WVTR of 6 ± 1 g/m2·day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.
Collapse
Affiliation(s)
- Eva Pasquier
- Université
Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering), LGP2, F-38000 Grenoble, France
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, Aalto, FIN-00076 Espoo, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, Aalto, FIN-00076 Espoo, Finland
| | - Hanna Koivula
- Department
of Food and Nutrition and Helsinki Institute of Sustainability Science, University of Helsinki, Agnes Sjöobergin katu 2, P.O. Box 66, FIN-00014 Helsinki, Finland
| | - Alexey Khakalo
- VTT
Technical Research Centre of Finland Ltd., Tietotie 4E, P.O. Box 1000, FIN-02044 Espoo, Finland
| | - Mohamed Naceur Belgacem
- Université
Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering), LGP2, F-38000 Grenoble, France
- Institut
Universitaire de France (IUF), F-75000 Paris, France
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, Aalto, FIN-00076 Espoo, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Departments
of Chemistry and Departments of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Julien Bras
- Université
Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering), LGP2, F-38000 Grenoble, France
| |
Collapse
|
14
|
Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response. Carbohydr Polym 2022; 296:119920. [DOI: 10.1016/j.carbpol.2022.119920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
|
15
|
Babaei-Ghazvini A, Acharya B. Influence of cellulose nanocrystal aspect ratio on shear force aligned films: Physical and mechanical properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
17
|
Wang Y, Fan J, Zhao H, Song X, Ji Z, Xie C, Chen F, Meng Y. Biomimetic Robust Starch Composite Films with Super-Hydrophobicity and Vivid Structural Colors. Int J Mol Sci 2022; 23:ijms23105607. [PMID: 35628421 PMCID: PMC9145899 DOI: 10.3390/ijms23105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The starch composite films (SCFs) will be one of the best alternative packaging materials to petroleum based plastic films, which mitigates white pollution and energy consumption. However, weak mechanical stability, water resistance, and dyeability has hindered the application of SCFs. Herein, a bioinspired robust SCFs with super-hydrophobicity and excellent structural colors were prepared by fiber-reinforcement and assembling SiO2/Polydimethylsiloxane (PDMS) amorphous arrays on the surface of SCFs. The properties of the designed SCFs were investigated by various methods including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), a tensile test, contact angle (CA) test, and an optical test. The results showed that the obtained SCFs possessed a higher tensile strength (55.17 MPa) attributed to the formed abundant hydrogen bonds between the molecular chains of the starch, cellulose fiber, and polyvinyl alcohol. Benefiting from the nanostructure with rough surface which were modified by materials with low surface free energy, the contact angle and sliding angle of the film reached up to 154° and 2°, respectively. The colors which were produced by the constructive interference of the coherent scattered light could cover all of the visible regions by tuning the diameters of the SiO2 nanoparticles. The strategy in the present study not only reinforces the mechanical strength and water resistance of SCFs but also provides an environmentally friendly way to color the them, which shows unprecedented application potential in packaging materials of the starch composite films.
Collapse
Affiliation(s)
- Yateng Wang
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianru Fan
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Hao Zhao
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Zhe Ji
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Congxia Xie
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yao Meng
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
18
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
19
|
Senthilkumaran A, Babaei-Ghazvini A, Nickerson MT, Acharya B. Comparison of Protein Content, Availability, and Different Properties of Plant Protein Sources with Their Application in Packaging. Polymers (Basel) 2022; 14:polym14051065. [PMID: 35267887 PMCID: PMC8915110 DOI: 10.3390/polym14051065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Plant-based proteins are considered to be one of the most promising biodegradable polymers for green packaging materials. Despite this, the practical application of the proteins in the packaging industry on a large scale has yet to be achieved. In the following review, most of the data about plant protein-based packaging materials are presented in two parts. Firstly, the crude protein content of oilseed cakes and meals, cereals, legumes, vegetable waste, fruit waste, and cover crops are indexed, along with the top global producers. In the second part, we present the different production techniques (casting, extrusion, and molding), as well as compositional parameters for the production of bioplastics from the best protein sources including sesame, mung, lentil, pea, soy, peanut, rapeseed, wheat, corn, amaranth, sunflower, rice, sorghum, and cottonseed. The inclusion of these protein sources in packaging applications is also evaluated based on their various properties such as barrier, thermal, and mechanical properties, solubility, surface hydrophobicity, water uptake capacity, and advantages. Having this information could assist the readers in exercising judgement regarding the right source when approving the applications of these proteins as biodegradable packaging material.
Collapse
Affiliation(s)
- Anupriya Senthilkumaran
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
20
|
Babaei-Ghazvini A, Acharya B. Humidity-Responsive Photonic Films and Coatings Based on Tuned Cellulose Nanocrystals/Glycerol/Polyethylene Glycol. Polymers (Basel) 2021; 13:polym13213695. [PMID: 34771254 PMCID: PMC8588499 DOI: 10.3390/polym13213695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
It has been extensively reported that cellulose nanocrystals (CNCs) can represent structural colors due to their unique chiral-nematic self-assembly. However, the application of this remarkable structure does need further investigation. It has been challenging to keep the selective reflection band (SRB) resulting from the CNC structure in the visible spectrum. Herein, composition of CNC colloidal suspensions with polyethylene glycol (PEG) and glycerol (Gly) have been studied to develop humidity-responsive sensors in the form of coatings and films. The fabricated samples were characterized for their mechanical properties, optical properties, water uptake capacity, water contact angle, and surface roughness. Additionally, the chemical structure of the samples was studied with FTIR spectroscopy. The produced humidity indicators on microbial glass slides were maintained and tested in a different relative humidity range from 20% to 98% with a different color response from blue to red, respectively. The color change of the humidity sensors was reversible for several cycles. It should be noted that the color change can be detected easily by the naked eye. The water uptake test showed that pure CNC and CNC/Gly had the lowest (34%) and highest (83%) water absorption levels. The mechanical tests for CNC/PEG composites showed the highest tensile strength (40.22 MPa). Moreover, microstructural characterizations confirmed the CNC pitch formation in all the samples. Addition of the fillers increased the CNC pitch, resulting in a mesoporous film formation. These produced humidity sensors are promising candidates in food and drug packaging due to their biodegradability, biocompatibility, and cost-effectiveness.
Collapse
|