1
|
Geng Y, Li Y, Qi H, Gao J, Wu Y, Cai X. Preparation of pH-enzyme dual-responsive gel microspheres and their treatment of ulcerative colitis. Int J Biol Macromol 2025; 306:141567. [PMID: 40023431 DOI: 10.1016/j.ijbiomac.2025.141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Mesalazine (MSZ), a first-line treatment for ulcerative colitis (UC), was formulated into acid-resistant, colon-targeted gel microspheres to reduce upper gastrointestinal tract (GIT) exposure and extend drug retention in the colon. In this study, we used MSZ/hydroxypropyl-β-cyclodextrin (MSZ/HP-β-CD) as the model drug, dopamine-modified sodium alginate (DA-SA) and konjac glucomannan (KGM) as the carrier matrix, and chitosan (CS) as the coating material. The colon-targeted gel microspheres (MSZ/HP-β-CD/DA-SA/KGM/CS) were prepared using the drop method. These microspheres had a drug loading capacity of 7.9 ± 0.01 % and an encapsulation efficiency of 72.5 ± 0.03 %. The drug primarily released in the colon environment, showing pH and β-mannanase sensitivity. The dried microspheres measured approximately 0.6 mm, suitable for oral administration. In the rat UC model, after oral administration of gel microspheres, the colon length increased, while the DAI score, spleen index, and the expression levels of IL-6, IL-1β, TNF-α, TLR4, MyD88 and NF-κB p65 all decreased. Histopathological examination showed that treated UC rats' colon tissues closely resembled those of healthy controls. These findings indicate that pH-enzyme-responsive coated gel microspheres can effectively target the colon and show potential for UC treatment.
Collapse
Affiliation(s)
- Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jianguo Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yanqing Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
2
|
Lv M, Wan X, Wang Y, Jiang H, Qin X, Wang Z, Yang C, Shuai J, Lu Q, Xu F, Liu Y. Combined gut microbiome and metabolomics to reveal the mechanism of proanthocyanidins from the roots of Ephedra sinica Stapf on the treatment of ulcerative colitis. J Pharm Biomed Anal 2024; 249:116351. [PMID: 39018720 DOI: 10.1016/j.jpba.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.
Collapse
Affiliation(s)
- Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| | - Xiayun Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Houli Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiaogang Qin
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu 226300, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Changshui Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jinhao Shuai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Qianwen Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Yanqin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| |
Collapse
|
3
|
Li YY, Sun JW, Chen L, Lu YM, Wu QX, Yan C, Chen Y, Zhang M, Zhang WN. Structural characteristics of a polysaccharide from Armillariella tabescens and its protective effect on colitis mice via regulating gut microbiota and intestinal barrier function. Int J Biol Macromol 2024; 277:133719. [PMID: 38992544 DOI: 10.1016/j.ijbiomac.2024.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A new polysaccharide fraction (ATP) was obtained from Armillariella tabescens mycelium. Structural analysis suggested that the backbone of ATP was →4)-α-D-Glcp(1 → 2)-α-D-Galp(1 → 2)-α-D-Glcp(1 → 4)-α-D-Glcp(1→, which branched at O-3 of →2)-α-D-Glcp(1 → and terminated with T-α-D-Glcp or T-α-D-Manp. Besides, ATP significantly alleviated ulcerative colitis (UC) symptoms and inhibited the production of pro-inflammation cytokines (IL-1β, IL-6). Meanwhile, ATP could improve colon tissue damage by elevating the expression of MUC2 and tight junction proteins (ZO-1, occludin and claudin-1) levels and enhance intestinal barrier function through inhibiting the activation of MMP12/MLCK/p-MLC2 signaling pathway. Further studies exhibited that ATP could increase the relative abundance of beneficial bacteria such as f. Muribaculacese, g. Muribaculaceae, and g. Alistips, and decrease the relative abundance of g. Desulfovibrio, g. Colidextribacter, g. Ruminococcaceae and g.Oscillibacter, and regulate the level of short-chain fatty acids. Importantly, FMT intervention with ATP-derived microbiome certified that gut microbiota was involved in the protective effects of ATP on UC. The results indicated that ATP was potential to be further developed into promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Afliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
4
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Wang S, Cheng X, Ma T, Wang S, Yang S, Zhu W, Song J, Han J, Jin Y, Guo J. High-substituted hydroxypropyl cellulose prepared by homogeneous method and its clouding and self-assembly behaviors. Carbohydr Polym 2024; 330:121822. [PMID: 38368103 DOI: 10.1016/j.carbpol.2024.121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
Hydroxypropyl cellulose (HPC) is a sustainable cellulose derivative valued for its excellent biocompatibility and solubility and is widely used in various fields. Recent scientific research on high-substituted HPC mainly focused on its efficient preparation and phase transition behavior. Herein, a novel strategy of high-substituted HPC synthesis was demonstrated by employing DMSO/TBAF·3H2O as a cellulose solvent, exhibiting more efficiency than traditional approaches. High-substituted HPC prepared has remarkable thermal stability, exceptional hydrophilicity, and satisfactory solubility. Phase transition behavior of HPC with varying molar degrees of substitution (MS) was delved and a notable negative correlation between MS and cloud point temperature (TCP), was revealed, particularly evident at an MS of 12.3, where the TCP drops to 33 °C. Moreover, a unique self-assembly behavior featuring structural color and responsiveness to force in a solvent-free environment emerged when the MS exceeded 10.4. These insights comprehensively strengthen the understanding and knowledge of high-substituted HPC, simultaneously paving the way for further HPC investigation and exploitation.
Collapse
Affiliation(s)
- Shihao Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Cheng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shasha Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; College of Material Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Gong H, Gan X, Qin B, Chen J, Zhao Y, Qiu B, Chen W, Yu Y, Shi S, Li T, Liu D, Li B, Wang S, Wang H. Structural characteristics of steamed Polygonatum cyrtonema polysaccharide and its bioactivity on colitis via improving the intestinal barrier and modifying the gut microbiota. Carbohydr Polym 2024; 327:121669. [PMID: 38171660 DOI: 10.1016/j.carbpol.2023.121669] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Steamed Polygonatum cyrtonema has been commonly used clinically for its gaining effect, whose main active ingredient is a polysaccharide. A water-soluble polysaccharide named PSP-W-1 was isolated from steamed Polygonatum cyrtonema. PSP-W-1 was characterized as a galactan having a backbone consisting predominately of 1,4-β-linked Galp branched at the C-6 position by T-β-linked Galp with a molecular weight of 14.4 kDa. PSP-W-1 could inhibit the overproduction of inflammatory factors and inflammatory mediators (iNOS, IL-6, COX-2) in dextran sodium sulfate-induced colitis mice. Oral administration of PSP-W-1 dramatically alleviated colonic pathological damage, repaired the intestinal barrier (occludin and ZO-1) and regulated the intestinal microbiota by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and norank_f_norank_o_Clostridia UCG-014, while decreasing the abundance of Bacteroides and Escherichia-Shigella to alleviate colitis symptoms. Overall, our findings suggest that PSP-W-1 might be a therapeutic option for both the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Baoyi Qin
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Dong Liu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, Anhui, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Liu J, Zhang L, Li D, Yu X, Gao Y, Zhou Y. Intestinal metabolomics in premature infants with late-onset sepsis. Sci Rep 2024; 14:4659. [PMID: 38409213 PMCID: PMC10897474 DOI: 10.1038/s41598-024-55398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
We aimed to investigate the characteristics of intestinal metabolomics and non-invasive biomarkers for early diagnosis of late-onset sepsis (LOS) by analyzing gut metabolites in preterm infants with LOS. We collected stool samples from septic and healthy preterm infants for analysis by liquid chromatography-mass spectrometry. 123 different metabolites were identified and 13 pathways were mainly involved. Glycine, serine, and threonine metabolism; glyoxylate and dicarboxylic acid metabolism; glutathione metabolism; primary bile acid biosynthesis; steroid synthesis; pentose and glucuronic acid interconversion may be involved in the pathogenesis of LOS in preterm infants. The significant changes of N-Methyldopamine, cellulose, glycine, gamma-Glutamyltryptophan, N-Ribosylnicotinamide and 1alpha, 25-dihydroxycholecalciferol showed specific diagnostic values and as non-invasive biomarkers for LOS.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Li Zhang
- Department of Neonatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Dong Li
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiaotong Yu
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Ying Gao
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| | - Ying Zhou
- Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, 116037, China
| |
Collapse
|
8
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
9
|
Li X, Lu X, Liang X, Yang Z, Wang S, Guo Y. Preparation and extraction property study of corn cob-like magnetic mosaic carbon materials derived from MOF-on-MOF composites. Anal Chim Acta 2024; 1287:342112. [PMID: 38182348 DOI: 10.1016/j.aca.2023.342112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Large accumulations of pesticide residues in the environment eventually enter the human body with food. Based on magnetic solid-phase extraction (MSPE) technology, it is possible to achieve efficient extraction of trace pesticide residues in foodstuffs, and the construction of MSPE adsorbents with excellent magnetic properties and many active sites is still one of the main research topics. Based on this, we developed a new strategy for the preparation of "MOF-on-MOF" composites, which were carbonized and used as adsorbents for the extraction of pesticide residues in cereals. RESULTS A novel corn cob core-shell composite Fe2O3@C@ZIF-8 was created by embedding ZIF-8 onto the surface of Fe2O3@C derived from MIL-88A(Fe), and used for the extraction of benzoylurea insecticides(BUs) from cereals. The adsorption behaviour between Fe2O3@C@ZIF-8 and BUs was investigated by static and kinetic experiments and the adsorption mechanism was elaborated. For the trace analysis of BUs, a magnetic solid-phase extraction combined with high performance liquid chromatography-ultraviolet detector (HPLC-UV) approach was also developed. Under the optimized experimental conditions, the limits of detection and quantification were 0.015-0.03 μg L-1 and 0.05-0.1 μg L-1, and the relative standard deviations for the intra-day and inter-day ranges were 1.82%-2.13 % and 3.85%-4.59 %, respectively. The spiked recoveries of the four cereals ranged from 82.72% to 104.45 %. After 10 cycles of use of Fe2O3@C@ZIF-8, the recoveries of BUs ranged from 77.90% to 96.74 %. SIGNIFICANCE The analytical method based on Fe2O3@C@ZIF-8 as adsorbent has a low limit of detection, a wide linear range and is highly applicable to the analysis of real samples. In addition, the strategy developed in this study for the preparation of thermoplastic polymer-assisted "MOF-on-MOF" composites has promising applications.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhimin Yang
- Lanzhou Institute for Food and Drug Control, Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou 730050, China
| | - Shuai Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
10
|
Cui L, Zou S, Liu J, Lv H, Li H, Zhang Z. Potential effects of sodium hyaluronate on constipation-predominant irritable bowel syndrome. Int Immunopharmacol 2024; 127:111404. [PMID: 38128311 DOI: 10.1016/j.intimp.2023.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Treatment strategies for constipation-predominant irritable bowel syndrome (IBS-C) continue to improve. However, effective drugs are still lacking. Herein, we explored whether sodium hyaluronate (SH) could be used to treat IBS-C. The effects of SH with different molecular weights were compared in a rat model of IBS-C. Low-molecular-weight SH (LMW-SH, 5 ∼ 10 kDa), medium-molecular-weight SH (MMW-SH, 200 ∼ 400 kDa), and high-molecular-weight SH (HMW-SH, 1300 ∼ 1500 kDa) were screened for efficacy in IBS-C using the following indicators: body weight, number of fecal pellets, fecal moisture, visceral hypersensitivity, and gastrointestinal transit rate. H-HMW-SH was the most effective in improving IBS-C symptoms. The ELISA kits indicated that H-HMW-SH reduced the levels of pro-inflammatory cytokines IL-1β, IL-18, and TNF-α in IBS-C rats. In addition, both western blot and immunofluorescence analyses showed that H-HMW-SH increased the protein expressions of claudin-1, occludin and zonula occludens-1. Furthermore, H-HMW-SH restored the balance of intestinal flora in different intestinal contents (duodenum, jejunum, ileum, and colon) and feces of rats with IBS-C. Overall, our study illustrates the therapeutic potential of H-HMW-SH in the treatment of IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Shuting Zou
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Jing Liu
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Huixia Lv
- School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Hui Li
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| |
Collapse
|
11
|
Sun X, Jin X, Wang L, Lin Z, Feng H, Zhan C, Liu X, Cheng G. Fraxetin ameliorates symptoms of dextran sulphate sodium-induced colitis in mice. Heliyon 2024; 10:e23295. [PMID: 38163213 PMCID: PMC10755303 DOI: 10.1016/j.heliyon.2023.e23295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Ulcerative colitis (UC) is one of the primary inflammatory bowel diseases (IBDs) and causes a serious threat to human public health around the world. Currently, there are no proven safe and effective treatment options to treat UC. Fraxetin (Fxt) is a widely recognized antioxidant and anti-inflammatory legume derived from ash bark. In the present study, we investigated the protective effect and mechanism of Fxt on UC. Our results showed that Fxt significantly attenuated the body weight, colon length reduction, tissue damage, and disease activity index induced by dextran sodium sulphate (DSS). Moreover, the DSS-induced activation of the NF-κB pathway and NLRP3 inflammasomes was inhibited, and the inflammatory response was reduced. Fxt restored gut barrier function by increasing the number of goblet cells and the levels of tight junction proteins (ZO-1 and occludin). In addition, Fxt can alter the intestinal microbiota by enhancing the diversity of the microbiota, increasing the relative abundance of beneficial bacteria and inhibiting the growth of harmful bacteria. These results revealed that Fxt alleviates DSS-induced colitis by modulating the inflammatory response, enhancing epithelial barrier integrity and regulating the gut microbiota. This study may provide a scientific basis for the potential therapeutic effect of Fxt in the prevention of colitis and other related diseases.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Jin
- Huazhong Agricultural University, Wuhan 430070, China
| | - Lumeng Wang
- Shengming Biological Technology (Zhengzhou) Co., Ltd., Zhengzhou 450000, China
| | - Zhengdan Lin
- Huazhong Agricultural University, Wuhan 430070, China
| | - Helong Feng
- Huazhong Agricultural University, Wuhan 430070, China
| | - Cunlin Zhan
- Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- Huazhong Agricultural University, Wuhan 430070, China
| | - Guofu Cheng
- Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Wang ZH, Zhang GY, Sun C, Ning SX, Zhou DY, Song L. Targeting DSS-induced ulcerative colitis: evaluating the therapeutic potential of WPI-stachyose conjugates. Food Funct 2024; 15:96-109. [PMID: 38047401 DOI: 10.1039/d3fo03598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The pursuit of food-based alternatives to conventional therapies for ulcerative colitis (UC) demands immediate attention. In prior investigations, we synthesized WPI-stachyose conjugates through the Maillard reaction, identifying them as functional prebiotics. However, their impact on in vivo regulation of gut microbiota remains inadequately explored. To bridge this gap, we delved into the therapeutic effects and mechanisms of WPI-stachyose conjugates as prebiotic-functional components in C57BL/6J mice afflicted with dextran sodium sulfate (DSS)-induced UC. The treatment involving WPI-stachyose conjugates led to significant therapeutic advancements, evident in the reduction of pro-inflammatory cytokine levels and restoration of gut microbiota composition. Noticeable enhancements were observed in UC-associated symptoms, including weight loss, colon length reduction, and tissue damage, notably improving in the treated mice. Remarkably, both the conjugates and the physical combination effectively lowered pro-inflammatory cytokines and oxidative stress, with the conjugates demonstrating enhanced effectiveness. Furthermore, the simultaneous administration of WPI-stachyose conjugates further amplified the presence of beneficial bacteria and elevated short-chain fatty acids, acknowledged for their favorable impact across various conditions. These findings underscore the potential therapeutic application of WPI-stachyose conjugates in addressing DSS-induced UC, offering insights into innovative therapeutic strategies.
Collapse
Affiliation(s)
- Zi-Han Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Guang-Yao Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Cong Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Shu-Xin Ning
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Wang Y, Qiao M, Yao X, Feng Z, Hu R, Chen J, Liu L, Liu J, Sun Y, Guo Y. Lidocaine ameliorates intestinal barrier dysfunction in irritable bowel syndrome by modulating corticotropin-releasing hormone receptor 2. Neurogastroenterol Motil 2023; 35:e14677. [PMID: 37736684 DOI: 10.1111/nmo.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent pathogenic factor underlying various disorders. Currently there is no effective resolution. Previous studies have reported the potential anti-inflammatory properties of lidocaine and its ability to alleviate visceral hypersensitivity in individuals with irritable bowel syndrome (IBS). Therefore, our study will further verify the effect of lidocaine on intestinal barrier dysfunction in IBS and investigate the underlying mechanisms. METHODS In this study, we investigated the role of lidocaine by assessing visceral hypersensitivity, body weight, inflammatory factors, fluorescein isothiocyanate-dextran 4000 (FD4) flux, tight junctions (TJs) and spleen and thymus index in rats subjected to water avoidance stress (WAS) to mimic intestinal barrier dysfunction in IBS with and without lidocaine. In vitro, we investigated the role of corticotropin-releasing hormone receptor 2 (CRHR2) in lidocaine-treated Caco2 cells using small interfering RNA (siRNA) targeting CRHR2. KEY RESULTS In WAS rats, lidocaine significantly restored weight loss, damaged TJs, spleen index and thymus index and inhibited abdominal hypersensitivity as well as blood levels of markers indicating intestinal permeability, such as diamine oxidase (DAO), D-lactic acid (D-Lac) and lipopolysaccharide (LPS). Consequently, the leakage of FD4 flux from intestine was significantly attenuated in lidocaine group, and levels of intestinal inflammatory factors (IL-1β, IFN-γ, TNF-α) were reduced. Interestingly, lidocaine significantly suppressed corticotropin-releasing hormone (CRH) levels in lamina propria cells, while the CRH receptor CRHR2 was upregulated in intestinal epithelial cells. In vitro, lidocaine enhanced the expression of CRHR2 on Caco-2 intestinal epithelial cells and restored disrupted TJs and the epithelial barrier caused by LPS. Conversely, these effects were diminished by a CRHR2 antagonist and siRNA-CRHR2, suggesting that the protective effect of lidocaine depends on CRHR2. CONCLUSIONS AND INFERENCES Lidocaine ameliorates intestinal barrier dysfunction in IBS by potentially modulating the expression of CRHR2 on intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Wang
- Department of Laboratory Medicine, Sichuan Tianfu New Area People's Hospital, Chengdu, China
| | - Mingbiao Qiao
- Department of Pathology, De Yang People's Hospital, Deyang, China
| | - Xue Yao
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zhonghui Feng
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Ruiqi Hu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Jinbo Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
14
|
Chen H, Li Y, Wang J, Zheng T, Wu C, Cui M, Feng Y, Ye H, Dong Z, Dang Y. Plant Polyphenols Attenuate DSS-induced Ulcerative Colitis in Mice via Antioxidation, Anti-inflammation and Microbiota Regulation. Int J Mol Sci 2023; 24:10828. [PMID: 37446006 DOI: 10.3390/ijms241310828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is associated with inflammation, oxidative stress, and gut microbiota imbalance. Although most researchers have demonstrated the antioxidant bioactivity of the phenolic compounds in plants, their UC-curing ability and underlying mechanisms still need to be further and adequately explored. Herein, we studied the antioxidation-structure relationship of several common polyphenols in plants including gallic acid, proanthocyanidin, ellagic acid, and tannic acid. Furthermore, the in vivo effects of the plant polyphenols on C57BL/6 mice with dextran-sulfate-sodium-induced UC were evaluated and the action mechanisms were explored. Moreover, the interplay of several mechanisms was determined. The higher the number of phenolic hydroxyl groups, the stronger the antioxidant activity. All polyphenols markedly ameliorated the symptoms and pathological progression of UC in mice. Furthermore, inflammatory cytokine levels were decreased and the intestinal barrier was repaired. The process was regulated by the antioxidant-signaling pathway of nuclear-erythroid 2-related factor 2. Moreover, the diversity of the intestinal microbiota, Firmicutes-to-Bacteroides ratio, and relative abundance of beneficial bacteria were increased. An interplay was observed between microbiota regulation and oxidative stress, immunity, and inflammatory response. Furthermore, intestinal barrier repair was found to be correlated with inflammatory responses. Our study results can form a basis for comprehensively developing plant-polyphenol-related medicinal products.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Yunjie Dang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
15
|
Xiong M, Li Y, He H, Hao S, Fang P, Xu M, Chen Y, Chen Y, Yu S, Hu H. Cyclosporine A-loaded colon-targeted oral nanomicelles self-assembly by galactosylated carboxymethyl chitosan for efficient ulcerative colitis therapy. Eur J Pharm Biopharm 2023:S0939-6411(23)00163-7. [PMID: 37336365 DOI: 10.1016/j.ejpb.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
An oral galactosylated carboxymethyl chitosan polymeric nanomicelles (Gal-N-CMCS NPs) embedded in chitosan-alginate hydrogel (CA-Gel) was developed to load cyclosporine A (CyA) as therapeutic agents against ulcerative colitis (UC). Galactose modified CMCS with macrophage targeting characteristic and CyA via a simple ultrasonication method to form Gal-N-CMCS/CyA NPs, and mixed CA-Gel to acquire the final formulation (Gal-N-CMCS/CyA Gel). The generated Gal-N-CMCS/CyA NPs displayed a desirable particle size (206.8 nm), negative surface charge (-19.5 mV), and high encapsulating efficiency (89.6%). The morphology and release profiles were also charactered by transmission electron microscope [1] and dialysis method, respectively. Strikingly, the mucus penetration of Gal-N-CMCS/CyA NPs exceeded 90% within 90 min. The Gal-N-CMCS NPs internalized by macrophages were 3.3-fold higher than CMCS-N NPs, thereby, enhancing the anti-inflammatory activities of NPs. Meanwhile, these NPs exhibited excellent biocompatibility, reduced the toxic effect of CyA, and targeting ability on inflammatory macrophages both in vitro and in vivo. Most importantly, in vivo studies revealed that CyA NPs could efficiently target the inflamed colon, remarkably alleviate inflammation, repair mucosal and reconstructed colonic epithelial barriers in UC mice induced by dextran sulfate sodium (DSS) via Toll-like receptor 4 -Nuclear factor kappa-B (TLR4-NF-κB) pathway. Our findings suggest that these high-performance and facilely fabricated Gal-N-CMCS/CyA NPs could be developed as a promising drug carrier for oral UC treatment.
Collapse
Affiliation(s)
- Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
He C, Yue Y, Li R, Huang Y, Shu L, Lv H, Wang J, Zhang Z. Sodium hyaluronates applied in the face affects the diversity of skin microbiota in healthy people. Int J Cosmet Sci 2023. [PMID: 36710533 DOI: 10.1111/ics.12845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE A healthy and stable microbiome has many beneficial effects on the host, while an unbalanced or disordered microbiome can lead to various skin diseases. Hyaluronic acid is widely used in the cosmetics and pharmaceutical industries; however, specific reports on its effect on the skin microflora of healthy people have not been published. This study aimed to determine the effect of sodium hyaluronate on the facial microflora of healthy individuals. METHODS Face of 20 healthy female volunteers between 18 and 24 years was smeared with sodium hyaluronate solution once per day. Cotton swabs were used to retrieve samples on days 0, 14, and 28, and high-throughput sequencing of 16 S rRNA was used to determine the changes in bacterial community composition. RESULTS Facial application of HA can reduce the abundance of pathogenic bacteria, such as Cutibacterium and S. aureus, and increase the colonization of beneficial bacteria. CONCLUSION This is the first intuitive report to demonstrate the effect of hyaluronic acid on facial microflora in healthy people. Accordingly, sodium hyaluronate was found to have a positive effect on facial skin health.
Collapse
Affiliation(s)
- Chen He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - YingXue Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruilong Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiping Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huixia Lv
- Special Cosmetics R&D Joint laboratory of China Pharmaceutical University & Bloomage Biotechnology Corporation Limited, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Li X, Xu S, Zhang Y, Li K, Gao XJ, Guo MY. Berberine Depresses Inflammation and Adjusts Smooth Muscle to Ameliorate Ulcerative Colitis of Cats by Regulating Gut Microbiota. Microbiol Spectr 2022; 10:e0320722. [PMID: 36287004 PMCID: PMC9769923 DOI: 10.1128/spectrum.03207-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023] Open
Abstract
Intestinal microbiota dysbiosis is a well established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an effective UC treatment strategy. Berberine (BBR), an alkaloid extracted from several Chinese herbs, is a common traditional Chinese medicine. To establish the efficacy and mechanism of action of BBR, we constructed a UC model using healthy adult shorthair cats to conduct a systematic study of colonic tissue pathology, inflammatory factor expression, and gut microbiota structure. We investigated the therapeutic capacity of BBR for regulating the gut microbiota and thus work against UC in cats using 16S rRNA genes amplicon sequencing technology. Our results revealed that dextran sulfate sodium (DSS)-induced cat models of UC showed weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by supplementation with BBR. A 16S rRNA gene-based microbiota analysis demonstrated that BBR could significantly benefit gut microbiota. Western blot, quantitative PCR, and enzyme-linked immunosorbent assays (ELISAs) showed that in DSS-induced cat models, the expression of the inflammatory factors was increased, activating the JAK2/STAT3 signaling pathway, and treatment with BBR reversed this effect. The myosin light chain (MLC) phosphorylation in the smooth muscle of the intestines is associated with motility of inflammation-related diarrhea in cats. This study used gut flora analyses to demonstrate the anti-UC effects of BBR and its potential therapeutic mechanisms and offers novel insights into the prevention of inflammatory diseases using natural products. IMPORTANCE Ulcerative colitis (UC) is common in clinics. Intestinal microbiota disorder is correlated with ulcerative colitis. Although there are many studies on ulcerative colitis in rats, there are few studies on colitis in cats. Therefore, this study explored the possibility of the use of BBR as a safe and efficient treatment for colitis in cats. The results demonstrated the therapeutic effects of BBR on UC based on the state of the intestinal flora. The study found BBR supplementation to be effective against dextran sulfate sodium (DSS)-induced colitis, smooth muscle damage, and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Xueying Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yanhe Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Kan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xue-Jiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
18
|
Wang W, Li X, Shi F, Zhang Z, Lv H. Study on the preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. Int J Pharm 2022; 630:122419. [PMID: 36423710 DOI: 10.1016/j.ijpharm.2022.122419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
In this study, γ-cyclodextrins (γ-CD) and epigallocatechin-3-gallate (EGCG) were designed to form an inclusion complex (EGCG-γ-IC) for ulcerative colitis (UC) treatment. The drug-excipient combined therapeutic potential of γ-CD and EGCG was verified, when stability and compliance were also achieved. EGCG-γ-IC effectively inhibited the secretions of NO, TNF-α, and IL-6 and the intracellular ROS in RAW264.7 cells. The effectiveness of EGCG-γ-IC in treating DSS-induced acute UC in mice was observed including improving the histological conditions of the colon, reducing the levels of IL-1β, IL-6, and TNF-α in serum, and restoring MPO, GSH, and sIgA levels in intestinal tissues. Moreover, EGCG-γ-IC had a more prominent effect on regulating bacterial dysbiosis caused by DSS than EGCG and γ-CD alone. Therefore, EGCG-γ-IC designed here displayed UC treating capacity with safety in the long-term application and promised an industrial production potential due to its excellent storage stability.
Collapse
Affiliation(s)
- Weiqin Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Xuefeng Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Fanli Shi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| |
Collapse
|