1
|
Tsirtsidou K, Zou Y, Robbens J, Raes K. Pectin-chitosan hydrogels with modified properties for the encapsulation of strawberry phenolic compounds. Food Chem 2025; 463:141236. [PMID: 39293378 DOI: 10.1016/j.foodchem.2024.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Pectin-chitosan hydrogels with blends of low (50-190 kDa) and medium (310-395 KDa) molecular weight (MW) chitosan (LC and MC, respectively) were developed, and their characteristics were investigated before and after the encapsulation of an aqueous strawberry extract. The pectin to total chitosan mass ratio, the composition of the strawberry extract and the MW of chitosan greatly affected the interactions between pectin and chitosan at different pH values. More specifically, blends of low and medium MW chitosan improved the stability of the strawberry-gels in acidic conditions compared to their corresponding MC-gels, showed better flow and texture profiles, as well as slower release of phenolic compounds during in vitro digestion compared to the only stable LC-gel. Therefore, by manipulating the length range of chitosan chains would allow the formation of pectin-chitosan hydrogels with improved properties for the development of functional food products.
Collapse
Affiliation(s)
- Kyriaki Tsirtsidou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Johan Robbens
- Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
2
|
Li C, Yang Y, Zhang R, Wang J, Zhong S, Cui X. Chitosan-gelatin composite hydrogel antibacterial film for food packaging. Int J Biol Macromol 2024; 285:138330. [PMID: 39631233 DOI: 10.1016/j.ijbiomac.2024.138330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Antibacterial hydrogel film can serve as food packaging materials to prevent bacteria growth and spread, thereby extending shelf life and improve food safety. In this study, an efficient antibacterial hydrogel film (CLG) was prepared with chitosan, lysine, and gelatin. The light transmission of the CLG hydrogel film was over 80 % in the visible region, facilitating the observation of chicken breast storage conditions. Additionally, the swelling ratios of the hydrogel films decreased with increasing gelatin concentration, from 145.7 g/g (CLG1) to 92.6 g/g (CLG2) and 81.5 g/g (CLG3). This reduction was attributed to the denser network structure formed by the interaction between gelatin and the CL polymer. The Scanning Electron Microscopy (SEM) showed that the water-absorbed CLG hydrogel had a unique sponge shape. Moreover, the CLG hydrogel film exhibits high antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In a practical storage experiment, the CLG hydrogel film extended the shelf life of chicken breast by up to 4 days compared to untreated samples, while effectively reducing total volatile basic nitrogen (TVB-N) levels. This hydrogel film is expected to become a promising food packaging material.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
3
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Yang Y, Ma Y, Wang H, Li C, Li C, Zhang R, Zhong S, He W, Cui X. Chitosan-based hydrogel dressings with antibacterial and antioxidant for wound healing. Int J Biol Macromol 2024; 280:135939. [PMID: 39317283 DOI: 10.1016/j.ijbiomac.2024.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bacterial infection and free radical oxidative stress at the wound site could easily cause cascade inflammation and hinder the healing process of the wound. In this study, chitosan-cysteine-gallic acid (CCG) hydrogel with antibacterial and antioxidant properties was synthesized by chitosan (CS), cysteine (Cys), and gallic acid (GA) for a preliminary evaluation of its therapeutic efficacy in a mouse model of full-layer skin defect. In vitro analysis showed that the CCG hydrogel had good antibacterial activity and blood compatibility. In vivo, the CCG hydrogel wound dressings accelerated wound healing, stimulate angiogenesis, increase collagen deposition and anti-inflammatory factor expression. The CCG hydrogel wound dressing is designed to promote the regeneration of damaged skin tissue and is expected to become a potential candidate for clinical treatment.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Haodong Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
5
|
Morales E, Quilaqueo M, Morales-Medina R, Drusch S, Navia R, Montillet A, Rubilar M, Poncelet D, Galvez-Jiron F, Acevedo F. Pectin-Chitosan Hydrogel Beads for Delivery of Functional Food Ingredients. Foods 2024; 13:2885. [PMID: 39335814 PMCID: PMC11431786 DOI: 10.3390/foods13182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
A common challenge in hydrogel-based delivery systems is the premature release of low molecular weight encapsulates through diffusion or swelling and reduced cell viability caused by the low pH in gastric conditions. A second biopolymer, such as chitosan, can be incorporated to overcome this. Chitosan is usually associated with colonic drug delivery systems. We intended to formulate chitosan-coated pectin beads for use in delaying premature release of the encapsulate under gastric conditions but allowing release through disintegration under intestinal conditions. The latter is of utmost importance in delivering most functional food ingredients. Therefore, this study investigated the impact of formulation and process conditions on the size, sphericity, and dissolution behavior of chitosan-coated hydrogel beads prepared by interfacial coacervation. The size and sphericity of the beads depend on the formulation and range from approximately 3 to 5 mm and 0.82 to 0.95, respectively. Process conditions during electro-dripping may be modulated to tailor bead size. Depending on the voltage, bead size ranged from 1.5 to 4 mm. Confocal laser scanning microscopy and scanning electron microscopy confirmed chitosan shell formation around the pectin bead. Chitosan-coated beads maintained their size and shape in simulated gastric fluid but experienced structural damage in simulated intestinal fluid. Therefore, they represent a novel delivery system for functional food ingredients.
Collapse
Affiliation(s)
- Eduardo Morales
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile; (E.M.); (M.Q.); (M.R.)
| | - Marcela Quilaqueo
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile; (E.M.); (M.Q.); (M.R.)
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile;
| | - Rocío Morales-Medina
- Department of Food Technology and Food Material Science, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Königin-Luise-Str. 22, 14195 Berlin, Germany; (R.M.-M.)
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Königin-Luise-Str. 22, 14195 Berlin, Germany; (R.M.-M.)
| | - Rodrigo Navia
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile;
- Centre for Biotechnology and Bioengineering (CeBiB), Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile
| | - Agnès Montillet
- Oniris, CNRS, GEPEA, Nantes Université, UMR 6144, F-44600 Saint-Nazaire, France;
| | - Mónica Rubilar
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile; (E.M.); (M.Q.); (M.R.)
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile;
| | - Denis Poncelet
- EncapProcess, 114 Allée Paul Signac, F-44240 Sucé sur Erdre, France;
| | - Felipe Galvez-Jiron
- Doctoral Program in Sciences with a Specialty in Applied Cellular and Molecular Biology, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile
- Center of Excellence in Translational Medicine (CEMT), Faculty of Medicine, and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
6
|
Yu H, Wang Y, Wang R, Ge Y, Wang L. Tannic acid crosslinked chitosan/gelatin/SiO 2 biopolymer film with superhydrophobic, antioxidant and UV resistance properties for prematuring fruit packaging. Int J Biol Macromol 2024; 275:133368. [PMID: 38945712 DOI: 10.1016/j.ijbiomac.2024.133368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The environmental pollution caused by plastic films urgently requires the development of non-toxic, biodegradable, and renewable biopolymer films. However, the poor waterproof and UV resistance properties of biopolymer films have limited their application in fruit packaging. In this work, a novel tannic acid cross-linked chitosan/gelatin film with hydrophobic silica coating (CGTS) was prepared. Relying on the adhesion of tannic acid and gelatin to silica, the coating endows CGTS film with excellent superhydrophobic properties. Especially, the contact angle reaches a maximum value 152.6°. Meanwhile, tannic acid enhanced the mechanical strength (about 36.1 %) through the forming of hydrogen bonding and the network structure. The prepared CGTS films showed almost zero transmittance to ultraviolet light and exhibited excellent radical scavenging ability (∼76.5 %, DPPH). Hence, CGTS film is suitable as a novel multifunctional packaging material for the agriculture to protect premature fruits, or the food industry used in environments exposed to ultraviolet radiation and rainwater.
Collapse
Affiliation(s)
- Huanyang Yu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China.
| | - Yan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Rundong Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yuan Ge
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Liyan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China; Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| |
Collapse
|
7
|
Czechowska JP, Pańtak P, Kowalska KJ, Vedaiyan J, Balasubramanian M, Ganesan SM, Kwiecień K, Pamuła E, Kandaswamy R, Zima A. The Influence of Citrus Pectin and Polyacrylamide Modified with Plant-Derived Additives on the Properties of α-TCP-Based Bone Cements. Polymers (Basel) 2024; 16:1711. [PMID: 38932061 PMCID: PMC11207233 DOI: 10.3390/polym16121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Materials based on highly reactive α-tricalcium phosphate (α-TCP) powder were developed and evaluated. Furthermore, the impact of different polymeric additives, such as citrus pectin or polyacrylamide (PAAM) modified with sago starch, neem flower, or rambutan peel, on the physiochemical and biological properties of the developed materials was assessed. The addition of modified PAAM shortened the setting process of bone cements and decreased their compressive strength. On the other hand, the addition of citrus pectin significantly enhanced the mechanical strength of the material from 4.46 to 7.15 MPa. The improved mechanical properties of the bone cement containing citrus pectin were attributed to the better homogenization of cementitious pastes and pectin cross-linking by Ca2+ ions. In vitro tests performed on L929 cells showed that 10% extracts from α-TCP cements modified with pectin are more cytocompatible than control cements without any additives. Cements containing PAAM with plant-derived modifiers show some degree of cytotoxicity for the highly concentrated 10% extracts, but for diluted extracts, cytotoxicity was reduced, as shown by a resazurin reduction test and live/dead staining. All the developed bone substitutes exhibited in vitro bioactivity, making them promising candidates for further biological studies. This research underscores the advantageous properties of the obtained biomaterials and paves the way for subsequent more advanced in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Joanna P. Czechowska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Piotr Pańtak
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Kinga J. Kowalska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Jeevitha Vedaiyan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Aneta Zima
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| |
Collapse
|
8
|
Daneshmehr M, Pazhang M, Mollaei S, Ebadi M, Pazhang Y. Targeted delivery of 5-fluorouracil and shikonin by blended and coated chitosan/pectin nanoparticles for treatment of colon cancer. Int J Biol Macromol 2024; 270:132413. [PMID: 38761911 DOI: 10.1016/j.ijbiomac.2024.132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Herein, 5-fluorouracil and shikonin (extracted from Fusarium tricinctum) were loaded in chitosan/pectin nanoparticle (CS/PEC-NPs), prepared by blending (B-CS/PEC-NPs) and coating (C-CS/PEC-NPs) methods. The nanoparticles characterized by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Differential Light Scattering (DLS). Then, some properties of the nanoparticles such as drug release rate and the nanoparticles cytotoxicity were studied. The FTIR, XRD, EDX, SEM and DLS results showed that the nanoparticles synthesized properly with an almost spherical morphology, an average size of 82-93 nm for B-CS/PEC-NPs, an average diameter of below 100 nm (mostly 66-89 nm) for C-CS/PEC-NPs, and hydrodynamic diameter of 310-817 nm. The drug release results indicated the lower release rate of drugs for B-CS/PEC-NPs relative to C-CS/PEC-NPs at different pHs, high release rate of drugs for the nanoparticles in the simulated large intestinal fluids containing pectinase, and Korsmeyer-Peppas model for release of the drugs. The results showed more cytotoxicity of B-CS/PEC-NPs containing drugs, especially B-CS/PEC-NPs containing both drugs (B-CS/PEC/5-FU/SHK-NPs) after treating with pectinase (IC50 of 18.6 μg/mL). In conclusion, despite the limitation of C-CS/PEC-NPs for simultaneous loading of hydrophilic and hydrophobic drugs, B-CS/PEC-NPs showed suitable potency for loading and targeted delivery of the drugs.
Collapse
Affiliation(s)
- Maryam Daneshmehr
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Saeed Mollaei
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Ahmadpour F, Ganjali F, Radinekiyan F, Eivazzadeh-Keihan R, Salimibani M, Bahreinizad H, Mahdavi M, Maleki A. Fabrication and characterization of a novel magnetic nanostructure based on pectin-cellulose hydrogel for in vitro hyperthermia during cancer therapy. RSC Adv 2024; 14:13676-13684. [PMID: 38665491 PMCID: PMC11044123 DOI: 10.1039/d3ra08067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Herein, a new magnetic nanobiocomposite based on a synthesized cross-linked pectin-cellulose hydrogel (cross-linked Pec-Cel hydrogel) substrate was designed and synthesized. The formation of the cross-linked Pec-Cel hydrogel with a calcium chloride agent and its magnetization process caused a new and efficient magnetic nanobiocomposite. Several spectral and analytical techniques, including FTIR, SEM, VSM, TGA, XRD, and EDX analyses, were performed to confirm and characterize the structural features of the magnetic cross-linked pectin-cellulose hydrogel nanobiocomposite (magnetic cross-linked Pec-Cel hydrogel nanobiocomposite). Based on SEM images, prepared Fe3O4 magnetic nanoparticles (MNPs) were uniformly dispersed in the Pec-Cel hydrogel context, representing an average particle size between 50.0 and 60.0 nm. The XRD pattern also confirms the crystallinity of the magnetic nanobiocomposite. All constituent elements and their distribution have been depicted in the EDX analysis of the magnetic nanobiocomposite. VSM curves confirmed the superparamagnetic behavior of Fe3O4 MNPs and the magnetic nanobiocomposite with a saturation magnetization of 77.31 emu g-1 and 48.80 emu g-1, respectively. The thermal stability of the nanobiocomposite was authenticated to ca. 800 °C based on the TGA thermogram. Apart from analyzing the structural properties of the magnetic cross-linked Pec-Cel hydrogel nanobiocomposite, different concentrations (0.5 mg mL-1, 1.0 mg mL-1, 2.0 mg mL-1, 5.0 mg mL-1, and 10.0 mg mL-1) of this new magnetic nanostructure were exposed to an alternating magnetic field (AMF) at different frequencies (100.0 MHz, 200.0 MHz, 300.0 MHz, and 400.0 MHz) to evaluate its capacity for an in vitro hyperthermia process; in addition, the highest specific absorption rate (126.0 W g-1) was obtained by the least magnetic nanobiocomposite concentration (0.5 mg mL-1).
Collapse
Affiliation(s)
- Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Milad Salimibani
- Department of Optics and Photonics, Wroclaw University of Science and Technology Wroclaw Poland
| | - Hossein Bahreinizad
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University Lubbock TX USA
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
10
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Mishra N, Sharma M, Mishra P, Nisha R, Singh P, Pal RR, Singh N, Singh S, Maurya P, Pant S, Mishra PR, Saraf SA. Transporter targeted-carnitine modified pectin-chitosan nanoparticles for inositol hexaphosphate delivery to the colon: An in silico and in vitro approach. Int J Biol Macromol 2024; 263:130517. [PMID: 38423444 DOI: 10.1016/j.ijbiomac.2024.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Pooja Mishra
- Department of Horticulture, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
12
|
Hong F, Qiu P, Wang Y, Ren P, Liu J, Zhao J, Gou D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem X 2024; 21:101095. [PMID: 38268840 PMCID: PMC10805631 DOI: 10.1016/j.fochx.2023.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Chitosan, derived from the deacetylation of chitin, is an abundant natural biopolymer on earth. Chitosan and its derivatives have become promising biological materials because of their unique molecular structure and excellent biological activities. The reactive functional groups of chitosan such as the amino and hydroxyl groups play a crucial role in facilitating the synthesis of three-dimensional hydrogel. Chitosan-based hydrogels have been widely used in medical, pharmaceutical, and environmental fields for years. Nowadays, chitosan-based hydrogels have been found in a wide range of applications in the food industry such as food sensors, dye adsorbents and nutrient carriers. In this review, recently developed methods for the preparation of chitosan-based hydrogels were given, and the biological activities of chitosan-based hydrogels were systematically introduced. Additionally, the recent progress in food sensors, packaging, dye adsorbents, and nutrient carriers was discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
13
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
14
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
15
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Yi K, Miao S, Yang B, Li S, Lu Y. Harnessing the Potential of Chitosan and Its Derivatives for Enhanced Functionalities in Food Applications. Foods 2024; 13:439. [PMID: 38338575 PMCID: PMC10855628 DOI: 10.3390/foods13030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
As one of the most abundant natural polysaccharides that possess good biological activity, chitosan is extracted from chitin. Its application in the food field is being increasingly valued. However, chitosan extraction is difficult, and its poor solubility limits its application. At present, the extraction methods include the acid-base method, new chemical methods, and biological methods. The extraction rates of chitin/chitosan are 4-55%, 13-14%, and 15-28%, respectively. Different chemical modifications have different effects on chitosan, making it applicable in different fields. This article reviews and compares the extraction and chemical modification methods of chitosan, emphasizing the importance of green extraction methods. Finally, the application prospects of chitosan in the food industry are discussed. This will promote the understanding of the advantages and disadvantages of different extraction methods for chitosan as well as the relationship between modification and application, providing valuable insights for the future development of chitosan.
Collapse
Affiliation(s)
- Kexin Yi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
| | - Bixing Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Sijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
17
|
Farooq S, Ahmad MI, Ali U, Zhang H. Fabrication of curcumin-loaded oleogels using camellia oil bodies and gum arabic/chitosan coatings for controlled release applications. Int J Biol Macromol 2024; 254:127758. [PMID: 38287596 DOI: 10.1016/j.ijbiomac.2023.127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
This study has explored the potential of plant-derived oil bodies (OBs)-based oleogels as novel drug delivery systems for in vitro release under simulated physiological conditions. To obtain stable OBs-based oleogels, gum arabic (GA) and chitosan (CH) were coated onto the curcumin-loaded OBs using an electrostatic deposition technique, followed by 2,3,4-trihydroxybenzaldehyde (TB) induced Schiff-base cross-linking. Microstructural analyses indicated successful encapsulation of curcumin into the hydrophobic domain of the OBs through a pH-driven method combined with ultrasound treatment. The curcumin encapsulation efficiency of OBs increased up to 83.65 % and 92.18 % when GA and GA-CH coatings were applied, respectively, compared to uncoated OBs (63.47 %). In addition, GA-CH coatings retained the structural integrity of oleogel droplets with superior oil-holding capacity (99.07 %), while TB addition induced interconnected 3D-network structures with excellent gel strength (≥4.8 × 105 Pa) and thermal stability (≥80 °C). GA-CH coated oleogels appeared to provide the best protection for loaded bioactive against UV irradiation and high temperature-induced degradation during long-term storage. The combination of biopolymer coatings and TB-induced Schiff-base cross-linking synergistically hindered the simulated gastric degradability of oleogels, releasing only 23.35 %, 12.46 % and 7.19 % of curcumin by GA, GA-CH and GA-CH-TB stabilized oleogels, respectively, while also resulting in sustained release effects during intestinal conditions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Usman Ali
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
18
|
Li Q, Yang Y, Li Y, Mi Y, Ma X, Jiang A, Guo Z. Enhanced biological activities of coumarin-functionalized polysaccharide derivatives: Chemical modification and activity assessment. Int J Biol Macromol 2023; 253:126691. [PMID: 37673148 DOI: 10.1016/j.ijbiomac.2023.126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity. The biological activities were tested, including antioxidant property, antifungal property, and antibacterial property. Based on the results, the inhibitory properties of the coumarin-polysaccharide derivatives were significantly improved over the raw polysaccharide. The IC50 of the inhibition of DPPH, ABTS•+, and superoxide (O2•-) radical-scavenging was 0.06-0.15 mg/mL, 2.3-15.9 μg/mL, and 0.03-0.25 mg/mL, respectively. Compared with the raw polysaccharides, coumarin- polysaccharide derivatives exhibited higher efficacy in inhibiting the growth of tested phytopathogens, showing inhibitory indices of 60.0-93.6 % at 1.0 mg/mL. Chitosan derivatives with methyl and chlorine (Compound 10B and 10C) exhibited significant antibacterial activity against S. aureus (MIC = 31.2 μg/mL), E. coli (MIC = 7.8 μg/mL), and V. harveyi (MIC = 15.6 μg/mL), respectively. The results of the cytotoxicity assay showed no observed cytotoxicity when the RAW 264.7 cells were incubated with the synthesized polysaccharide derivatives at the tested concentrations.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunhui Yang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Life Sciences, Yantai University, Yantai 264003, China
| | - Yijian Li
- College of Chemisry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
19
|
Yu H, Ge Y, Ding H, Yan Y, Wang L. Vanillin cross-linked chitosan/gelatin bio-polymer film with antioxidant, water resistance and ultraviolet-proof properties. Int J Biol Macromol 2023; 253:126726. [PMID: 37689296 DOI: 10.1016/j.ijbiomac.2023.126726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Cross-linking is the most promising method for preparing high-performance chitosan/gelatin bio-polymer film. In this work, vanillin cross-linked chitosan/gelatin bio-polymer (CGGV) film with good mechanics, water resistance, antioxidant and ultraviolet-proof property was prepared. The micro-structure, physical and functional properties of CGGV film were studied. Results showed that vanillin as a cross-linking agent provided a compact inner micro-structure through Schiff base and hydrogen bond interaction. Moderate cross-linking significantly improved mechanical strength, thermal ability, hydrophobicity of the films and reduced the water vapor permeability, swelling ratio and water solubility. Especially, CGGV films showed stronger ultraviolet-proof properties and possessed potent radical scavenging activity. Therefore, CGGV film is suitable to protect per-mature fruits and could be used as novel multifunctional packaging in the agriculture and foods industry.
Collapse
Affiliation(s)
- Huanyang Yu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China.
| | - Yuan Ge
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Huanqi Ding
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yongtai Yan
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Liyan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China; Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| |
Collapse
|
20
|
Sultana N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023; 28:7974. [PMID: 38138464 PMCID: PMC10745545 DOI: 10.3390/molecules28247974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Naznin Sultana
- Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
21
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
22
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
23
|
Li Y, Qiu Y, Hou H, Zhang G, Hao H, Bi J. The Preparation and Properties of Amino-Carboxymethyl Chitosan-Based Antibacterial Hydrogel Loaded with ε-Polylysine. Foods 2023; 12:3807. [PMID: 37893700 PMCID: PMC10606768 DOI: 10.3390/foods12203807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long-time release of ε-polylysine (ε-PL), the ACC/DAS hydrogels were synthesized through the Schiff base reaction between the amino group on ACC and the aldehyde group in DAS. The molecular structure, microcosmic properties, loading capacity, and bacteriostatic properties of the four types of hydrogels containing different mass concentrations of ACC were investigated. The results showed that the dynamic imine bond C=N existed in the ACC/DAS hydrogels, which proved that the hydrogels were formed by the cross-linking of the Schiff base reaction. With the increasing mass concentration of the ACC, the cross-sectional morphology of the hydrogel became smoother, the thermal stability increased, and the swelling behavior was gradually enhanced. The tight network structure improved the ε-PL loading efficiency, with the highest value of 99.2%. Moreover, the loading of ε-PL gave the hydrogel good antibacterial properties. These results indicate that ACC/DAS hydrogel is potential in food preservation.
Collapse
Affiliation(s)
- Yixi Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Yulong Qiu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.L.); (Y.Q.); (G.Z.); (H.H.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|
24
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
25
|
Kędzierska M, Sala K, Bańkosz M, Wroniak D, Gajda P, Potemski P, Tyliszczak B. Investigation of Physicochemical Properties and Surface Morphology of Hydrogel Materials Incorporating Rosehip Extract. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6037. [PMID: 37687730 PMCID: PMC10488629 DOI: 10.3390/ma16176037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Hydrogel materials are used in many fields of science and industry. They are of particular importance in biomedical applications. In this work, hydrogels were obtained that could act as a dressing for wounds, at the same time being a carrier of substances with antioxidant activity. The discussed materials were obtained in the field of UV radiation. The correlation between the amount of photoinitiator used and the physicochemical properties and surface morphology of the obtained materials was investigated. In addition, the hydrogels have been incorporated with wild rose extract, which is characterized by antioxidant and anti-inflammatory effects. The analysis of the sorption capacity confirmed that the obtained material is able to absorb significant amounts of incubation fluids, which, in terms of application, will enable the absorption of exudate from the wound. The highest stability of materials was noted for hydrogels obtained with the use of intermediate amounts of photoinitiator, i.e., 50 µL and 70 µL. In the case of using 20 µL or 100 µL, the photopolymerization process did not proceed properly and the obtained material was characterized by a lack of homogeneity and high brittleness. With the increase in the amount of photoinitiator, an increase in the surface roughness of hydrogel materials was confirmed. In turn, spectroscopic analysis ruled out the degradation of materials in incubation fluids, indicating the potential for their use in biomedical applications.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Dominika Wroniak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Paweł Gajda
- Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| |
Collapse
|
26
|
Pańtak P, Czechowska JP, Cichoń E, Zima A. Novel Double Hybrid-Type Bone Cements Based on Calcium Phosphates, Chitosan and Citrus Pectin. Int J Mol Sci 2023; 24:13455. [PMID: 37686268 PMCID: PMC10488044 DOI: 10.3390/ijms241713455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, the influence of the liquid phase composition on the physicochemical properties of double hybrid-type bone substitutes was investigated. The solid phase of obtained biomicroconcretes was composed of highly reactive α-tricalcium phosphate powder (α-TCP) and hybrid hydroxyapatite/chitosan granules (HA/CTS). Various combinations of disodium phosphate (Na2HPO4) solution and citrus pectin gel were used as liquid phases. The novelty of this study is the development of double-hybrid materials with a dual setting system. The double hybrid phenomenon is due to the interactions between polycationic polymer (chitosan in hybrid granules) and polyanionic polymer (citrus pectin). The chemical and phase composition (FTIR, XRD), setting times (Gillmore needles), injectability, mechanical strength, microstructure (SEM) and chemical stability in vitro were studied. The setting times of obtained materials ranged from 4.5 to 30.5 min for initial and from 7.5 to 55.5 min for final setting times. The compressive strength varied from 5.75 to 13.24 MPa. By incorporating citrus pectin into the liquid phase of the materials, not only did it enhance their physicochemical properties, but it also resulted in the development of fully injectable materials featuring a dual setting system. It has been shown that the properties of materials can be controlled by using the appropriate ratio of citrus pectin in the liquid phase.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Joanna P. Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Ewelina Cichoń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| |
Collapse
|
27
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
29
|
Mishra N, Pal S, Sharma M, Nisha R, Raj Pal R, Singh P, Singh S, Maurya P, Singh N, Ranjan Mishra P, Saraf SA. Crosslinked and PEGylated Pectin Chitosan Nanoparticles for Delivery of Phytic Acid to Colon. Int J Pharm 2023; 639:122937. [PMID: 37068717 DOI: 10.1016/j.ijpharm.2023.122937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
Polysaccharide-based nanoparticles (NPs) such as pectin/ chitosan (PN/CN) had always been of greatest interest because of their excellent solubility, biocompatibility, and higher suitability for oral drug delivery. This study employed blending-crosslinking of polymers (PN&CN) followed by emulsification-solvent evaporation to prepare and compare two sets of PEGylated NPs to deliver phytic acid (IP6) to colon orally as it has potential to manage colon cancer but fails to reach colon when ingested in pure form. The first set was crosslinked with Glutaraldehyde (GE) (GE*PN-CN-NPs) while the second set was crosslinked with sodium tripolyphosphate (TPP) (TPP*PN-CN-NPs). IP6-loaded-GE/TPP*PN-CN-NPs were optimized using a central composite design. Developed TPP*PN-CN-NPs had a smaller size (210.6±7.93nm) than GE*PN-CN-NPs (557.2±5.027nm). Prepared NPs showed <12% IP6 release at pH 1.2 whereas >80% release was observed at pH 7.4. Further, NPs were explored for cytocompatibility in J774.2 cell lines, cytotoxicity, and cellular uptake in HT-29 and DLD-1 cell lines. While exhibiting substantial cytotoxicity and cellular uptake in HT-29 and DLD-1, the NPs were deemedsafe in J774.2. The PEGylated-TPP*PN-CN-NPs showed time-dependent uptake in J774.2 cell lines. Conclusively, the employed NP development method successfully delivered IP6 to colon and may also open avenues for the oral delivery of other drugs to colon.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Surbhi Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
30
|
Li W, Fang K, Yuan H, Li D, Li H, Chen Y, Luo X, Zhang L, Ye X. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. Int J Biol Macromol 2023; 242:124383. [PMID: 37030457 DOI: 10.1016/j.ijbiomac.2023.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Poria cocos alkali-soluble polysaccharide (PCAP), a water-insoluble β-glucan, is the main component of the total dried sclerotia of Poria cocos. However, its gelation behaviour and properties have yet to be comprehensively studied. In this study, an acid-induced physical hydrogel based on natural PCAP is fabricated. The acid-induced gelation in PCAP is explored with respect to the pH and polysaccharide concentration. PCAP hydrogels are formed in the pH range of 0.3-10.5, and the lowest gelation concentration is 0.4 wt%. Furthermore, dynamic rheological, fluorescence, and cyclic voltammetry measurements are performed to elucidate the gelation mechanism. The results reveal that hydrogen bonds and hydrophobic interactions play a dominant role in gel formation. Subsequently, the properties of the PCAP hydrogels are investigated using rheological measurements, scanning electron microscopy, gravimetric analysis, free radical scavenging, MTT assays, and enzyme-linked immunosorbent assays. The PCAP hydrogels exhibit a porous network structure and cytocompatibility, in addition to good viscoelastic, thixotropic, water-holding, swelling, antioxidant, and anti-inflammatory activities. Furthermore, using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behaviour from the PCAP hydrogel is pH dependent. These results indicate the potential of PCAP hydrogels for application in biological medicine and drug delivery.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Kexin Fang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haochen Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyao Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lian Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaochuan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
31
|
Zhang Y, Li Q, Chen J, Zheng Y, Lu X, Chen Q. Rapid gelation of dual physical network hydrogel with ultra‐stretchable, antifreezing, moisturing for stable and sensitive response. J Appl Polym Sci 2023. [DOI: 10.1002/app.53566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuxia Zhang
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
| | - Qinglin Li
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
| | - Jiawen Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
| | - Yanyan Zheng
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
| | - Xiaoyu Lu
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
| | - Qinhui Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou People's Republic of China
- Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou People's Republic of China
| |
Collapse
|
32
|
Farooq S, Ahmad MI, Zhang Y, Zhang H. Impact of interfacial layer number and Schiff base cross-linking on the microstructure, rheological properties and digestive lipolysis of plant-derived oil bodies-based oleogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Belousov A, Patlay A, Silant’ev V, Kovalev VV, Kumeiko V. Preparation of Hydrogels Based on Modified Pectins by Tuning Their Properties for Anti-Glioma Therapy. Int J Mol Sci 2022; 24:ijms24010630. [PMID: 36614073 PMCID: PMC9820215 DOI: 10.3390/ijms24010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) of the central nervous system (CNS), characterized by low stiffness and predominance of carbohydrates on protein components, mediates limited cell proliferation and migration. Pectins are polysaccharides derived from plants and could be very promising for a tunable hydrogel design that mimics the neural ECM. Aiming to regulate gel structure and viscoelastic properties, we elaborated 10 variants of pectin-based hydrogels via tuning the concentration of the polymer and the number of free carboxyl groups expressed in the degree of esterification (DE). Viscoelastic properties of hydrogels varied in the range of 3 to 900 Pa for G' and were chosen as the first criteria for the selection of variants suitable for CNS remodeling. For extended reciprocal characterization, two pairs of hydrogels were taken to test pectins with opposite DEs close to 0% and 50%, respectively, but with a similar rheology exceeding 100 Pa (G'), which was achieved by adjusting the concentration of pectin. Hydrogel swelling properties and in vitro stability, together with structure characterization using SEM and FTIR spectroscopy, displayed some differences that may sense for biomedical application. Bioassays on C6 and U87MG glioblastoma cultures testified the potential prospects of the anti-glioma activity of hydrogels developed by decreasing cell proliferation and modulating migration but supporting the high viability of neural cells.
Collapse
Affiliation(s)
- Andrei Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Aleksandra Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Vladimir Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, Vladivostok 690022, Russia
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
- Correspondence:
| |
Collapse
|
34
|
Emir AA, Erunsal SC. Impact of oleuropein on LCD-based stereolithography-assisted fabrication of 3D printed PEGDMA hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Xu J, Zhang M, Du W, Zhao J, Ling G, Zhang P. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 2022; 219:545-557. [PMID: 35907459 DOI: 10.1016/j.ijbiomac.2022.07.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022]
Abstract
The loss of tissues and organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology has brought the dawn for the development of tissue engineering and regenerative medicine. Chitosan-based supramolecular hydrogels, as novel biomaterials, are considered as ideal materials for 3D bioprinting due to their unique dynamic reversibility and fantastic biological properties. Although chitosan-based supramolecular hydrogels have wonderful biological properties, the mechanical properties are still under early exploration. This paper aims to provide some inspirations for researchers to further explore. In this review, common 3D bioprinting techniques and the properties required for bioink for 3D bioprinting are firstly described. Then, several strategies to enhance the mechanical properties of chitosan hydrogels are introduced from the perspectives of both materials and supramolecular binding motifs. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based supramolecular hydrogels and 3D bioprinting will hold promise for developing novel biomedical implants.
Collapse
Affiliation(s)
- Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
36
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|