1
|
Huang J, Sun Z, Zhang G, Zhang Z, Sun F, Han D, Wang J, Zhao J. Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025:139810. [PMID: 39814295 DOI: 10.1016/j.ijbiomac.2025.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05). The AX increased sIgA concentration and protein expression of protein expression of TLR4 and NF-κB (p65), but decreased mRNA expression of pro-inflammatory cytokines in the ileum of weaned pig model, leading to the reduced diarrhea (P < 0.05). The AX increased an abundance of Bifidobacterium pseudocatenulatum, production of butyric acid and ferulic acid in the ileal digesta of pigs (P < 0.05). In a LPS-treated mouse model, butyric acid and ferulic acid combination increased IL-10 concentration and abundance of Bifidobacterium pseudocatenulatum, but reduced mRNA expression of IL-6 and gene expression of TLR4 and NF-κB (p65) in the jejunum. In summary, AX is fermented by gut microbiota to produce ferulic acid, as well as butyric acid, which improved host immunity by promoting relative abundance of Bifidobacterium pseudocatenulatum and suppressing activation of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
4
|
Chinbat O, Erdenetsog P, Tuvshintur B, Gantumur A, Burenjargal M, Chimeddorj B, Janlav M. In vitro and in vivo investigation of the biological action of xylooligosaccharides derived from industrial waste. Food Sci Nutr 2024; 12:7877-7884. [PMID: 39479607 PMCID: PMC11521651 DOI: 10.1002/fsn3.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Xylooligosaccharides (XOS) are prebiotics of significant biological value that can be obtained through cost-effective purification of agricultural waste. The present research featured in vitro and in vivo investigation of prebiotic effects of xylooligosaccharides derived from wheat bran powder and brewer's spent grain. Prebiotic activity of Lactobacillus. fermentum, Lactobacillus. casei, and Bifidobacterium spp. was investigated in vitro using standard selective media. 16S rRNA quantitative PCR used for in vitro and in vivo investigation quantified relative abundance of Bifidobacterium spp., Lactobacillus spp., and Akkermansia. muciniphila in samples of fecal matter, cecal content, and intestinal tissue. Research revealed a favorable association between XOS concentration and both bacterial count and diameter of resultant colonies. The standard strain of L. casei showed no noticeable effect on growth rate. Bifidobacterium spp. proliferation in intestinal tissue was validated via in vivo tests using XOS obtained from wheat bran powder and brewer's spent grain. Findings indicated increased prevalence of the A. muciniphila species and the presence of XOS showed a protective function in preserving the structural integrity of intestinal mucus secretions. The presence of XOS in food indicated direct association with proliferation of Bifidobacterium spp. and A. muciniphila spp. Study results suggest that XOS extracted through enzymatic hydrolysis in Mongolian food industry by-products such as wheat bran products and brewer's spent grain exhibit prebiotic properties that justify XOS manufacture on a large scale and incorporation of XOS as nutritional enhancement in food products and pharmaceuticals.
Collapse
Affiliation(s)
- Odgerel Chinbat
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Purevdulam Erdenetsog
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Buyankhuu Tuvshintur
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Anuujin Gantumur
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhjargal Burenjargal
- Department of Chemistry, School of Arts and SciencesNational University of MongoliaUlaanbaatarMongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhtsetseg Janlav
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| |
Collapse
|
5
|
Choneva M, Delchev S, Hrischev P, Dimov I, Boyanov K, Dimitrov I, Gerginska F, Georgieva K, Bacelova M, Bivolarska A. Modulation of the Cardiovascular Risk in Type 1 Diabetic Rats by Endurance Training in Combination with the Prebiotic Xylooligosaccharide. Int J Mol Sci 2024; 25:10027. [PMID: 39337515 PMCID: PMC11432573 DOI: 10.3390/ijms251810027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Petar Hrischev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Mariana Bacelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| |
Collapse
|
6
|
Zhang K, Qi X, Feng N, Wang Y, Wei H, Liu M. Antioxidant capacity of xylooligosaccharides generated from beechwood xylan by recombinant family GH10 Aspergillus niger xylanase A and insights into the enzyme's competitive inhibition by riceXIP. Enzyme Microb Technol 2024; 179:110456. [PMID: 38754147 DOI: 10.1016/j.enzmictec.2024.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
In this study, the family GH10 xylanase AnXylA10 derived from Aspergillus niger JL15 strain was expressed in Pichia pastoris X33. The recombinant xylanase, reAnXylA10 exhibited optimal activity at 40 ℃ and pH 5.0. The hydrolysates generated from beechwood xylan using reAnXylA10 primarily consisted of xylobiose (X2) to xylohexaose (X6) and demonstrated remarkable antioxidant capacity. Furthermore, the rice xylanase inhibitory protein (riceXIP) was observed to competitively inhibit reAnXylA10, exhibiting an inhibition constant (Ki) of 140.6 nM. Molecular dynamics (MD) simulations of AnXylA10-riceXIP complex revealed that the α-7 helix (Q225-S238) of riceXIP intruded into the catalytic pocket of AnXylA10, thereby obstructing substrate access to the active site. Specifically, residue K226 of riceXIP formed robust interactions with E136 and E242, the two catalytic sites of AnXylA10, predominantly through high-occupied hydrogen bonds. Based on QTAIM, electron densities for the atom pairs K226riceXIP@HZ1-E136AnXylA10@OE2 and K226riceXIP@HZ3-E242AnXylA10@OE1 were determined to be 0.04628 and 0.02914 a.u., respectively. Binding free energy of AnXylA10-riceXIP complex was -59.0±7.6 kcal/mol, significantly driven by electrostatic and van der Waals forces. Gaining insights into the interaction between xylanase and its inhibitors, and mining the inhibition mechanism in depth, will facilitate the design of innovative GH10 family xylanases that are both highly efficient and resistant to inhibitors.
Collapse
Affiliation(s)
- Keer Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Qi
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ningxin Feng
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuzhu Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huiwen Wei
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mingqi Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Huangfu W, Ma J, Zhang Y, Liu M, Liu B, Zhao J, Wang Z, Shi Y. Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:1714. [PMID: 38892647 PMCID: PMC11174469 DOI: 10.3390/nu16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1β and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
8
|
Wen X, Wan F, Zhong R, Chen L, Zhang H. Hydroxytyrosol Alleviates Intestinal Oxidative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int J Mol Sci 2024; 25:5590. [PMID: 38891778 PMCID: PMC11171822 DOI: 10.3390/ijms25115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1β, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.
Collapse
Affiliation(s)
| | | | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | | |
Collapse
|
9
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
10
|
Zhan M, Yang X, Zhao C, Han Y, Xie P, Mo Z, Xiao J, Cao Y, Xiao H, Song M. Dietary nobiletin regulated cefuroxime- and levofloxacin-associated "gut microbiota-metabolism" imbalance and intestinal barrier dysfunction in mice. Food Funct 2024; 15:1265-1278. [PMID: 38196314 DOI: 10.1039/d3fo04378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Nobiletin (NOB) exhibits significant biological activities and may be a potential dietary treatment for antibiotic-associated gut dysbiosis. In this study, mice were gavaged with 0.2 mL day-1 of 12.5 g L-1 cefuroxime (LFX) and 10 g L-1 levofloxacin (LVX) for a duration of 10 days, accompanied by 0.05% NOB to investigate the regulatory effect and potential mechanisms of NOB on antibiotic-induced intestinal microbiota disorder and intestinal barrier dysfunction. Our results indicated that dietary NOB improved the pathology of intestinal epithelial cells and the intestinal permeability by upregulating the expression of intestinal tight junction proteins (TJs) and the number of goblet cells. Furthermore, dietary NOB reduced the levels of serum lipopolysaccharide (LPS) and pro-inflammatory factors (TNF-α and IL-1β), thereby facilitating the restoration of the intestinal mucosal barrier. Additionally, dietary NOB increased the abundance of beneficial bacteria f_Lachnospiraceae and regulated the metabolic disorders of short-chain fatty acids (SCFAs) and bile acids (BAs). Notably, NOB supplementation resulted in elevated levels of butyric acid and lithocholic acid (LCA), which contributed to the repair of the intestinal mucosal barrier function and the maintenance of intestinal homeostasis. Collectively, our results propose a healthy dietary strategy for the prevention or mitigation of antibiotic-associated gut dysbiosis by dietary NOB.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710062, P.R. China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
11
|
Yin C, Wen X, Dang G, Zhong R, Meng Q, Feng X, Liu L, Wu S, He J, Chen L, Zhang H. Modulation of pectin on intestinal barrier function via changes in microbial functional potential and bile acid metabolism. J Nutr Biochem 2024; 124:109491. [PMID: 37865382 DOI: 10.1016/j.jnutbio.2023.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Chang Yin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shusong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
12
|
Qiu Y, Zhang L, Zhang F, Cheng X, Ji L, Jiang J. Efficient production of xylooligosaccharides from Camellia oleifera shells pretreated by pyruvic acid at lower temperature. Int J Biol Macromol 2024; 259:129262. [PMID: 38199559 DOI: 10.1016/j.ijbiomac.2024.129262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.
Collapse
Affiliation(s)
- Yuejie Qiu
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Song H, Guo R, Sun X, Kou Y, Ma X, Chen Y, Song L, Wu Y. Integrated metabolomics and transcriptomics revealed the anti-constipation mechanisms of xylooligosaccharides from corn cobs. Food Funct 2024; 15:894-905. [PMID: 38168976 DOI: 10.1039/d3fo04366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Xylooligosaccharides (XOSs) have recently garnered interest for their potential as an anti-constipation agent. In this study, we investigated the effects of XOSs derived from corn cobs on constipation in mice through a comprehensive analysis of both the metabolome and transcriptome. Our multi-omics approach revealed that XOSs primarily modulated butanoate metabolism and steroid hormone biosynthesis pathways, as well as key signaling pathways such as PPAR and NF-kappa B. Notably, we observed a decrease in inflammatory biomarker expression and an elevation of butyric acid metabolite levels with XOSs treatment. A deeper analysis of gene expression and metabolite alterations highlighted significant changes in genes encoding critical enzymes and metabolites involved in these pathways. Overall, these findings underscore the considerable potential of XOSs derived from corn cobs as a dietary supplement for effectively alleviating constipation.
Collapse
Affiliation(s)
- Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuan Ma
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinan Chen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Wen X, Wan F, Wu Y, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid modulates intestinal microbiota, alleviates inflammatory response, and enhances barrier function in a piglet model challenged with lipopolysaccharide. J Anim Sci 2024; 102:skae233. [PMID: 39158070 PMCID: PMC11401994 DOI: 10.1093/jas/skae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 μg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
16
|
Ren Y, Tian Y, Hou M, Zhao Y, Li J, Aftab U, Rousseau X, Jiang R, Kang X, Tian Y, Gong Y. Evaluation of stimbiotic on growth performance and intestinal development of broilers fed corn- or wheat-based diets. Poult Sci 2023; 102:103094. [PMID: 37931376 PMCID: PMC10633449 DOI: 10.1016/j.psj.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023] Open
Abstract
In the antibiotics-free era, stimbiotic (STB) has been suggested as a new alternative of antibiotic growth promoters to modulate intestinal health via stimulating dietary fiber utilization in poultry production. The aim of this study was to evaluate the effects of STB supplementation in corn- or wheat-basal diet on growth performance, intestinal development, and function of broilers. A total of 512 one-day-old Arbor Acres(AA)broilers were randomly allocated 4 treatments, including corn group (CG), corn + 100 g/t STB (CG + STB), wheat group (WG), wheat + 100 g/t STB (WG + STB). The broilers were weighed at the days of 14, 28, and 42, of which 8 repetitions per treatment were randomly selected to determine the intestinal morphology, intestinal barrier, and cecal microbiota and metabolites. Our data showed that STB increased (P < 0.05) feed intake, body weight and reduced FCR for the overall period (0-42 d). At 28 d of age, significant increases in villus height and the villus height-to-crypt depth ratio (V/C) were found in the STB supplementation groups (P < 0.05). Addition of STB significantly increased intestinal mucosal DAO and AMPK enzyme activity and the gene expression of OCLN, CLDN1, ZO1, MUC2, SGLT1, PEPT1, FABP2, Ghrelin, and GCG in jejunum (P < 0.05), and significantly decreased the expression of the PYY gene. In addition, STB increased the relative abundance of beneficial bacteria, such as Akkermansia, Bifidobacterium, and Oscillospirales (P < 0.05). A significant increase in cecal short-chain fatty acid (SCFAs) concentration was also observed in the STB supplementation groups. At the cellular level, STB cannot directly increase the expression of small intestinal epithelial cells, and may indirectly improve intestinal barrier function by increasing the level of sodium butyrate. Overall, these results indicated that STB supplementation could improve the growth performance, intestinal development and barrier functions, and fiber fermentation in cecum of broiler chickens.
Collapse
Affiliation(s)
- Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- AB Vista, Marlborough SN8 4AN, UK
| | | | | | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
17
|
Sonkar R, Gade PS, Mudliar SN, Bhatt P. Green Downstream Processing Method for Xylooligosaccharide Purification and Assessment of Its Prebiotic Properties. ACS OMEGA 2023; 8:42815-42826. [PMID: 38024717 PMCID: PMC10652722 DOI: 10.1021/acsomega.3c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Xylooligosaccharides (XOS) obtained from lignocellulosic biomass after autohydrolysis primarily consist of lignin-derived impurities and autogenerated inhibitors like furfural, hydroxymethylfurfural, and acetic acid. In this study, graphene oxide-mediated purification (GOMP), a novel and environmentally friendly downstream processing method, was developed for the purification of XOS from hydrolysate obtained after ozone-assisted autohydrolysis of wheat bran. GOMP resulted in appreciable recovery of total XOS from the hydrolysate (73.87 ± 4.25%, DP2-6) with near complete removal of autogenerated inhibitors (furfural 85.42%, HMF 87.38%, and acetic acid 84.0%). Recovery of XOS by GOMP was higher than the conventional membrane purification technique (44.07 ± 0.92%) and activated charcoal treatment (72.76 ± 0.84%) along with comparatively higher removal of inhibitor compounds. GOMP results in the selective adsorption of inhibitors on the graphene oxide matrix from the XOS-rich hydrolysate, resulting in its purification and concentration. The prebiotic function of the obtained XOS fractions (DP2-4.48%, DP3-39.69%, DP4-36.13%, DP5-8.38%, and DP6-13.10%) was evaluated, indicating the growth stimulation of tested probiotic cultures and differential utilization of XOS oligomers DP3 and DP4 and complete consumption of DP2, DP5, and DP6 along with short-chain fatty acids as a major fermentation product. These findings suggest that GOMP, which employs a common substance (i.e., graphene oxide) used in water treatment, exhibits potential as an efficient and economically viable single-step methodology for XOS purification.
Collapse
Affiliation(s)
- Rutuja
Murlidhar Sonkar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Sandeep N. Mudliar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
18
|
Cai L, Gao G, Yin C, Bai R, Li Y, Sun W, Pi Y, Jiang X, Li X. The Effects of Dietary Silybin Supplementation on the Growth Performance and Regulation of Intestinal Oxidative Injury and Microflora Dysbiosis in Weaned Piglets. Antioxidants (Basel) 2023; 12:1975. [PMID: 38001828 PMCID: PMC10669228 DOI: 10.3390/antiox12111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the major incentive for intestinal dysfunction in weaned piglets, which usually leads to growth retardation or even death. Silybin has caught extensive attention due to its antioxidant properties. Herein, we investigated the effect of dietary silybin supplementation on growth performance and determined its protective effect on paraquat (PQ)-induced intestinal oxidative damage and microflora dysbiosis in weaned piglets. In trial 1, a total of one hundred twenty healthy weaned piglets were randomly assigned into five treatments with six replicate pens per treatment and four piglets per pen, where they were fed basal diets supplemented with silybin at 0, 50, 100, 200, or 400 mg/kg for 42 days. In trial 2, a total of 24 piglets were randomly allocated to two dietary treatments with 12 replicates per treatment and 1 piglet per pen: a basal diet or adding 400 mg/kg silybin to a basal diet. One-half piglets in each treatment were given an intraperitoneal injection of paraquat (4 mg/kg of body weight) or sterile saline on day 18. All piglets were euthanized on day 21 for sample collection. The results showed that dietary supplementation with 400 mg/kg silybin resulted in a lower feed conversion ratio, diarrhea incidence, and greater antioxidant capacity in weaned piglets. Dietary silybin enhanced intestinal antioxidant capacity and mitochondrial function in oxidative stress piglets induced by PQ. Silybin inhibited mitochondria-associated endogenous apoptotic procedures and then improved the intestinal barrier function and morphology of PQ-challenged piglets. Moreover, silybin improved intestinal microbiota dysbiosis induced by the PQ challenge by enriching short-chain fatty-acid-producing bacteria, which augmented the production of acetate and propionate. Collectively, these findings indicated that dietary silybin supplementation linearly decreased feed conversion ratio and reduced diarrhea incidence in normal conditions, and effectively alleviated oxidative stress-induced mitochondrial dysfunction, intestinal damage, and microflora dysbiosis in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| | | | | | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| |
Collapse
|
19
|
Song H, Guo R, Sun X, Kou Y, Ma X, Chen Y, Song L, Yuan C, Wu Y. Xylooligosaccharides from corn cobs alleviate loperamide-induced constipation in mice via modulation of gut microbiota and SCFA metabolism. Food Funct 2023; 14:8734-8746. [PMID: 37694718 DOI: 10.1039/d3fo02688d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study aimed to optimize the structure and efficacy of xylooligosaccharides (XOSs) from corn cobs in constipated mice. Structural analysis revealed that XOSs from corn cobs were composed of β-Xyl-(1 →4)-[β-Xyl-(1→4)]n-α/β-Xyl (n = 0-5) without any other substituents. XOS administration significantly reduced the defecation time, increased the gastrointestinal transit rate, restored the gastrointestinal neurotransmitter imbalance, protected against oxidative stress, and reversed constipation-induced colonic inflammation. Fecal metabolite and microbiota analysis showed that XOS supplementation significantly increased short chain fatty acid (SCFA) levels and improved the gut microbial environment. These findings highlighted the potential of XOSs from corn cobs as an active ingredient for functional foods or as a therapeutic agent in constipation therapy.
Collapse
Affiliation(s)
- Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuan Ma
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinan Chen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Morais VND, Gomes MJC, Grancieri M, Moreira LDPD, Toledo RCL, Costa NMB, da Silva BP, Martino HSD. Chia (Salvia hispanica L.) flour modulates the intestinal microbiota in Wistar rats fed a high-fat and high-fructose diet. Food Res Int 2023; 172:113095. [PMID: 37689868 DOI: 10.1016/j.foodres.2023.113095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Legnaro 16,35020, PD, Italy; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Viken, Norway
| | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | | | | |
Collapse
|
21
|
Wen X, Wan F, Wu Y, Liu L, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid supplementation ameliorates intestinal injury by modulating intestinal microbiota in LPS-challenged piglets. Food Funct 2023; 14:7705-7717. [PMID: 37547959 DOI: 10.1039/d3fo02286b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
During weaning, piglets are susceptible to intestinal injuries caused by a range of infections, which result in serious economic losses for pig producers. Caffeic acid (CA) is a plant-derived phenolic acid that exhibits potential as a dietary supplement for enhancing intestinal health. There is, however, limited information available about the potential benefits of CA supplementation on intestinal injury and growth performance in piglets. A 28-day study was conducted to examine the effectiveness of CA supplementation in protecting against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in piglets. Twenty-four piglets (7.43 ± 0.79 kg body weight; Duroc × Landrace × Large White; barrows) were randomly divided into 4 groups: the control group, the LPS group, the LPS + CA group, and the CA group. Piglets were administered with LPS or saline on d21 and d28 of the experiment. Supplementation with CA improved intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, as well as increasing the expression of Claudin-1 and ZO-1. Meanwhile, CA supplementation improved the systemic and colonic inflammation responses, oxidative stress, and apoptosis induced by LPS. CA supplementation improved the alpha diversity and structure of the intestinal microbiota by increasing the abundance of beneficial microbiota. Additionally, it was found that it improves metabolic disorders of colonic bile acids (BAs) and short-chain fatty acids (SCFAs) in LPS-challenged piglets, including an increase in primary BAs and isovalerate. In conclusion, CA supplementation could enhance intestinal integrity and barrier function by modifying intestinal microbiota and its metabolites, which could lead to a reduction in inflammatory responses and oxidative stress and ultimately enhanced growth performance in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
22
|
Manicardi T, Baioni e Silva G, Longati AA, Paiva TD, Souza JPM, Pádua TF, Furlan FF, Giordano RLC, Giordano RC, Milessi TS. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries' Portfolios. Foods 2023; 12:3007. [PMID: 37628006 PMCID: PMC10453364 DOI: 10.3390/foods12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Xylooligosaccharides (XOS) are nondigestible compounds of great interest for food and pharmaceutical industries due to their beneficial prebiotic, antibacterial, antioxidant, and antitumor properties. The market size of XOS is increasing significantly, which makes its production from lignocellulosic biomass an interesting approach to the valorization of the hemicellulose fraction of biomass, which is currently underused. This review comprehensively discusses XOS production from lignocellulosic biomass, aiming at its application in integrated biorefineries. A bibliometric analysis is carried out highlighting the main players in the field. XOS production yields after different biomass pretreatment methods are critically discussed using Microsoft PowerBI® (2.92.706.0) software, which involves screening important trends for decision-making. Enzymatic hydrolysis and the major XOS purification strategies are also explored. Finally, the integration of XOS production into biorefineries, with special attention to economic and environmental aspects, is assessed, providing important information for the implementation of biorefineries containing XOS in their portfolio.
Collapse
Affiliation(s)
- Tainá Manicardi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Gabriel Baioni e Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Andreza A. Longati
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thiago D. Paiva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - João P. M. Souza
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Thiago F. Pádua
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thais S. Milessi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
23
|
Song D, Lee J, Kwak W, Oh H, Chang S, An J, Cho H, Park S, Jeon K, Cho J. Effects of stimbiotic supplementation on gut health, immune response, and intestinal microbiota in weaned piglets challenged with E. coli. Front Vet Sci 2023; 10:1187002. [PMID: 37538167 PMCID: PMC10394646 DOI: 10.3389/fvets.2023.1187002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
In order to make piglet diets more effective, it is necessary to investigate effective methods for breaking down xylan in cereal. The objective of this study was to determine the effects of dietary stimbiotic (STB) supplementation on growth performance, intestinal morphology, immune response and intestinal microbiota in weaned piglets. A total of 24 (Duroc × Yorkshire × Landrace) weaned pigs (initial body weight of 8.01 ± 0.38 kg and 28 ± 3 d old), were assigned to 4 treatments with 6 replicates per treatment. Pigs were housed in individual pens for 17 days, including 5 days adaption period and 12 days after the first Escherichia coli (E. coli) challenge. The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) and two levels of STB (0 and 0.5 g/kg diet). Supplementations of STB 0.5 g/kg improved the gain to feed ratio (G:F) (P < 0.05) in piglets challenged with shiga toxigenic E. coli (STEC). STB supplementation decreased (P < 0.05) white blood cells, neutrophils, lymphocytes, and expression levels of tumor necrosis factor-alpha and interleukin-6. Supplementation of STB improved (P < 0.05) the lymphocytes and neutrophils in piglets challenged with STEC on 12 dpi. Supplementation of STB also improved (P < 0.05) the villus height to-crypt depth ratio of ileum in piglets challenged with STEC. Supplementation of STB increased (P < 0.05) the expression levels of claudin-1 of ileum. In genus level, supplementation of STB increased (P < 0.001) the abundance of Prevotella compared to non-supplementation of STB groups in pre-inoculation period. Also, supplementation of STB decreased (P < 0.05) the abundance of Faecalibacterium and Eubacterium_coprostanoligenes_group compared to non-supplementation of STB groups in post-inoculation period. In phylum level, supplementation of STB increased (P < 0.05) the abundance of Desulfobacterota and Fibrobacterota in pre-inoculation period. E. coli challenge increased the abundance of Fibrobacterota compared to non-challenged group in post-inoculation period. In conclusion, these findings indicated that STB supplementation could alleviate a decrease of the performance, immune response, and inflammatory response in piglets induced by the STEC challenge.
Collapse
Affiliation(s)
- Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA, United States
| | - Woogi Kwak
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
24
|
Valladares-Diestra KK, de Souza Vandenberghe LP, Vieira S, Goyzueta-Mamani LD, de Mattos PBG, Manzoki MC, Soccol VT, Soccol CR. The Potential of Xylooligosaccharides as Prebiotics and Their Sustainable Production from Agro-Industrial by-Products. Foods 2023; 12:2681. [PMID: 37509773 PMCID: PMC10379617 DOI: 10.3390/foods12142681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, concerns about a good-quality diet have increased. Food supplements such as prebiotics have great nutritional and health benefits. Within the diverse range of prebiotics, xylooligosaccharides (XOs) show high potential, presenting exceptional properties for the prevention of systemic disorders. XOs can be found in different natural sources; however, their production is limited. Lignocellulosic biomasses present a high potential as a source of raw material for the production of XOs, making the agro-industrial by-products the perfect candidates for production on an industrial scale. However, these biomasses require the application of physicochemical pretreatments to obtain XOs. Different pretreatment methodologies are discussed in terms of increasing the production of XOs and limiting the coproduction of toxic compounds. The advance in new technologies for XOs production could decrease their real cost (USD 25-50/kg) on an industrial scale and would increase the volume of market transactions in the prebiotic sector (USD 4.5 billion). In this sense, new patents and innovations are being strategically developed to expand the use of XOs as daily prebiotics.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| | - Patricia Beatriz Gruening de Mattos
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-980, Paraná, Brazil
| |
Collapse
|
25
|
Liu C, Zhou Y, Gao H, Zhang Z, Zhou Y, Xu Z, Zhang C, Xu Z, Zheng H, Ma YQ. Circulating LPS from gut microbiota leverages stenosis-induced deep vein thrombosis in mice. Thromb J 2023; 21:71. [PMID: 37386453 PMCID: PMC10308784 DOI: 10.1186/s12959-023-00514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE AND DESIGN An accumulating body of evidence has shown that gut microbiota is involved in regulating inflammation; however, it remains undetermined if and how gut microbiota plays an important role in modulating deep venous thrombosis (DVT), which is an inflammation-involved thrombotic event. SUBJECTS Mice under different treatments were used in this study. METHODS AND TREATMENT We induced stenosis DVT in mice by partially ligating the inferior vena cava. Mice were treated with antibiotics, prebiotics, probiotics, or inflammatory reagents to modulate inflammatory states, and their effects on the levels of circulating LPS and DVT were examined. RESULTS Antibiotic-treated mice or germ-free mice exhibited compromised DVT. Treatment of mice with either prebiotics or probiotics effectively suppressed DVT, which was accompanied with the downregulation of circulating LPS. Restoration of circulating LPS in these mice with a low dose of LPS was able to restore DVT. LPS-induced DVT was blocked by a TLR4 antagonist. By performing proteomic analysis, we identified TSP1 as one of the downstream effectors of circulating LPS in DVT. CONCLUSION These results suggest that gut microbiota may play a nonnegligible role in modulating DVT by leveraging the levels of LPS in circulation, thus shedding light on the development of gut microbiota-based strategies for preventing and treating DVT.
Collapse
Affiliation(s)
- Cheng Liu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Ying Zhou
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Huihui Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Zeping Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Yu Zhou
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Xu
- Versiti Blood Research Institute, 8727 Watertown Plank Rd, Wisconsin, Milwaukee, WI, 53226, USA
| | - Huajun Zheng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China.
| | - Yan-Qing Ma
- Versiti Blood Research Institute, 8727 Watertown Plank Rd, Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Wang Q, Zhao Y, Guo L, Ma X, Yang Y, Zhuo Y, Jiang X, Hua L, Che L, Xu S, Feng B, Fang Z, Li J, Lin Y, Wu D. Xylo-oligosaccharides improve the adverse effects of plant-based proteins on weaned piglet health by maintaining the intestinal barrier and inhibiting harmful bacterial growth. Front Microbiol 2023; 14:1189434. [PMID: 37303802 PMCID: PMC10249996 DOI: 10.3389/fmicb.2023.1189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Piglets are more susceptible to weaning stress syndrome when fed high levels of plant-based proteins that contain abundant food antigens and anti-nutritional factors. Xylo-oligosaccharides (XOS) are a potential prebiotic that may improve the tolerance of weaned piglets to plant-based proteins. The aim of this study was to investigate the effects of XOS supplementation in high and low plant-based protein diets on growth performance, gut morphology, short-chain fatty acid (SCFA) production, and gut microbiota of weaned piglets. Methods A total of 128 weanling piglets with an average body weight (BW) of 7.63 ± 0.45 kg were randomly allocated to one of the four dietary treatments in a 2 × 2 factorial arrangement, with two levels of plant-based proteins (d 1-14: 68.3 or 81.33%, d 15-28: 81.27 or 100%) and XOS complex (0 or 0.43%) over a 28-day trial. Results The growth performance of piglets did not differ significantly among groups (P > 0.05). However, the diarrhea index of weaned piglets fed a high plant-based protein diet (HP) was significantly higher than that of those fed a low plant-based protein diet (LP) at days 1-14 and throughout the experimental period (P < 0.05). XOS treatment tended to reduce the diarrhea index at days 1-14 (P = 0.062) and during the whole experiment period (P = 0.083). However, it significantly increased the digestibility of organic matter at days 15-28 (P < 0.05). Moreover, dietary XOS supplementation increased ileal mucosa mRNA expression of occludin and ZO-1 (P < 0.05). Furthermore, the concentration of butyric acid (BA) in the cecal contents and in the concentrations of BA and valeric acid (VA) in colon contents were significantly elevated in the XOS groups (P < 0.05). Additionally, XOS optimized the gut flora by lowering the number of pathogenic bacteria such as p_Campylobacterota, thereby stabilizing the gut ecosystem. Discussion In conclusion, the HP diet aggravated diarrhea in weaned piglets while the XOS diet alleviated it by improving nutrient digestibility, protecting intestinal morphology, and optimizing the gut flora.
Collapse
|
27
|
Dang G, Wen X, Zhong R, Wu W, Tang S, Li C, Yi B, Chen L, Zhang H, Schroyen M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J Anim Sci Biotechnol 2023; 14:38. [PMID: 36882874 PMCID: PMC9993796 DOI: 10.1186/s40104-023-00838-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chong Li
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
28
|
Effect of prebiotics administered during embryo development on mitochondria in intestinal and immune tissues of adult broiler chickens. Poult Sci 2023; 102:102663. [PMID: 37030257 PMCID: PMC10105484 DOI: 10.1016/j.psj.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are cellular organelles that are the place of many metabolic processes and thus have a significant impact on the proper functioning of the organism. These organelles respond easily to environmental stimuli and cellular energy demands. To ensure the proper functioning of mitochondria, a high supply of specific nutrients is needed. Literature reports suggest that a favorable profile of the intestinal microbiota may improve the functioning of the mitochondria. The gut microbiota transmits a signal to the mitochondria of the mucosa cells. This signaling alters mitochondrial metabolism, activates cells of the immune system, and alters intestinal epithelial barrier functions. The aim of the study is to determine the relative number of mtDNA copies and to analyze the mitochondrial expression of genes related to respiratory chain proteins and energy metabolism in the intestinal mucosa and cecal tonsils of broiler chickens injected on the d 12 of egg incubation with various prebiotics. 300 incubated eggs of Ross 308 broiler chicken on d 12 of incubation were injected with: control group with physiological saline, prebiotics: XOS3, XOS4, MOS3, and MOS4. On d 42 after hatching, 8 individuals from each group were sacrificed. Cecal mucosa and cecal tonsils were collected postmortem for DNA and RNA isolation. Relative mitochondrial DNA copy number analysis was performed by qPCR method using 2 calculation methods. Gene expression analysis of the cecal tonsils and cecal mucosa was performed by RT-qPCR for the gene panel selected based on literature data and gene functions related to mitochondria: CS, EPX (MPO), CYCS, TFAM, NRF1, ND2, MnSOD (SOD2). As the results showed the overall mt DNA copy number is stable in both tissues. The significant change in gene expression in cecal mucosa was induced by XOS4 and MOS3. Both prebiotics caused upregulation of gene expression. In cecal tonsils all prebiotics caused downregulation of entire set of genes under the analysis. Statistically significant results of gene expression were detected for CYCS, ND2, NRF, TFAM for all experimental groups.
Collapse
|
29
|
Combined effects of sodium butyrate and xylo-oligosaccharide on growth performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers at early stage. Poult Sci 2023; 102:102585. [PMID: 36913758 PMCID: PMC10023969 DOI: 10.1016/j.psj.2023.102585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
This study aimed to evaluate the individual and combined effects of chemically protected sodium butyrate (CSB) and xylo-oligosaccharide (XOS) on performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers. A total of 280 one-day-old Arbor Acres broilers were randomly distributed into 5 treatments: basal diet (CON), basal diet supplemented with 100 mg/kg aureomycin and 8 mg/kg enramycin (ABX), 1000 mg/kg CSB (CSB), 100 mg/kg XOS (XOS), and mixture of 1000 mg/kg CSB and 100 mg/kg XOS (MIX), respectively. On d 21, ABX, CSB, and MIX decreased feed conversion ratio compared with CON (CON: ABX: CSB: MIX = 1.29: 1.22: 1.22: 1.22), whereas body weight of CSB and MIX was increased by 6.00% and 7.93%, and average daily gain was increased by 6.62% and 8.67% at 1-21 d, respectively (P < 0.05). The main effect analysis showed that both CSB and XOS treatments increased ileal villus height and villus height to crypt depth ratio (VCR) (P < 0.05). Moreover, broilers in ABX showed lower 21.39% ileal crypt depth and higher 31.43% VCR than those in CON (P < 0.05). Dietary CSB and XOS were added individually or collectively increased total antioxidant capacity and superoxide dismutase, and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β, whereas decreased malondialdehyde, and proinflammatory cytokines IL-6 and tumor necrosis factor-α content in serum (P < 0.05). Meanwhile, MIX showed the best effect of antioxidant and anti-inflammatory capacity among the 5 groups (P < 0.05). There was an interaction between CSB and XOS treatments on increasing cecal acetic acid, propionic acid, butyric acid and total short-chain fatty acid (SCFA) (P < 0.05), and the one-way ANOVA showed that propionic acid in CSB was 1.54 times that of CON, whereas butyric acid and total SCFAs in XOS were 1.22 times and 1.28 times that of CON, respectively (P < 0.05). Furthermore, dietary combination of CSB and XOS changed phyla Firmicutes and Bacteroidota, and increased genera Romboutsia and Bacteroides (P < 0.05). In conclusion, dietary CSB and XOS improved growth performance of broilers, and the combined addition of them had the best effect on anti-inflammatory and antioxidant capacity, and intestinal homeostasis of broilers in current study, indicating that it may be a potential natural alternative to antibiotics.
Collapse
|
30
|
Liao H, Xu Y, Sun FF, Zhang J. Optimizing tri-acid mixture hydrolysis: An improved strategy for efficient xylooligosaccharides production from corncob. BIORESOURCE TECHNOLOGY 2023; 369:128500. [PMID: 36535614 DOI: 10.1016/j.biortech.2022.128500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Propionic acid (PA) hydrolysis of corncob for xylooligosaccharides (XOS) production has the advantages of simple operation, high XOS yield and less by-products, but the high price of PA limits its application. Therefore, partially replacing PA with less expensive organic acids, such as formic acid (FA) and acetic acid (AC), may lower the cost of hydrolysis in XOS production. This work investigated the feasibility of XOS production from corncob using a tri-acid mixture of FA, AC and PA. A high XOS yield of 69.1 % was achieved under the optimal FA:PA:AC volume ratio of 1:5:4 at 150 °C for 50 min. Overall, in the XOS production from corncob, it was able to replace 60 % of PA with FA and AC, and decreased the hydrolysis temperature from 170 °C to 150 °C, all of which were important to lower the cost of XOS production using organic acid hydrolysis.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
31
|
Dang G, Wang W, Zhong R, Wu W, Chen L, Zhang H. Pectin supplement alleviates gut injury potentially through improving gut microbiota community in piglets. Front Microbiol 2022; 13:1069694. [PMID: 36569061 PMCID: PMC9780600 DOI: 10.3389/fmicb.2022.1069694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
As pectin is widely used as a food and feed additive due to its tremendous prebiotic potentials for gut health. Yet, the underlying mechanisms associated with its protective effect remain unclear. Twenty-four piglets (Yorkshire × Landrace, 6.77 ± 0.92 kg) were randomly divided into three groups with eight replicates per treatment: (1) Control group (CON), (2) Lipopolysaccharide-challenged group (LPS), (3) Pectin-LPS group (PECL). Piglets were administrated with LPS or saline on d14 and 21 of the experiment. Piglets in each group were fed with corn-soybean meal diets containing 5% citrus pectin or 5% microcrystalline cellulose. Our result showed that pectin alleviated the morphological damage features by restoring the goblet numbers which the pig induced by LPS in the cecum. Besides, compared with the LPS group, pectin supplementation elevated the mRNA expression of tight junction protein [Claudin-1, Claudin-4, and zonula occludens-1 (ZO-1)], mucin (Muc-2), and anti-inflammatory cytokines [interleukin 10 (IL-10), and IL-22]. Whereas pectin downregulated the expression of proinflammatory cytokines (IL-1β, IL-6, IL-18), tumor necrosis factor-&alpha (TNF-α), and NF-κB. What is more, pectin supplementation also significantly increased the abundance of beneficial bacteria (Lactobacillus, Clostridium_sensu_stricto_1, Blautia, and Subdoligranulum), and significantly reduced the abundance of harmful bacteria, such as Streptococcus. Additionally, pectin restored the amount of short-chain fatty acids (SCFAs) after being decreased by LPS (mainly Acetic acid, Propionic acid, and Butyric acid) to alleviate gut injury and improve gut immunity via activating relative receptors (GPR43, GPR109, AhR). Mantel test and correlation analysis also revealed associations between intestinal microbiota and intestinal morphology, and intestinal inflammation in piglets. Taken together, dietary pectin supplementation enhances the gut barrier and improves immunity to ameliorate LPS-induced injury by optimizing gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Wenxing Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Liang Chen,
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Hongfu Zhang,
| |
Collapse
|