1
|
Yan L, Zhao Z, Liu Y, Hosseini SH, Li C, Huang Y, Saeb MR, Xiao H, Seidi F. The inverse electron demand diels-alder (IEDDA): A facile bioorthogonal click reaction for development of injectable polysaccharide-based hydrogels for biomedical applications. Carbohydr Polym 2025; 352:123142. [PMID: 39843051 DOI: 10.1016/j.carbpol.2024.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation. Within a few minutes, the interaction of aqueous solutions of tetrazine-polysaccharides with polysaccharide derivatives of dienophiles can form the hydrogel. The gelation time can be regulated by the structure of tetrazine/dienophile, degree of substitution, concentration of polysaccharide solutions, and temperature. The hydrogels are utilized in the fields of tissue engineering, cancer treatment, and wound healing. The embedding of stimuli-responsive functionalities within the hydrogel's architecture enhances the precision of its application for designated targets. This review begins by elucidating the principles of IEDDA and identifying the primary factors that influence the rate of cycloaddition. Subsequently, we discuss various strategies for integrating the reactants of IEDDA onto polysaccharides. Finally, the approaches for the fabrication of the relevant injectable hydrogels, their specific characteristics, and their implementation in different biomedical applications are elaborated.
Collapse
Affiliation(s)
- Linying Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhen Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Damiri F, Fatimi A, Liu Y, Musuc AM, Fajardo AR, Gowda BHJ, Vora LK, Shavandi A, Okoro OV. Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review. Carbohydr Polym 2025; 348:122845. [PMID: 39567171 DOI: 10.1016/j.carbpol.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Polysaccharide hydrogels, which can mimic the natural extracellular matrix and possess appealing physicochemical and biological characteristics, have emerged as significant bioinks for 3D bioprinting. They are highly promising for applications in tissue engineering and regenerative medicine because of their ability to enhance cell adhesion, proliferation, and differentiation in a manner akin to the natural cellular environment. This review comprehensively examines the fabrication methods, characteristics, and applications of polysaccharide hydrogel-driven 3D bioprinting, underscoring its potential in tissue engineering, drug delivery, and regenerative medicine. To contribute pertinent knowledge for future research in this field, this review critically examines key aspects, including the chemistry of carbohydrates, manufacturing techniques, formulation of bioinks, and characterization of polysaccharide-based hydrogels. Furthermore, this review explores the primary advancements and applications of 3D-printed polysaccharide hydrogels, encompassing drug delivery systems with controlled release kinetics and targeted therapy, along with tissue-engineered constructs for bone, cartilage, skin, and vascular regeneration. The use of these 3D bioprinted hydrogels in innovative research fields, including disease modeling and drug screening, is also addressed. Despite notable progress, challenges, including modulating the chemistry and properties of polysaccharides, enhancing bioink printability and mechanical properties, and achieving long-term in vivo stability, have been highlighted.
Collapse
Affiliation(s)
- Fouad Damiri
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - B H Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom.
| | - Armin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba V Okoro
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Huang L, Guo J, Li Y, Yang W, Ni W, Jia Y, Yu M, Zhang J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers (Basel) 2024; 16:3302. [PMID: 39684047 DOI: 10.3390/polym16233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Itraconazole (ITZ), a broad-spectrum triazole antifungal agent, exhibits remarkable pharmacodynamic and pharmacokinetic properties. However, the low solubility of ITZ significantly reduces its oral bioavailability. Furthermore, it has been reported that this medication can result in dose-related adverse effects. Therefore, the objective of this study was to enhance the solubility of ITZ through the utilization of various polymers and to manufacture personalized and programmable release ITZ tablets. Five different polymers were selected as water-soluble carriers. Thirty percent w/w ITZ was mixed with seventy percent w/w of the polymers, which were then extruded. A series of physical and chemical characterization studies were conducted, including DSC, PXRD, PLM, and in vitro drug release studies. The results demonstrated that ITZ was dispersed within the polymers, forming ASDs that markedly enhanced its solubility and dissolution rate. Consequently, soluplus® was employed as the polymer for the extrusion of ITZ-loaded filaments, which were subsequently designed and printed. The in vitro drug release studies indicated that the release of ITZ could be regulated by modifying the 3D structure design. Overall, this study found that the combination of HME and 3D printing technologies could represent an optimal approach for the development of personalized and precise drug delivery dosages.
Collapse
Affiliation(s)
- Lianghao Huang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jingjing Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yusen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Weiwei Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wen Ni
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yaru Jia
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Mingchao Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jiaxiang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| |
Collapse
|
4
|
Pu X, Wu Y, Liu J, Wu B. 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. CHEM & BIO ENGINEERING 2024; 1:568-592. [PMID: 39974701 PMCID: PMC11835188 DOI: 10.1021/cbe.4c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 02/21/2025]
Abstract
Microorganisms, serving as super biological factories, play a crucial role in the production of desired substances and the remediation of environments. The emergence of 3D bioprinting provides a powerful tool for engineering microorganisms and polymers into living materials with delicate structures, paving the way for expanding functionalities and realizing extraordinary performance. Here, the current advancements in microbial-based 3D-printed living materials are comprehensively discussed from material perspectives, covering various 3D bioprinting techniques, types of microorganisms used, and the key parameters and selection criteria for polymer bioinks. Endeavors on the applications of 3D printed living materials in the fields of energy and environment are then emphasized. Finally, the remaining challenges and future trends in this burgeoning field are highlighted. We hope our perspective will inspire some interesting ideas and accelerate the exploration within this field to reach superior solutions for energy and environment challenges.
Collapse
Affiliation(s)
- Xingqun Pu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuqi Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Junqiu Liu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Baiheng Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
5
|
Sharma D, Satapathy BK. Nanostructured Biopolymer-Based Constructs for Cartilage Regeneration: Fabrication Techniques and Perspectives. Macromol Biosci 2024; 24:e2400125. [PMID: 38747219 DOI: 10.1002/mabi.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Indexed: 05/24/2024]
Abstract
The essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three-dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
6
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Wu H, Wang T, Liang Y, Chen L, Li Z. Self-assembled and dynamic bond crosslinked herb-polysaccharide hydrogel with anti-inflammation and pro-angiogenesis effects for burn wound healing. Colloids Surf B Biointerfaces 2024; 233:113639. [PMID: 37951186 DOI: 10.1016/j.colsurfb.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Excessive inflammation and defective angiogenesis can affect burn wound healing. Recently, naturally derived substances with anti-inflammatory and proangiogenic properties have attracted public attention. The design and fabrication of naturally derived substance-based bioactive hydrogels as wound dressings are of interest and important for regulating the complex microenvironment of the wound bed. Herein, we developed a hydrogel by self-assembling a natural herb (glycyrrhizic acid, GA) dynamic Schiff base crosslinking of hyaluronic acid derivatives and integrating deferoxamine (DFO). The naturally derived herbal GA endowed the bioactive hydrogel with a native anti-inflammatory capability. The introduction of dynamic bond crosslinking improved the hydrogel stability. In addition, dynamic crosslinking is conducive for integrating the naturally-derived DFO, delivering it to the wound site, and promoting angiogenesis. Rheological tests, injectability, degradation behavior, and drug release performance demonstrated the enhanced stability of the hydrogel and sustained release of DFO. Cytotoxicity, cell proliferation, and cell migration tests suggested that the hydrogel was biocompatible. Further, the hydrogel exerted anti-inflammatory and angiogenic effects and accelerated burn wound healing in rats. Therefore, the proposed hydrogel has the potential to be a natural, herb-based, bioactive dressing for burn wound management.
Collapse
Affiliation(s)
- Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan 528318, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
9
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
10
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Ma Y, Liu C, Yan J, Xu X, Xin Y, Yang M, Chen A, Dang Q. A bacteriostatic hemostatic dressing prepared from l-glutamine-modified chitosan, tannic acid-modified gelatin and oxidized dextran. Int J Biol Macromol 2023; 242:124669. [PMID: 37150375 DOI: 10.1016/j.ijbiomac.2023.124669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
In this study, porous hemostatic sponges (CGS1, CGS2 and CGS3) with proper absorption (38-43×) and air permeability (2214 g/m2·day) were prepared from l-glutamine-modified chitosan (CG), tannic acid-modified gelatin (GTA), and oxidized dextran (ODEX) by Schiff base crosslinking reaction. Among them, CGS2 was proved to have high porosity (88.98 %), durable water retention (>6 h), strong antibacterial activity, proper mechanical quality, and suitable tissue adhesion. In addition, CGS2 had good biocompatibility, mainly manifested in low hemolysis rate (<0.4 %), low cytotoxicity (relative cell activity>90 %), and good biodegradability in vitro. The hemostatic time and blood loss in CGS2 group were much lower than those in commercial gelatin sponge group in three animal injury models. Moreover, the activated partial thromboplastin time (APTT) and the prothrombin time (PT) results indicated that CGS2 promoted coagulation by activating the endogenous coagulation pathway. These results suggested that CGS2 had great potential for rapid hemostasis and avoidance of wound infection.
Collapse
Affiliation(s)
- Yue Ma
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Ximing Xu
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Ying Xin
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Meng Yang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Aoqing Chen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
12
|
Yan S, Wu S, Zhang J, Zhang S, Huang Y, Zhu H, Li Y, Qi B. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker. Food Chem 2023; 418:135966. [PMID: 36948025 DOI: 10.1016/j.foodchem.2023.135966] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Controlled drug delivery could minimize side effects while maintaining a high local dose. Herein, a hydrogel carrier was prepared by forming dynamic imine bonds between gelatin and oxidized dextran (ODex) of different molecular weights (Mw = 10, 70, and 150 kDa). The morphology, thermal stability, rheology, mechanical properties, and swelling properties of the hydrogels and the controlled release of curcumin were characterized. When dextran with a higher Mw was used, the ODex contained more aldehyde groups, which led to a higher degree of cross-linking, considerably shorter gel time, decreased hydrogel porosity, and well-controlled release of curcumin. In addition, the cross-linked hydrogels exhibited not only high thermal stability but also excellent mechanical properties. However, because the matrix was hydrophilic, the swelling properties of the hydrogels were not significantly affected by the Mw of ODex. These observations suggest an approach for designing nutrient delivery carriers with improved controlled release.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siyu Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianxun Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing 100045, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
13
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
14
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
15
|
Li M, Wei R, Liu C, Fang H, Yang W, Wang Y, Xian Y, Zhang K, He Y, Zhou X. A "T.E.S.T." hydrogel bioadhesive assisted by corneal cross-linking for in situ sutureless corneal repair. Bioact Mater 2023; 25:333-346. [PMID: 36844364 PMCID: PMC9946819 DOI: 10.1016/j.bioactmat.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Corneal transplantation is an effective clinical treatment for corneal diseases, which, however, is limited by donor corneas. It is of great clinical value to develop bioadhesive corneal patches with functions of "Transparency" and "Epithelium & Stroma generation", as well as "Suturelessness" and "Toughness". To simultaneously meet the "T.E.S.T." requirements, a light-curable hydrogel is designed based on methacryloylated gelatin (GelMA), Pluronic F127 diacrylate (F127DA) & Aldehyded Pluronic F127 (AF127) co-assembled bi-functional micelles and collagen type I (COL I), combined with clinically applied corneal cross-linking (CXL) technology for repairing damaged cornea. The patch formed after 5 min of ultraviolet irradiation possesses transparent, highly tough, and strongly bio-adhesive performance. Multiple cross-linking makes the patch withstand deformation near 600% and exhibit a burst pressure larger than 400 mmHg, significantly higher than normal intraocular pressure (10-21 mmHg). Besides, the slower degradation than GelMA-F127DA&AF127 hydrogel without COL I makes hydrogel patch stable on stromal beds in vivo, supporting the regrowth of corneal epithelium and stroma. The hydrogel patch can replace deep corneal stromal defects and well bio-integrate into the corneal tissue in rabbit models within 4 weeks, showing great potential in surgeries for keratoconus and other corneal diseases by combining with CXL.
Collapse
Key Words
- AF127, Aldehyded Pluronic F127
- AS-OCT, Anterior Segment Optical Coherence Tomography
- Bioadhesives
- CCK-8, Cell Counting Kit-8
- COL I, Collagen Type I
- CXL
- CXL, Corneal Cross-linking
- Corneal patch
- DLS, Dynamic Light Scattering
- DMEM, Dulbecco's Modified Eagle's Medium
- ECM, Extracellular Matrix
- F127DA, Pluronic F127 diacrylate
- FBS, Fetal Bovine Serum
- GelMA, Methacryloylated Gelatin
- H&E, Hematoxylin and Eosin
- IHC, Immunohistochemistry
- IOP, Intraocular Pressure
- PBS, Phosphate-buffered Saline
- RF, Riboflavin-5-phosphate
- ROS, Reactive Oxygen Species
- SD, Standard Deviation
- Sutureless repair
- TEM, Transmission Electron Microscopy
- Tough hydrogel
- UV, Ultraviolet
- α-SMA, Alpha Smooth Muscle Actin
Collapse
Affiliation(s)
- Meiyan Li
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Ruoyan Wei
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Chang Liu
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Weiming Yang
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yunzhe Wang
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yiyong Xian
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
- Corresponding author.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Corresponding author.
| | - Xingtao Zhou
- Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Corresponding author. Department of Ophthalmology, EYE & ENT Hospital of Fudan University Shanghai, China.
| |
Collapse
|
16
|
Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering. Gels 2023; 9:gels9020088. [PMID: 36826258 PMCID: PMC9956898 DOI: 10.3390/gels9020088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected.
Collapse
|
17
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|