1
|
Xu M, Wen Y, Shi Z, Xiong C, Zhu F, Yang Q. Piezoelectric Biopolymers: Advancements in Energy Harvesting and Biomedical Applications. Polymers (Basel) 2024; 16:3314. [PMID: 39684056 DOI: 10.3390/polym16233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable piezoelectric polymers have emerged as a hot research focus in bioelectronics, energy-harvesting systems, and biomedical applications, as well as in sustainable future development. Biopolymers possess plenty of features which make them promising candidates for next-generation electronic technologies, including biocompatibility, degradability, and flexibility. This review discusses piezoelectric biopolymers, focusing on the relationship between coupling mechanisms, material structures, and piezoelectric performance. Processing techniques such as annealing, mechanical drawing, and poling are introduced and further studied in terms of achieving high piezoelectric performance. This work reviews the strategies for enhancing piezoelectric properties via molecular engineering, nano structuring, and the incorporation of additives. Furthermore, the applications of these biopolymers in energy harvesting and biomedicine are provided, with a discussion of their potential in degradable bioelectronic devices. There are still challenges in optimizing piezoelectric performance and ensuring stability. Our research is expected to provide an understanding of these challenges and help to achieve a wider application of piezoelectric biopolymers.
Collapse
Affiliation(s)
- Menghan Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yongxian Wen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuqun Shi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fangju Zhu
- Zolia Quartz Stone Co., Ltd., Macheng 438300, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Sherrell PC, Šutka A, Timusk M, Šutka A. Alternatives to Fluoropolymers for Motion-Based Energy Harvesting: Perspectives on Piezoelectricity, Triboelectricity, Ferroelectrets, and Flexoelectricity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311570. [PMID: 38483028 DOI: 10.1002/smll.202311570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Indexed: 08/09/2024]
Abstract
Fluoropolymers, including polytetrafluoroethylene (PTFE, Teflon), polyvinylidene difluoride (PVDF), and fluorine kautschuk materials (FKMs, Viton) are critical polymers for applications ranging from non-stick coatings, corrosion resistant seals, semiconductor manufacturing, membranes, and energy harvesting technologies. However, the synthesis of these fluoropolymers requires the use of per- and polyfluorinated alkyl substances (PFAS) known colloquially as "forever chemicals," and as such there is a pressing need to develop alternative technologies that can serve the end-use of fluoropolymers without the environmental cost of using PFAS. Further, fluoropolymers themselves fall under the PFAS umbrella. Here, alternative mechanical-to-electrical energy harvesting polymers are reviewed and benchmarked against the leading fluoropolymer energy harvesters. These alternative technologies include nonfluoropolymer piezoelectric polymers, triboelectric nanogenerators (TENGs), ferroelectric elastomers, and flexoelectric polymers. A vision towards sustainable, non-fluoropolymer-based energy harvesting is provided.
Collapse
Affiliation(s)
- Peter C Sherrell
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Anna Šutka
- Institute of Surface and Materials Engineering, Riga Technical University, Riga, LV-1048, Latvia
| | - Martin Timusk
- Institute of Physics, University of Tartu, Tartu, 50411, Estonia
| | - Andris Šutka
- Institute of Surface and Materials Engineering, Riga Technical University, Riga, LV-1048, Latvia
| |
Collapse
|
4
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
5
|
Gupta S, Saud A, Munira N, Allal A, Preud'homme H, Shomar B, Zaidi SJ. Removal of heavy metals from wastewater by aerogel derived from date palm waste. ENVIRONMENTAL RESEARCH 2024; 245:118022. [PMID: 38151152 DOI: 10.1016/j.envres.2023.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Cellulose that has been sourced from date palm leaves as a primary component was utilised. This cellulose served as the foundational material for the development of an aerogel composite. During this process, MXene (Ti3C2Tx) played a pivotal role in enhancing the overall composition of the aerogel. To ensure the stability and durability of the resulting aerogel structure, calcium ions were introduced to the mix. These ions facilitated the cross-linking process of sodium alginate molecules, ultimately leading to the formation of calcium alginate. This cross-linking step is crucial for the enhanced mechanical and chemical stability of the aerogel. Incorporating alginate and Ti3C2Tx into the cellulose aerogel enhanced its structural integrity in aqueous conditions and increased its adsorption capacity. When evaluated with synthetic wastewater, this composite exhibited remarkable adsorption capacities of 72.9, 114.4, 92.9, and 123.9 mg/g for As, Cd, Ni, and Zn ions, respectively. A systematic study was carried out to see the effect of various parameters, including contact time, MXene concentration, pH, and temperature on the adsorption of these elements. Peak adsorption was achieved at 60 min, favoring a pH range between 6 and 8 and exhibited optimal sorption efficiency at lower temperatures. The adsorption kinetics adhered closely to a pseudo-second-order, while the Freundlich model adeptly described the adsorption isotherms. An interesting result of this research was the aerogel's regenerative potential. After undergoing a basic acid treatment, the MXene/cellulose/alginate aerogel composite could be restored and reused for up to three cycles, all while maintaining its core performance capabilities even after the rigorous cross-linking processes. In three consecutive cycles, the removal percentages for As, Cd, Ni, and Zn were 48.15%, 80.38%, 56.51%, and 86.12% in cycle 1; 37.35%, 65.63%, 45.97%, and 78.42% in cycle 2; and 28.60%, 56.22%, 34.70%, and 65.83% in cycle 3, respectively. The composite was tested in conditions resembling seawater salinity. Impressively, the aerogel continued to demonstrate a significant ability to adsorb metals, reinforcing its potential utility in real-world aquatic scenarios. These findings suggest that the composite aerogel, integrating MXene, cellulose, and alginate, is an effective medium for the targeted removal of heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Soumya Gupta
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar; IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Asif Saud
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nazmin Munira
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Ahmed Allal
- IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Basem Shomar
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Syed Javaid Zaidi
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
6
|
Siddique A, Nawaz H, Razzaque S, Tabasum A, Gong H, Razzaq H, Umar M. PVDF-Based Piezo-Catalytic Membranes-A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers (Basel) 2024; 16:699. [PMID: 38475382 DOI: 10.3390/polym16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of β-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The β-phase of the PVDF piezoelectric material generates an electron-hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal.
Collapse
Affiliation(s)
- Amna Siddique
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Hifza Nawaz
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Shumaila Razzaque
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka44/52, 01-224 Warsaw, Poland
| | - Anila Tabasum
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Hugh Gong
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Humaira Razzaq
- Department of Chemistry, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Muhammad Umar
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Quan L, Shi X, Zhang J, Shu Z, Zhou L. Preparation of a Novel Lignocellulose-Based Aerogel by Partially Dissolving Medulla Tetrapanacis via Ionic Liquid. Gels 2024; 10:138. [PMID: 38391468 PMCID: PMC10888322 DOI: 10.3390/gels10020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
A novel lignocellulosic aerogel, MT-LCA, was successfully prepared from MT by undergoing partial dissolution in an ionic liquid, coagulation in water, freezing in liquid nitrogen, and subsequent freeze-drying. The MT-LCA preserves its original honeycomb-like porous structure, and the newly formed micropores contribute to increased porosity and specific surface area. FT-IR analysis reveals that MT, after dissolution and coagulation, experiences no chemical reactions. However, a change in the crystalline structure of cellulose is observed, transitioning from cellulose I to cellulose II. Both MT and MT-LCA demonstrate a quasi-second-order kinetic process during methylene blue adsorption, indicative of chemical adsorption. The Langmuir model proves to be more appropriate for characterizing the methylene blue adsorption process. Both adsorbents exhibit monolayer adsorption, and their effective adsorption sites are uniformly distributed. The higher porosity, nanoscale micropores, and larger pore size in MT-LCA enhance its capillary force, providing efficient directional transport performance. Consequently, the prepared MT-LCA displays exceptional compressive performance and efficient directional transport capabilities, making it well-suited for applications requiring high compressive performance and selective directional transport.
Collapse
Affiliation(s)
- Long Quan
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xueqian Shi
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Jie Zhang
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Zhuju Shu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhou
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & Utilization, Hefei 230036, China
| |
Collapse
|
8
|
Wu C, Li J, Zhang YQ, Li X, Wang SY, Li DQ. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. CHEMSUSCHEM 2023; 16:e202300518. [PMID: 37501498 DOI: 10.1002/cssc.202300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The cellulose-based hydrogel has occupied a pivotal position in almost all walks of life. However, the native cellulose can not be directly used for preparing hydrogel due to the complex non-covalent interactions. Some literature has discussed the dissolution and modification of cellulose but has yet to address the influence of the pretreatment on the as-prepared hydrogels. Firstly, the "touching" of cellulose by derived and non-derived solvents was introduced, namely, the dissolution of cellulose. Secondly, the "conversion" of functional groups on the cellulose surface by special routes, which is the modification of cellulose. The above-mentioned two parts were intended to explain the changes in physicochemical properties of cellulose by these routes and their influences on the subsequent hydrogel preparation. Finally, the "reinforcement" of cellulose-based hydrogels by physical and chemical techniques was summarized, viz., improving the mechanical properties of cellulose-based hydrogels and the changes in the multi-level structure of the interior of cellulose-based hydrogels.
Collapse
Affiliation(s)
- Chao Wu
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Yu-Qing Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Shu-Ya Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| |
Collapse
|
9
|
Zheng X, Yin Y, Wang P, Sun C, Yang Q, Shi Z, Xiong C. High-performance dielectric film capacitors based on cellulose/Al 2O 3 nanosheets/PVDF composites. Int J Biol Macromol 2023; 243:125220. [PMID: 37285894 DOI: 10.1016/j.ijbiomac.2023.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The design and preparation of novel renewable biomass-based dielectric composites have drawn great attention recently. Here, cellulose was dissolved in NaOH/urea aqueous solution, and Al2O3 nanosheets (AONS) synthesized by hydrothermal method were used as fillers. Then the regenerated cellulose (RC)-AONS dielectric composite films were prepared by regeneration, washing and drying. The two-dimensional AONS had a better effect on improving the dielectric constant and breakdown strength of the composites, so that the RC-AONS composite film with 5 wt% AONS content reached an energy density of 6.2 J/cm3 at 420 MV/m. Furthermore, in order to improve the dielectric energy storage properties of cellulose films in high humidity environment, the hydrophobic polyvinylidene fluoride (PVDF) was innovatively introduced to construct RC-AONS-PVDF composite films. The energy storage density of the prepared ternary composite films could reach 8.32 J/cm3 at 400 MV/m, which was 416 % improvement against that of the commercially biaxially oriented polypropylene (2 J/cm3), and could be cycled for >10,000 times under 200 MV/m. Concurrently, the water absorption of the composite film in humidity was effectively reduced. This work broadens the application prospect of biomass-based materials in the field of film dielectric capacitor.
Collapse
Affiliation(s)
- Xin Zheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Yin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyu Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhuqun Shi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
González J, Ghaffarinejad A, Ivanov M, Ferreira P, Vilarinho PM, Borrás A, Amorín H, Wicklein B. Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1206. [PMID: 37049298 PMCID: PMC10097288 DOI: 10.3390/nano13071206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d33 coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators.
Collapse
Affiliation(s)
- Jaime González
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Ali Ghaffarinejad
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (ICMS), Consejo Superior de Investigaciones Científicas (CSIC-US), 41092 Seville, Spain
| | - Maxim Ivanov
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula M Vilarinho
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Borrás
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (ICMS), Consejo Superior de Investigaciones Científicas (CSIC-US), 41092 Seville, Spain
| | - Harvey Amorín
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| |
Collapse
|
11
|
Yang L, Xu W, Shi X, Wu M, Yan Z, Zheng Q, Feng G, Zhang L, Shao R. Investigating the thermal conductivity and flame-retardant properties of BN/MoS2/PCNF composite film containing low BN and MoS2 nanosheets loading. Carbohydr Polym 2023; 311:120621. [PMID: 37028866 DOI: 10.1016/j.carbpol.2023.120621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Cellulose has attracted considerable attention as a potential substitute for plastics. However, the flammability and high thermal insulation properties of cellulose contradict the unique requirements for highly integrated and miniaturized electronics i.e., rapid thermal dissipation and efficient flame retardancy. In this work, cellulose was first phosphorylated to achieve intrinsic flame-retardant properties, and subsequently treated with MoS2 and BN, ensuring efficient dispersion throughout the material. Via chemical crosslinking, a sandwich-like unit was formed, in the order of BN, MoS2, and phosphorylated cellulose nanofibers (PCNF). The sandwich-like units were further self-assembled, layer-by-layer, to successfully create BN/MoS2/PCNF composite films exhibiting excellent thermal conductivity and flame retardancy, and comprised a low MoS2 and BN loading. The thermal conductivity of the BN/MoS2/PCNF composite film containing 5 wt% BN nanosheets was higher than that of neat PCNF film. The combustion characterization of BN/MoS2/PCNF composite films revealed highly desirable properties that were far more superior than the BN/MoS2/TCNF (TCNF, TEMPO-oxidized cellulose nanofibers) composite films. Moreover, the toxic volatiles that escaped from flaming BN/MoS2/PCNF composite films were significantly reduced compared to that of the BN/MoS2/TCNF composite film alternative. The thermal conductivity and flame retardancy of BN/MoS2/PCNF composite films have promising application prospects in highly integrated and eco-friendly electronics.
Collapse
|
12
|
Wang B, Qiu S, Chen Z, Hu Y, Shi G, Zhuo H, Zhang H, Zhong L. Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydr Polym 2023; 299:120008. [PMID: 36876760 DOI: 10.1016/j.carbpol.2022.120008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Nanocelluloses, derived from various plants or specific bacteria, represent the renewable and sophisticated nano building blocks for emerging functional materials. Especially, the assembly of nanocelluloses as fibrous materials can mimic the structural organization of their natural counterparts to integrate various functions, thus holding great promise for potential applications in various fields, such as electrical device, fire retardance, sensing, medical antibiosis, and drug release. Due to the advantages of nanocelluloses, a variety of fibrous materials have been fabricated with the assistance of advanced techniques, and their applications have attracted great interest in the past decade. This review begins with an overview of nanocellulose properties followed by the historical development of assembling processes. There will be a focus on assembling techniques, including traditional methods (wet spinning, dry spinning, and electrostatic spinning) and advanced methods (self-assembly, microfluidic, and 3D printing). In particular, the design rules and various influencing factors of assembling processes related to the structure and function of fibrous materials are introduced and discussed in detail. Then, the emerging applications of these nanocellulose-based fibrous materials are highlighted. Finally, some perspectives, key opportunities, and critical challenges on future research trends within this field are proposed.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuting Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
13
|
Zhang S, Wang Z, Hu Y, Ji H, Xiao Y, Wang J, Xu G, Ding F. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature. Biomacromolecules 2022; 23:5056-5064. [PMID: 36331293 DOI: 10.1021/acs.biomac.2c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cellulose aerogels are highly attractive candidates in various applications, such as thermal insulation, adsorption separation, biomedical field, and as carriers, due to their intrinsic merits of low density, high porosity, biodegradability, and renewability. However, the expensive cost of the supercritical drying process and poor mechanical properties limit their practical applications. Herein, a new method was presented to fabricate cellulose acetate/benzoxazine hybrid aerogels (CBAs) with low cost, low drying shrinkage, excellent mechanical properties under cryogenic condition (-196 °C), outstanding thermal insulation, flame retardancy, and good thermal stability by ambient pressure drying. In more detail, the weighted drying shrinkage rate of CBAs-T2 can be controlled to 6.8% (the average value along the radial and axial directions), mainly due to the enhanced skeleton, by introducing polybenzoxazine networking chains. The resultant CBAs-T2 exhibit outstanding mechanical properties at room temperature because of the presence of the polybenzoxazine hybrid in the cellulose networking system. CBAs-T2 still have good mechanical properties even after subjecting them to liquid nitrogen treatment. In addition, the optimal value of thermal conductivity (0.033 W m-1 K-1) is gained easily because of the uniform cross-linking networking structure and small pore size. A superior flame retardance of CBAs-T2 is endowed to achieve self-extinguishment after ignition, which is attributed to the presence of the aromatic ring in the backbone structure. Moreover, the good thermal stability of CBAs-T2 is attributed to the fact that polybenzoxazine components could resist the decomposition of cellulose acetate and inhibit heat release during the combustion process. Our study would provide a novel method for obtaining biomass aerogels including the cellulose-based materials system with low drying shrinkage and superior mechanical properties despite bearing a cryogenic environment by the low-cost ambient pressure drying approach.
Collapse
Affiliation(s)
- Sizhao Zhang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China.,Postdoctoral Research Station on Mechanics, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, Hunan, China
| | - Zhao Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Yangbiao Hu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Hui Ji
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Yunyun Xiao
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Jing Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Guangyu Xu
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| | - Feng Ding
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
14
|
TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting. Carbohydr Polym 2022; 298:120111. [DOI: 10.1016/j.carbpol.2022.120111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
|
15
|
Yue C, Ding C, Yang N, Luo Y, Su J, Cao L, Cheng B. Strong and tough collagen/cellulose nanofibril composite films via the synergistic effect of hydrogen and metal–ligand bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
17
|
Zhu H, Zhu E, Xie Y, Liu D, Hu Y, Shi Z, Xiong C, Yang Q. Hydrangea-like nanocellulose microspheres with high dye adsorption and drug encapsulation prepared by emulsion method. Carbohydr Polym 2022; 296:119947. [DOI: 10.1016/j.carbpol.2022.119947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
|
18
|
Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydr Polym 2022; 297:120039. [DOI: 10.1016/j.carbpol.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
19
|
Wen Z, Gao D, Lin J, Li S, Zhang K, Xia Z, Wang D. Magnetic porous cellulose surface-imprinted polymers synthetized with assistance of deep eutectic solvent for specific recognition and purification of bisphenols. Int J Biol Macromol 2022; 216:374-387. [PMID: 35798079 DOI: 10.1016/j.ijbiomac.2022.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using Fe3O4 as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
Collapse
Affiliation(s)
- Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siyi Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|