1
|
Du J, Zhou T, Peng W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym 2025; 352:123138. [PMID: 39843049 DOI: 10.1016/j.carbpol.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
Collapse
Affiliation(s)
- Jian Du
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Quan L, Xin Y, Zhang H, Wu X, Li X, Zhou C, Ao Q. Polyphenol enhances the functionality of borate hydrogel in wound repair by regulating the wound microenvironment. Colloids Surf B Biointerfaces 2025; 247:114390. [PMID: 39637695 DOI: 10.1016/j.colsurfb.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Wound infections represent a significant clinical challenge. In this study, a polyphenol (tannic acid, TA)-enhanced borate hydrogel modulating the tissue microenvironment to promote wound healing was designed as an antimicrobial hydrogel. The physical properties of the multiply cross-linked borate hydrogel were analyzed using a combination of techniques, including FT-IR, 1H NMR, SEM, and rheological analysis. The combination of polyvinyl alcohol (PVA), phenylboronic acid-functionalized chitosan (N-PBACS), and TA resulted in the formation of multi-crosslinked networks (PVA@N-PBACS, TA@PVA, and TA@N-PBACS) that markedly enhanced the hydrogel's mechanical strength, deformability (compression and tensile), and adhesion properties. The multi-crosslinked hydrogels exhibited broad-spectrum antimicrobial activity and antioxidant effects in vitro, as well as excellent biocompatibility and the promotion of cell proliferation, migration and vascularisation behaviours. The in vivo results demonstrated that the hydrogel had enhanced properties. Furthermore, it exhibits good biocompatibility, reactive oxygen species (ROS) scavenging ability, antimicrobial properties, and the ability to modulate immune status. In an in vivo bacterial infection model, the multi-crosslinked hydrogel effectively modulated the wound microenvironment through antimicrobial effects, oxidative stress, ROS levels, and immunity modulation. This study offers a promising solution for improving wound care and provides insight into potential future therapeutic strategies.
Collapse
Affiliation(s)
- Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoyun Li
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chen Zhou
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
3
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
4
|
Liu W, Lei L, Ma F, Zhan M, Zhu J, Khan MZH, Liu X. A Dioscorea opposita Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects. ACS Biomater Sci Eng 2025; 11:415-428. [PMID: 39743314 DOI: 10.1021/acsbiomaterials.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with Dioscorea opposita polysaccharide (DOP)─calcium carbonate (CaCO3) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects. The hydrogel defined as PL-PVA/DOP-CaCO3 was designed via the borate ester bonds between polylysine-phenylboronic acids (PL-PBA) and dihydroxyl groups of poly(vinyl alcohol) (PVA). DOP modified on the surface of CaCO3 microspheres can simultaneously act with PBA to dope into the PL-PVA hydrogel and maintain glucose sensitivity. The mechanical and swelling properties of the hybrid hydrogels were reinforced by the incorporated microspheres. Meanwhile, the hyperglycemia was also regulated by the released insulin and DOP. The in vitro results indicated that the PL-PVA/DOP-CaCO3 hydrogel had good biocompatibility and inflammatory activity and could promote fibroblast proliferation and migration. In vivo experiments demonstrated that the INS@PL-PVA/DOP-CaCO3 hydrogel can significantly promote wound healing in diabetic rats by glucose-responsive regulation of hyperglycemia, inhibiting inflammation, improving angiogenesis, and accelerating the secretion of endothelial cells and proliferation of fibroblasts on wound tissues. The results bring new insights into the field of glucose-responsive hydrogels, showing their potential as drug delivery systems of macromolecular therapeutics to treat diabetic skin wounds.
Collapse
Affiliation(s)
- Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Mengke Zhan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Zhang J, Sun F, Xu J, Zhao ZH, Fu J. Research Progress of Human Biomimetic Self-Healing Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408199. [PMID: 39466995 DOI: 10.1002/smll.202408199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Humans can heal themselves after injury, which inspires researchers to develop bionic self-healing materials. Such materials not only equipped with the self-repair capacities akin to those of the human body, but also emulate the mechanical properties of human organs, including the tensile resilience of muscles, the fatigue resistance of skin, and the elevated modulus typical of cartilage. Based on the design concept of imitating the structure of human organs, the bionic self-healing material perfectly solves the problem of poor mechanical properties of self-healing materials caused by weak bond energy and inter-chain flow. This review discusses various organ-inspired self-healing materials in detail, summarizes their synthetic principles and introduces their fascinating mechanical properties. Finally, the application prospects of bionic self-healing polymer materials, such as bio-strain sensors, self-healing anticorrosive coatings, biomedical detection, etc., are outlined. Considering the excellent comprehensive performance and multi-functions of human biomimetic self-healing polymers, more outstanding sustainable materials will be developed, accelerating research progress in self-healing materials and realizing environmentally friendly products in multiple fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zi-Han Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
6
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wu Y, Hu C, Li Y, Wang Y, Gong H, Zheng C, Kong QQ, Yang L, Wang Y. A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing. Biomacromolecules 2024; 25:7878-7893. [PMID: 39570390 DOI: 10.1021/acs.biomac.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.
Collapse
Affiliation(s)
- Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Jiang F, Fu M, Gan Y, Bu C, Guo Z, Lv X, Ding X. A multifunctional hydrogel dressing loaded with antibiotics for healing of infected wound. Int J Pharm 2024; 666:124770. [PMID: 39349226 DOI: 10.1016/j.ijpharm.2024.124770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Wound bacterial infections can significantly delay the healing process and even lead to fetal sepsis. There is a need for multifunctional dressings that possess antibacterial property, tissue adhesive property, self-healing capability, and biocompatibility to effectively treat bacteria-infected wound. In this study, we report a dual dynamically crosslinked hydrogel, OHA-PBA/PVA/Gen, which incorporates the antibiotic gentamicin (Gen) as a dynamic crosslinker. The hydrogel is formed through the formation of Schiff base bonds between phenylboronic acid-grafted oxidized hyaluronic acid (OHA-PBA) and Gen, as well as boronic acid ester bonds between OHA-PBA and polyvinyl alcohol (PVA). This unique composition imparts tissue adhesiveness, injectability and self-healing property to the hydrogel. The hydrogel also exhibits pH-responsive antibiotic release behavior due to the acid-responsive dissociation of Schiff base bonds. As a result, it demonstrates strong antibacterial activity against both Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli through contact killing and diffusion killing mechanisms. Importantly, the OHA-PBA/PVA/Gen hydrogel avoids incorporation of toxic small molecular crosslinking agents, and all the components of the hydrogel are biocompatible, ensuring its biosafety. In a S. aureus-infected wound mouse model, this hydrogel effectively eradicated bacteria and promoted angiogenesis, leading to significantly accelerated wound healing. These results highlight the potential of the dual dynamically crosslinking hydrogel OHA-PBA/PVA/Gen as a multifunctional wound dressing for the treatment of bacteria-infected wound.
Collapse
Affiliation(s)
- Fenglin Jiang
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China; Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China
| | - Mengjing Fu
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yingying Gan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Changxin Bu
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhihao Guo
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Xue Lv
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Xin Ding
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Chen S, Xia J, Hou Z, Wu P, Yang Y, Cui L, Xiang Z, Sun S, Yang L. Natural polysaccharides combined with mussel-inspired adhesion for multifunctional hydrogels in wound hemostasis and healing: A review. Int J Biol Macromol 2024; 282:136965. [PMID: 39476886 DOI: 10.1016/j.ijbiomac.2024.136965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
As naturally derived macromolecular polymers, polysaccharides have garnered significant attention in recent years as promising candidates for fabricating multifunctional hydrogels, particularly for wound healing applications, owing to their inherent biocompatibility, biodegradability, and structural diversity. However, the inherently weak skin adhesion of natural polysaccharide hydrogels has motivated the exploration of mussel-inspired catechol-based adhesion strategies to overcome this limitation. Incorporating mussel-inspired modifications into natural polysaccharides can imbue them with unique properties such as enhanced adhesion, antioxidant activity, antibacterial properties, and chelation capabilities, considerably broadening their potential for wound hemostasis and healing applications. This review comprehensively overviews recent advances in mussel-inspired polysaccharide hydrogels, focusing on the combination of natural polysaccharides, including chitosan, alginate, hyaluronic acid, cellulose, and dextran, with mussel-inspired catechol. We delve into their fabrication strategies and highlight their promising biomedical applications, with a particular emphasis on wound hemostasis and diverse wound healing processes. Mussel-inspired modification strategies for polysaccharide hydrogels are expected to remain a focal point within the fields of wound hemostasis and healing, paving the way for more impactful research endeavors.
Collapse
Affiliation(s)
- Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
10
|
Nezhad-Mokhtari P, Hasany M, Kohestanian M, Dolatshahi-Pirouz A, Milani M, Mehrali M. Recent advancements in bioadhesive self-healing hydrogels for effective chronic wound care. Adv Colloid Interface Sci 2024; 334:103306. [PMID: 39423587 DOI: 10.1016/j.cis.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Chronic wounds are a critical and costly complication that affects millions of patients each year, especially patients suffering from diabetes, and constitute a serious global healthcare problem that needs immediate attention. In this direction, novel dressings that can integrate appropriate physicochemical and biological features, mechanical durability, and the capacity for therapy are of great clinical importance. For instance, self-healable hydrogels, with antibacterial activity and high tissue adhesion, have attracted increasing attention for wound management applications. Despite their potential, existing self-healable hydrogel networks exhibit limitations in mechanical strength and adhesion, tissue regeneration, antibacterial efficacy, and scalability, indicating a need for further improvement in the field. This review focuses on exactly these recent advances in the field with a special focus on self-healing adhesive hydrogel-based wound dressings as well as their structures, construction strategies, adhesion mechanisms, and emerging usage in the wound healing field. By shedding light on these developments, we aim to contribute to the ongoing pursuit of enhanced solutions for chronic wound care.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Mohammad Kohestanian
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark.
| |
Collapse
|
11
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Li S, Ren X, Liu Y, Wang L, Zhou Y, Zhang Y, Yan Z, Lan X, Guo L. Multifunctional carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel loaded with ginsenoside Rg1 and polydopamine nanoparticles for infected diabetic wound healing. Int J Biol Macromol 2024; 282:136686. [PMID: 39427794 DOI: 10.1016/j.ijbiomac.2024.136686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Besides bacterial infection, diabetic wounds are often accompanied by local inflammatory response, oxidative stress imbalances, and vascular formation disorders, which are the main reasons for long-term non-healing of diabetic wounds. In order to solve this problem, Ch-OCMC-PDA NPs-Rg1 self-healing hydrogel was constructed by Schiff base reaction. With the addition of PDA NPs and Rg1, Ch-OCMC-PDA NPs-Rg1 hydrogel showed excellent physical properties, like compressive strength of 142 kPa, swelling ratio of 148.91 %, and Rg1 carried in the hydrogel could achieve a slow release of 90.59 % within 48 h. What's more, PDA NPs endowed it with highly efficient photothermal antibacterial properties. In addition to excellent biocompatibility, Ch-OCMC-PDA NPs-Rg1 hydrogel could effectively clear intracellular reactive oxygen species, promote macrophages M2 transformation, and facilitate human umbilical vein endothelial cells migration and tube formation. In vivo experiments exhibited that Ch-OCMC-PDA NPs-Rg1 hydrogel could reduce wound inflammation, stimulate early angiogenesis, promote collagen deposition, and shorten the healing process of diabetic infected wounds, and the wound healing rate was significantly increased compared with other groups, reaching 98.41 ± 0.31 %. In summary, the multi-functional dynamic Ch-OCMC-PDA NPs-Rg1 hydrogel provides a new possibility for the treatment of diabetic infection wounds.
Collapse
Affiliation(s)
- Sihui Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China; Ziyang Central Hospital, China
| | - Xiaofeng Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Youbo Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunan Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhongyi Yan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Guo Y, Ma C, Xu Y, Du L, Yang X. Food Gels Based on Polysaccharide and Protein: Preparation, Formation Mechanisms, and Delivery of Bioactive Substances. Gels 2024; 10:735. [PMID: 39590091 PMCID: PMC11593672 DOI: 10.3390/gels10110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels have a unique three-dimensional network that can create a good environment for the loading of functional compounds; hence, they have considerable potential in the delivery of bioactive substances. Natural macromolecular substances (proteins, polysaccharides) have the features of low toxicity, degradability, and biosafety; thus, they can be employed in the manufacture of hydrogels in the food sector. With its customizable viscoelastic and porous structure, hydrogels are believed to be good bioactive material delivery vehicles, which can effectively load polyphenols, vitamins, probiotics, and other active substances to prevent their influence from the external environment, thereby improving its stability. In this research, the common raw materials, preparation methods, and applications in the delivery of bioactive elements of food gels were examined; this study aimed at presenting new ideas for the development and utilization of protein-based food gels.
Collapse
Affiliation(s)
- Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Xu
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Lianxin Du
- Graduate School, Harbin Sport University, Harbin 150008, China;
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shandong Benefit Mankind Glycobiology Co., Ltd., Weihai 264200, China
| |
Collapse
|
14
|
He Q, Gao X, Wu Z, Zhu J, Chen H, Liu X, Zhang X. Robust, superabsorbent and antibacterial polysaccharide-based hybrid-network hydrogels for wound repair. Int J Biol Macromol 2024; 279:134626. [PMID: 39128759 DOI: 10.1016/j.ijbiomac.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hydrogel dressings with multiple functions are ideal options for wound repair. This study developed hydrogel dressings by interpenetrating the physically crosslinked xanthan gum (XG)/carboxylated chitosan (CCS) network and the chemically crosslinked polyacrylamide (PAAm) network via a one-pot method. The XG-CCS/PAAm hydrogels were found to display tunable mechanical properties, due to the formation of strong network structure. The hydrogels exhibited the strongest tensile strength of 0.6 MPa at an XG/CCS ratio of 40/60, while the largest compressive strength of 4.5 MPa is achieved at an XG/CCS ratio of 60/40. Moreover, the hydrogel with an XG/CCS ratio of 60/40 exhibited desirable adhesion strength on porcine skin, which was 3.7 kPa. It also had a swelling ratio, as high as 1200 %. After loading with cephalexin, the XG-CCS/PAAm hydrogels can deliver the antibacterial drugs following a first-order kinetic. As a result, both E. coli and S. aureus can be completely inactivated by the cefalexin-loaded hydrogels after 12 h. Furthermore, the XG-CCS/PAAm hydrogels were found to exhibit excellent biocompatibility as well as effective wound healing ability, as proven by the in vitro and in vivo tests. In this regard, XG-CCS/PAAm hydrogels can act as promising multifunctional wound dressings.
Collapse
Affiliation(s)
- Qin He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xia Gao
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China.
| | - Zhifang Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Junlin Zhu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xinyao Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiaonan Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
15
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
16
|
Yang Y, Ma Y, Wang H, Li C, Li C, Zhang R, Zhong S, He W, Cui X. Chitosan-based hydrogel dressings with antibacterial and antioxidant for wound healing. Int J Biol Macromol 2024; 280:135939. [PMID: 39317283 DOI: 10.1016/j.ijbiomac.2024.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bacterial infection and free radical oxidative stress at the wound site could easily cause cascade inflammation and hinder the healing process of the wound. In this study, chitosan-cysteine-gallic acid (CCG) hydrogel with antibacterial and antioxidant properties was synthesized by chitosan (CS), cysteine (Cys), and gallic acid (GA) for a preliminary evaluation of its therapeutic efficacy in a mouse model of full-layer skin defect. In vitro analysis showed that the CCG hydrogel had good antibacterial activity and blood compatibility. In vivo, the CCG hydrogel wound dressings accelerated wound healing, stimulate angiogenesis, increase collagen deposition and anti-inflammatory factor expression. The CCG hydrogel wound dressing is designed to promote the regeneration of damaged skin tissue and is expected to become a potential candidate for clinical treatment.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Haodong Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
17
|
Yang P, Ju Y, Shen N, Zhu S, He J, Yang L, Lei J, He X, Shao W, Lei L, Fang B. Exos‐Loaded Gox‐Modified Smart‐Response Self‐Healing Hydrogel Improves the Microenvironment and Promotes Wound Healing in Diabetic Wounds. Adv Healthc Mater 2024. [DOI: 10.1002/adhm.202403304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 01/12/2025]
Abstract
AbstractWound management has always been a challenge in the clinical treatment of diabetes. In this study, glucose oxidase (GOx) is grafted onto natural pullulan polysaccharides, and oxidization is carried out to form a self‐healing hydrogel using carboxymethyl chitosan by means of reversible Schiff base covalent bonding. The smart‐response drug release properties of this natural self‐healing hydrogel are demonstrated in diabetic wounds by taking advantage of two key factors, namely the pH‐responsive nature of Schiff base bonding and the fact that GOx reduces the pH in diabetic wounds. To further enhance the biological functions of the hydrogel dressing, exosomes (Exos) are introduced into the hydrogel system. The GOx present in the hydrogel system improves the high‐glucose microenvironment of diabetic wounds, releasing H2O2 to impart antimicrobial effects, and ensuring that the hydrogel realizes a smart‐response function. The carboxymethyl chitosan component used to construct the hydrogel plays an effective antibacterial role. Moreover, the Exos loaded into the hydrogel effectively promotes neovascularization of the wound. The Exos also regulates macrophage polarization and reduces the levels of persistent inflammation in diabetic wounds. These results suggest that this smart responsive, multifunctional, and self‐healing hydrogel dressing is ideal for the management of diabetic wounds.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery The Second Xiangya Hospital Central South University Changsha 410011 China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery The Second Xiangya Hospital Central South University Changsha 410011 China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery The Second Xiangya Hospital Central South University Changsha 410011 China
| | - Shuai Zhu
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Jiaqian He
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Lingxiu Yang
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Jiajie Lei
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Xiaoli He
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Wenjia Shao
- College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province Institute of Translational Medicine Zhejiang Shuren University Hangzhou Zhejiang 310015 China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery The Second Xiangya Hospital Central South University Changsha 410011 China
| |
Collapse
|
18
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
19
|
Tong YL, Yang K, Wei W, Gao LT, Li PC, Zhao XY, Chen YM, Li J, Li H, Miyatake H, Ito Y. A novel red fluorescent and dynamic nanocomposite hydrogel based on chitosan and alginate doped with inclusion complex of carbon dots. Carbohydr Polym 2024; 342:122203. [PMID: 39048182 DOI: 10.1016/j.carbpol.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Abstract
Red fluorescent hydrogels possessing injectable and self-healing properties have widespread potential in biomedical field. It is still a challenge to achieve a biomacromolecules based dynamic hydrogels simultaneously combining with excellent red fluorescence, good mechanical properties, and biocompatibility. Here we first explore hydrophilic inclusion complex of (R-CDs@α-CD) derived from hydrophobic red fluorescent carbon dots (R-CDs) and α-cyclodextrin (α-CD), and then achieved a red fluorescent and dynamic polysaccharide R-CDs@α-CD/CEC-l-OSA hydrogel. The nanocomposite hydrogel can be fabricated through controlled doping of red fluorescent R-CDs@α-CD into dynamic polymer networks, taking reversibly crosslinked N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) as an example. The versatile red fluorescent hydrogel simultaneously combines the features of injection, biocompatibility, and augmented mechanical properties and self-healing behavior, especially in rapid self-recovery even after integration. The R-CDs@α-CD uniformly dispersed into dynamic hydrogel played the role of killing two birds with one stone, that is, endowing red emission of a hydrophilic fluorescent substance, and improving mechanical and self-healing properties as a dynamic nano-crosslinker, via forming hydrogen bonds as reversible crosslinkings. The novel red fluorescent and dynamic hydrogel based on polysaccharides is promising for using as biomaterials in biomedical field.
Collapse
Affiliation(s)
- Yu Lan Tong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi''an, Shaanxi 710068,China
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
20
|
Ding X, Zhang L, Jiang C, Liu S, Li H, Xi J, Wu D. Building covalent crosslinks of carboxymethyl konjac glucomannan with boronic ester bonds for fabricating multimodal hydrogel sensor. Int J Biol Macromol 2024; 277:134286. [PMID: 39217036 DOI: 10.1016/j.ijbiomac.2024.134286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
As the derivative of konjac glucomannan (KGM), carboxymethyl konjac glucomannan (CMK) has attracted increasing attention in the polysaccharide hydrogel fields with the aim of improving the performance related to drug delivery and release. In this study, we prepared a CMK-based hydrogel with dual characteristic crosslinks, and unlocked new applications of this type of hydrogel in soft sensor fields. CMK and poly (vinyl alcohol) were used as substrates, and physical crosslinks were constructed via the freeze-thawing treatments and covalent crosslinks were built via the boronic ester bonding. As-prepared hydrogel possessed significantly improved mechanical performance because the boronic ester bonding, on the one hand, well associated the two kinds of polymer chains, and on the other hand, played the role of 'sacrificial crosslinks'. Furthermore, the occurrence of dynamic boronic ester bonding gave the hydrogel strain- and temperature-sensitive ionic conductivity, and therefore, the hydrogels could be used to identify human motions and as-resulted environmental temperature alterations, and worked well in various scenarios. This work activates new application of CMK in the multimodal sensing field, and also proposes an intriguing way of building multiple crosslinks in the KGM derivative-based hydrogels.
Collapse
Affiliation(s)
- Xuexue Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Lunbo Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Chenguang Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| | - Siyuan Liu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Huajun Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Juqun Xi
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
21
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
22
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
23
|
Wu E, Huang L, Shen Y, Wei Z, Li Y, Wang J, Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon 2024; 10:e36258. [PMID: 39224337 PMCID: PMC11367464 DOI: 10.1016/j.heliyon.2024.e36258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.
Collapse
Affiliation(s)
- Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yao Shen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yangbiao Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
24
|
Chelu M, Calderon Moreno JM, Musuc AM, Popa M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024; 10:547. [PMID: 39330149 PMCID: PMC11431064 DOI: 10.3390/gels10090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Regenerative hydrogels from natural polymers have come forth as auspicious materials for use in regenerative medicine, with interest attributed to their intrinsic biodegradability, biocompatibility, and ability to reassemble the extracellular matrix. This review covers the latest advances in regenerative hydrogels used for wound healing, focusing on their chemical composition, cross-linking mechanisms, and functional properties. Key carbohydrate polymers, including alginate, chitosan, hyaluronic acid, and polysaccharide gums, including agarose, carrageenan, and xanthan gum, are discussed in terms of their sources, chemical structures and specific properties suitable for regenerative applications. The review further explores the categorization of hydrogels based on ionic charge, response to physiological stimuli (i.e., pH, temperature) and particularized roles in wound tissue self-healing. Various methods of cross-linking used to enhance the mechanical and biological performance of these hydrogels are also examined. By highlighting recent innovations and ongoing challenges, this article intends to give a detailed understanding of natural hydrogels and their potential to revolutionize regenerative medicine and improve patient healing outcomes.
Collapse
Affiliation(s)
| | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| | | | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| |
Collapse
|
25
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
26
|
Zhai Z, Zhou Y, Sarkar I, Liu Y, Yao Y, Zhang J, Bortner MJ, Matson JB, Johnson BN, Edgar KJ. Synthesis and real-time characterization of self-healing, injectable, fast-gelling hydrogels based on alginate multi-reducing end polysaccharides (MREPs). Carbohydr Polym 2024; 338:122172. [PMID: 38763719 DOI: 10.1016/j.carbpol.2024.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024]
Abstract
Polysaccharide-based hydrogels are promising for many biomedical applications including drug delivery, wound healing, and tissue engineering. We illustrate herein self-healing, injectable, fast-gelling hydrogels prepared from multi-reducing end polysaccharides, recently introduced by the Edgar group. Simple condensation of reducing ends from multi-reducing end alginate (M-Alg) with amines from polyethylene imine (PEI) in water affords a dynamic, hydrophilic polysaccharide network. Trace amounts of acetic acid can accelerate the gelation time from hours to seconds. The fast-gelation behavior is driven by rapid Schiff base formation and strong ionic interactions induced by acetic acid. A cantilever rheometer enables real-time monitoring of changes in viscoelastic properties during hydrogel formation. The reversible nature of these crosslinks (imine bonds, ionic interactions) provides a hydrogel with low toxicity in cell studies as well as self-healing and injectable properties. Therefore, the self-healing, injectable, and fast-gelling M-Alg/PEI hydrogel holds substantial promise for biomedical, agricultural, controlled release, and other applications.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ishani Sarkar
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yang Liu
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yimin Yao
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Junru Zhang
- Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Michael J Bortner
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Blake N Johnson
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
27
|
Peng S, Niu S, Gao Q, Song R, Wang Z, Luo Z, Zhang X, Qin X. Hydroxypropyl chitosan/ε-poly-l-lysine based injectable and self-healing hydrogels with antimicrobial and hemostatic activity for wound repair. Carbohydr Polym 2024; 337:122135. [PMID: 38710549 DOI: 10.1016/j.carbpol.2024.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.
Collapse
Affiliation(s)
- Shuting Peng
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Sen Niu
- Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Qin Gao
- Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ruiyuan Song
- Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Zhengxiao Wang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ziyun Luo
- Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Xi Zhang
- Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China.
| |
Collapse
|
28
|
Colombi S, Sáez I, Borras N, Estrany F, Pérez-Madrigal MM, García-Torres J, Morgado J, Alemán C. Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties. Carbohydr Polym 2024; 337:122170. [PMID: 38710559 DOI: 10.1016/j.carbpol.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.
Collapse
Affiliation(s)
- Samuele Colombi
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Isabel Sáez
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Nuria Borras
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Francesc Estrany
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - José García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jorge Morgado
- Department of Bioengineering, Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Condò I, Giannitelli SM, Lo Presti D, Cortese B, Ursini O. Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes. Gels 2024; 10:442. [PMID: 39057465 PMCID: PMC11275299 DOI: 10.3390/gels10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Polymeric hydrogels are soft materials with a three-dimensional (3D) hydrophilic network capable of retaining and absorbing large amounts of water or biological fluids. Due to their customizable properties, these materials are extensively studied for developing matrices for 3D cell culture scaffolds, drug delivery systems, and tissue engineering. However, conventional hydrogels still exhibit many drawbacks; thus, significant efforts have been directed towards developing dynamic hydrogels that draw inspiration from organisms' natural self-repair abilities after injury. The self-healing properties of these hydrogels are closely associated with their ability to form, break, and heal dynamic bonds in response to various stimuli. The primary objective of this review is to provide a comprehensive overview of dynamic hydrogels by examining the types of chemical bonds associated with them and the biopolymers utilized, and to elucidate the chemical nature of dynamic bonds that enable the modulation of hydrogels' properties. While dynamic bonds ensure the self-healing behavior of hydrogels, they do not inherently confer adhesive properties. Therefore, we also highlight emerging approaches that enable dynamic hydrogels to acquire adhesive properties.
Collapse
Affiliation(s)
- Ilaria Condò
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Barbara Cortese
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ornella Ursini
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
30
|
Sadeghi M, Habibi Y, Bohlool T, Mohamadnia Z, Nikfarjam N, Norouzi M. Fabrication of a self-healing hydrogel with antibacterial activity using host-guest interactions between dopamine-modified alginate and β-cyclodextrin dimer. Int J Biol Macromol 2024; 273:132827. [PMID: 38834128 DOI: 10.1016/j.ijbiomac.2024.132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (β-CDsD). Here, β-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with β-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 μm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.
Collapse
Affiliation(s)
- Moslem Sadeghi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Younes Habibi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Tohid Bohlool
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, United States.
| | - Mastaneh Norouzi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
31
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
32
|
Ivashchenko O. Layered complexity, reorganisational ability and self-healing mechanisms of heteropolysaccharide solutions. Sci Rep 2024; 14:13957. [PMID: 38886515 PMCID: PMC11183217 DOI: 10.1038/s41598-024-64873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Heteropolysaccharides are among the most widely distributed compounds in nature, acting as both tissue building blocks and as a source of nutrients. Their physicochemical and biological properties have been studied thoroughly; however, the microstructural properties of heteropolysaccharides are still poorly understood. This study aims to investigate the micro-structural peculiarities of agarose, gum arabic, hyaluronic and alginic acids by means of confocal laser scanning microscopy (CLSM) and cryogenic scanning electron microscopy (cryo-SEM). Herein, attention is paid to layered complexity of the microstructure differentiating surface, under surface, inner, and substrate interface layers. The scale and pattern of the polysaccharide's microstructure depend on the concentration, changing from lamellae to cell-like porous structures. This work provides the insight into micro- and nanoscale mechanisms of self-healing and substrate-induced reorganisation. Thus, investigation of the self-healing mechanism revealed that this diffusion-based process starts from the fibres, turning into lamellae, following by cell-like structures with smaller dimensions. Investigation of the substrate-induced reorganisation ability showed that nano-to-micro (scale) porous substrate causes reorganisation in the interface layer of the studied heteropolysaccharides. This work contributes to understanding the structural peculiarities of heteropolysaccharides by looking at them through a supramolecular, micro-level prism.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61614, Poznań, Poland.
| |
Collapse
|
33
|
Huang R, Hua J, Ru M, Yu M, Wang L, Huang Y, Yan S, Zhang Q, Xu W. Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking. ACS NANO 2024; 18:15312-15325. [PMID: 38809601 DOI: 10.1021/acsnano.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.
Collapse
Affiliation(s)
- Renyan Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiahui Hua
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Meng Yu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Ying Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
34
|
Du B, Yin M, Yang K, Wang S, Pei Y, Luo R, Zhou S, Li H. Ultrafast Polymerization of a Self-Adhesive and Strain Sensitive Hydrogel-Based Flexible Sensor for Human Motion Monitoring and Handwriting Recognition. Polymers (Basel) 2024; 16:1595. [PMID: 38891541 PMCID: PMC11175077 DOI: 10.3390/polym16111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Hydrogel-based flexible electronic devices have great potential in human motion monitoring, electronic skins, and human-computer interaction applications; hence, the efficient preparation of highly sensitive hydrogel-based flexible sensors is important. In the present work, the ultrafast polymerization of a hydrogel (1-3 min) was achieved by constructing a tannic acid (TA)-Fe3+ dynamic redox system, which endowed the hydrogel with good adhesion performance (the adhesion strength in wood was 17.646 kPa). In addition, the uniform dispersal ensured by incorporating polydopamine-decorated polypyrrole (PPy@PDA) into the hydrogel matrix significantly improved the hydrogel's stretching ability (575.082%). The as-prepared PAM/CS/PPy@PDA/TA hydrogel-based flexible sensor had a high-fidelity low detection limit (strain = 1%), high sensitivity at small strains (GF = 5.311 at strain = 0-8%), and fast response time (0.33 s) and recovery time (0.25 s), and it was reliably applied to accurate human motion monitoring and handwriting recognition. The PAM/CS/PPy@PDA/TA hydrogel opens new horizons for wearable electronic devices, electronic skins, and human-computer interaction applications.
Collapse
Affiliation(s)
- Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Mengwei Yin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Kenan Yang
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710054, China
| | - Sainan Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Yiting Pei
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Rubai Luo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Huailin Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| |
Collapse
|
35
|
Wang Y, Zhang H, Qiang H, Li M, Cai Y, Zhou X, Xu Y, Yan Z, Dong J, Gao Y, Pan C, Yin X, Gao J, Zhang T, Yu Z. Innovative Biomaterials for Bone Tumor Treatment and Regeneration: Tackling Postoperative Challenges and Charting the Path Forward. Adv Healthc Mater 2024; 13:e2304060. [PMID: 38429938 DOI: 10.1002/adhm.202304060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Surgical resection of bone tumors is the primary approach employed in the treatment of bone cancer. Simultaneously, perioperative interventions, particularly postoperative adjuvant anticancer strategies, play a crucial role in achieving satisfactory therapeutic outcomes. However, the occurrence of postoperative bone tumor recurrence, metastasis, extensive bone defects, and infection are significant risks that can result in unfavorable prognoses or even treatment failure. In recent years, there has been significant progress in the development of biomaterials, leading to the emergence of new treatment options for bone tumor therapy and bone regeneration. This progress report aims to comprehensively analyze the strategic development of unique therapeutic biomaterials with inherent healing properties and bioactive capabilities for bone tissue regeneration. These composite biomaterials, classified into metallic, inorganic non-metallic, and organic types, are thoroughly investigated for their responses to external stimuli such as light or magnetic fields, internal interventions including chemotherapy or catalytic therapy, and combination therapy, as well as their role in bone regeneration. Additionally, an overview of self-healing materials for osteogenesis is provided and their potential applications in combating osteosarcoma and promoting bone formation are explored. Furthermore, the safety concerns of integrated materials and current limitations are addressed, while also discussing the challenges and future prospects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huifen Qiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Meigui Li
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yili Cai
- Department of Gastroenterology, Naval Medical Center, Naval Medical University, Shanghai, 200052, P. R. China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yanlong Xu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jinhua Dong
- The Women and Children Hospital Affiliated to Jiaxing University, Jiaxing, Zhejiang, 314000, P. R. China
| | - Yuan Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200433, P. R. China
| | - Chengye Pan
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Xiaojing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| |
Collapse
|
36
|
Cao X, Ma L, Tan Y, Tong Q, Liu D, Yi Z, Li X. Soft yet mechanically robust injectable alginate hydrogels with processing versatility based on alginate/hydroxyapatite hybridization. Int J Biol Macromol 2024; 270:132458. [PMID: 38772458 DOI: 10.1016/j.ijbiomac.2024.132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The salient gelling feature of alginate via forming the egg-box structure with calcium ions has received extensive interests for different applications. Owing to the interfacial incompatibility of rigid inorganic solids with soft polymers, the requirement of overall stereocomplexation with calcium released from uniformly distributed solids in alginate remains a challenge. In this study, a novel alginate-incorporated calcium source was proposed to tackle the intractable dispersion for the preparation of injectable alginate hydrogels. Calcium phosphate synthesis in alginate solution yielded CaP-alginate hybrids as a calcium source. The physicochemical characterization confirmed the CaP-alginate hybrid was a nano-scale alginate-hydroxyapatite complex. The colloidally stable CaP-alginate hybrids were uniformly dispersed in alginate solutions even under centrifugation. The calcium-induced gelling of the CaP-alginate hybrids-loaded alginate solutions formed soft yet tough hydrogels including transparent sheets and knittable threads, confirming the homogeneous gelation of the hydrogel. The gelation time, injectability and mechanical properties of the hydrogels could be adjusted by changing preparation parameters. The prepared hydrogels showed uniform porous structure, excellent swelling, wetting properties and cytocompatibility, showing a great potential for applications in different fields. The present strategy with organic/inorganic hybridization could be exemplarily followed in the future development of functional hydrogels especially associated with the interface integration.
Collapse
Affiliation(s)
- Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
37
|
Jing Y, Wang C, Li C, Wei Z, Lei D, Chen A, Li X, He X, Cen L, Sun M, Liu B, Xue B, Li R. Development of a manganese complex hyaluronic acid hydrogel encapsulating stimuli-responsive Gambogic acid nanoparticles for targeted Intratumoral delivery. Int J Biol Macromol 2024; 270:132348. [PMID: 38750838 DOI: 10.1016/j.ijbiomac.2024.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gambogic acid is a natural compound with anticancer properties and is effective for many tumors. But its low water solubility and dose-dependent side effects limit its clinical application. This study aims to develop a novel drug delivery system for intratumoral delivery of gambogic acid. In our experimental study, we propose a new method for encapsulating gambogic acid nanoparticles using a manganese composite hyaluronic acid hydrogel as a carrier, designed for targeted drug delivery to tumors. The hydrogel delivery system is synthesized through the coordination of hyaluronic acid-dopamine (HA-DOPA) and manganese ions. The incorporation of manganese ions serves three purposes:1.To form cross-linked hydrogels, thereby improving the mechanical properties of HA-DOPA.2.To monitor the retention of hydrogels in vivo in real-time using magnetic resonance imaging (MRI).3.To activate the body's immune response. The experimental results show that the designed hydrogel has good biosafety, in vivo sustained release effect and imaging tracking ability. In the mouse CT26 model, the hydrogel drug-loaded group can better inhibit tumor growth. Further immunological analysis shows that the drug-loaded hydrogel group can stimulate the body's immune response, thereby better achieving anti-tumor effects. These findings indicate the potential of the developed manganese composite hyaluronic acid hydrogel as an effective and safe platform for intratumoral drug delivery. The amalgamation of biocompatibility, controlled drug release, and imaging prowess positions this system as a promising candidate for tumor treatment.
Collapse
Affiliation(s)
- Yuanhao Jing
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Chun Wang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chunhua Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Zijian Wei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Dan Lei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Anni Chen
- Nanjing International Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Xiang Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lanqi Cen
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China. 210000
| | - Mengna Sun
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210008, China.
| | - Rutian Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
38
|
Ye B, Lu G, Zhou J, Li Y, Ma Y, Zhang Y, Chen J. Sulfated glyco-based hydrogels as self-healing, adhesive, and anti-inflammatory dressings for wound healing. Colloids Surf B Biointerfaces 2024; 238:113915. [PMID: 38631281 DOI: 10.1016/j.colsurfb.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical & Material Engineering, Jiangnan Universtiy, Wuxi 214122, PR China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
39
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
40
|
Yuan R, Fang Z, Liu F, He X, Du S, Zhang N, Zeng Q, Wei Y, Wu Y, Tao L. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing. ACS Macro Lett 2024; 13:475-482. [PMID: 38591821 DOI: 10.1021/acsmacrolett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sa Du
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Qiang Zeng
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
41
|
Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, Looi Qi Hao D, Markey G, Shukla P, Fauzi MB, Panetsos F. Progress in Wound-Healing Products Based on Natural Compounds, Stem Cells, and MicroRNA-Based Biopolymers in the European, USA, and Asian Markets: Opportunities, Barriers, and Regulatory Issues. Polymers (Basel) 2024; 16:1280. [PMID: 38732749 PMCID: PMC11085499 DOI: 10.3390/polym16091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024] Open
Abstract
Wounds are breaks in the continuity of the skin and underlying tissues, resulting from external causes such as cuts, blows, impacts, or surgical interventions. Countless individuals suffer minor to severe injuries, with unfortunate cases even leading to death. In today's scenario, several commercial products are available to facilitate the healing process of wounds, although chronic wounds still present more challenges than acute wounds. Nevertheless, the huge demand for wound-care products within the healthcare sector has given rise to a rapidly growing market, fostering continuous research and development endeavors for innovative wound-healing solutions. Today, there are many commercially available products including those based on natural biopolymers, stem cells, and microRNAs that promote healing from wounds. This article explores the recent breakthroughs in wound-healing products that harness the potential of natural biopolymers, stem cells, and microRNAs. A comprehensive exploration is undertaken, covering not only commercially available products but also those still in the research phase. Additionally, we provide a thorough examination of the opportunities, obstacles, and regulatory considerations influencing the potential commercialization of wound-healing products across the diverse markets of Europe, America, and Asia.
Collapse
Affiliation(s)
- Girish K. Srivastava
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain;
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Sofia Martinez-Rodriguez
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Daniel Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Gavin Markey
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Priyank Shukla
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Bioactive Surfaces SL, 28260 Madrid, Spain
- Omnia Mater SL, 28009 Madrid, Spain
| |
Collapse
|
42
|
Chen Y, Wang C, Zhang Z, Yu F, Wang Y, Ding J, Zhao Z, Liu Y. 3D-printed piezocatalytic hydrogels for effective antibacterial treatment of infected wounds. Int J Biol Macromol 2024; 268:131637. [PMID: 38636748 DOI: 10.1016/j.ijbiomac.2024.131637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Bacterial-infected wound repair has become a significant public health concern. This study developed a novel 3D-printed piezocatalytic SF-MA/PEGDA/Ag@BT (SPAB) hydrogels were fabricated by using digital light processing. These hydrogels exhibited high consistency, mechanical properties and good biocompatibility. Besides, the SPAB hydrogels exhibited excellent piezocatalytic performance and thus could induce piezoelectric polarization under ultrasound to generate reactive oxygen species (ROS). The SPAB hydrogels possessed an antibacterial rate of 99.23% and 99.96% for Escherichia coli and Staphylococcus aureus, respectively, under 5 min of ultrasonic stimulation (US) in vitro. The US-triggered piezocatalytic performance could increase antibacterial activity and improve the healing process of the infected wound. Therefore, the 3D printed piezocatalytic SPAB hydrogels could be unutilized as wound dressing in the field of bacterial-infected wound repair.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zhiyuan Zhang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yu Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Jianqiang Ding
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
43
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
44
|
Yang Y, Ma Y, Wu M, Wang X, Zhao Y, Zhong S, Gao Y, Cui X. Fe 3+-induced coordination cross-linking gallic acid-carboxymethyl cellulose self-healing hydrogel. Int J Biol Macromol 2024; 267:131626. [PMID: 38631590 DOI: 10.1016/j.ijbiomac.2024.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Meiliang Wu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xueping Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
45
|
Zhang M, Dong Q, Yang K, Chen R, Zhang J, Xiao P, Zhou Y. Hyaluronic acid hydrogels with excellent self-healing capacity and photo-enhanced mechanical properties for wound healing. Int J Biol Macromol 2024; 267:131235. [PMID: 38554919 DOI: 10.1016/j.ijbiomac.2024.131235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
A continuously stable moist healing environment is immensely beneficial for wound healing, which can be availably achieved by providing an in situ hydrogel with enough strength resembling skin tissue and self-healing ability. Herein, through a dual-crosslinking strategy, hyaluronic acid-based hydrogels with excellent self-healing capacity and enhanced mechanical properties are fabricated via the acylhydrazone linkages and subsequent photocrosslinking based on hydrazide-modified sodium hyaluronate and aldehyde-modified maleic sodium hyaluronate. The hydrogels demonstrate the fast gelation process (< 1 min), the controlled swelling behaviors, and the good biocompatibility. Notably, they possess enhanced mechanical strength similar to the human dermis (∼ 2.2 kPa). Also, they can self-heal rapidly with a self-healing efficiency of ∼90 % at 6 h. Based on this, the hyaluronic acid-based hydrogels, without any biological factors involved, can facilitate the full-thickness skin wound reconstruction process by accelerating the three phases of the wound repair, including reducing wound inflammation in the inflammatory phase, promoting angiogenesis in the proliferative phase, and promoting the deposition and reconstruction of collagen in the remodeling phase. The produced hyaluronic acid hydrogel can serve as an ideal candidate for wound healing.
Collapse
Affiliation(s)
- Mengfan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Kaidan Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Ruina Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China; College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.
| |
Collapse
|
46
|
Eivazzadeh-Keihan R, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Bani MS, Karimi AH, Maleki A, Mahdavi M. A novel ternary magnetic nanobiocomposite based on tragacanth-silk fibroin hydrogel for hyperthermia and biological properties. Sci Rep 2024; 14:8166. [PMID: 38589455 PMCID: PMC11002001 DOI: 10.1038/s41598-024-58770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Amir Hossein Karimi
- Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Zhai Z, Edgar KJ. Polysaccharide Aldehydes and Ketones: Synthesis and Reactivity. Biomacromolecules 2024; 25:2261-2276. [PMID: 38490188 PMCID: PMC11005020 DOI: 10.1021/acs.biomac.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Polysaccharides are biodegradable, abundant, sustainable, and often benign natural polymers. The achievement of selective modification of polysaccharides is important for targeting specific properties and structures and will benefit future development of highly functional, sustainable materials. The synthesis of polysaccharides containing aldehyde or ketone moieties is a promising tool for achieving this goal because of the rich chemistry of aldehyde or ketone groups, including Schiff base formation, nucleophilic addition, and reductive amination. The obtained polysaccharide aldehydes or ketones themselves have rich potential for making useful materials, such as self-healing hydrogels, polysaccharide-protein therapeutic conjugates, or drug delivery vehicles. Herein, we review recent advances in synthesizing polysaccharides containing aldehyde or ketone moieties and briefly introduce their reactivity and corresponding applications.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
48
|
Jiang C, Chao Y, Xie W, Wu D. Using bacterial cellulose to bridge covalent and physical crosslinks in hydrogels for fabricating multimodal sensors. Int J Biol Macromol 2024; 263:130178. [PMID: 38368981 DOI: 10.1016/j.ijbiomac.2024.130178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Network optimization is vital for the polysaccharide based hydrogels with multiple crosslinks. In this study, we developed a 'two-step' strategy to activate synergistic effect of chemical and physical crosslinks using a poly (vinyl alcohol) (PVA)/bacterial cellulose (BC) hydrogel as a template. The BC nanofibers, on the one hand, acted as nucleating agents, participating in the crystallization of PVA, and on the other hand, were also involved in the formation of boronic ester bond, anchored with the PVA chains via chemical bonding. Therefore, the existence of BC nanofibers, as 'bridge', linked the crystalline regions and amorphous parts of PVA together, associating the two characteristic crosslinks, which was conducive to load transfer. The mechanical properties of resultant hydrogels, including the tensile elongation and strength, as well as fracture toughness, were significantly improved. Moreover, the dually cross-linked hydrogels possessed ionic conductivity, which was sensitive to the tensile deformation and environmental temperature. This study clarifies a unique role of BC nanofibers in hydrogels, and proposes an effective approach to construct multiple networks in the nanocellulose reinforced PVA hydrogels.
Collapse
Affiliation(s)
- Chenguang Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuchen Chao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
49
|
Taylor L. Self-healing hydrogels for enhancing chemotherapy drug efficacy: Advancements in anti-sarcoma and carcinoma therapies and clinical trial feasibility. CANCER PATHOGENESIS AND THERAPY 2024; 2:132-134. [PMID: 38601480 PMCID: PMC11002744 DOI: 10.1016/j.cpt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 04/12/2024]
Abstract
•Site-specific administration is key for optimizing anticancer drug administration; self-healing hydrogels may allow this at reasonable costs and reproducibility.•Self-healing hydrogels have several real-world therapeutic applications, including drug administration.•Self-healing hydrogels are yet to be utilized for chemotherapy drug administration in clinical trials.•Clinical research on using self-healing hydrogels in anticancer therapeutics is feasible and valid compared to other advances in anticancer drug administration.
Collapse
Affiliation(s)
- Luc Taylor
- Cerebrovascular Health, Exercise, and Environmental Research Sciences (CHEERS) Laboratory, Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
50
|
Wang JT, Pei YY, Han BJ, Sun RS, Zuo RT, Cui GX, Zhang H, Cao ZZ, Jin L, Li QF. Multifunctional chitosan-based lanthanide luminescent hydrogel with stretchability, adhesion, self-healing, color tunability and antibacterial ability. Int J Biol Macromol 2024; 264:130768. [PMID: 38467228 DOI: 10.1016/j.ijbiomac.2024.130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Lanthanide luminescent hydrogels have broad application prospects in various fields. However, most of lanthanide hydrogels possess relatively simple functions, which is not conducive to practical applications. Therefore, it is becoming increasingly urgent to develop multifunctional hydrogels. Herein, a multifunctional chitosan-based lanthanide luminescent hydrogel with ultra-stretchability, multi-adhesion, excellent self-healing, emission color tunability, and good antibacterial ability was prepared by a simple one-step free radical polymerization. In this work, our designed lanthanide complexes [Ln(4-VDPA)3] contain three reaction sites, which can be copolymerized with N-[tris(hydroxymethyl) methyl] acrylamide (THMA), acrylamide (AM), and diacryloyl poly(ethylene glycol) (DPEG) to form the first chemical crosslinking network, while hydroxypropyltrimethyl ammonium chloride chitosan (HACC) interacts with the hydroxyl and amino groups derived from the chemical crosslinking network through hydrogen bonds to form the second physical crosslinking network. The structure of the double network as well as the dynamic hydrogen bond and lanthanide coordination endow the hydrogel with excellent stretchability, adhesion and self-healing properties. Moreover, the introduction of lanthanide complexes and chitosan makes the hydrogel exhibit outstanding luminescence and antibacterial performances. This research not only realizes the simple synthesis of multifunctional luminescent hydrogels, but also provides a new idea for the fabrication of biomass-based hydrogels as intelligent and sustainable materials.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ying-Ying Pei
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Bing-Jie Han
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Rui-Shuang Sun
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ruo-Tong Zuo
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Gai-Xia Cui
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Hao Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ze-Zhong Cao
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Qing-Feng Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|