1
|
Wang X, Mu J, Yu H, Lv X, Liang T, Cheng C. Calix[6]arene-Functionalized Photonic Hydrogel Biosensor for Naked-Eye Cholesterol Detection Based on Supramolecular Host-Guest Interactions. ACS Sens 2024; 9:5148-5155. [PMID: 39374501 DOI: 10.1021/acssensors.4c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cholesterol (CHO) is an essential constituent of human cellular tissues and a crucial activity indicator for the clinical diagnosis and prevention of various diseases. Abnormal CHO levels can lead to various cardiovascular diseases, including coronary heart disease, cerebral thrombosis, and atherosclerosis. Thus, developing simple and effective methods for CHO detection is of great significance. Herein, a novel calix[6]arene-modified photonic hydrogel biosensor (PAAH@SCX6) was developed for naked-eye monitoring of CHO based on supramolecular host-guest interactions between 4-sulfocalix[6]arene (SCX6) and CHO molecules. This sensor was constructed by embedding Fe3O4 colloidal nanocrystal cluster chains into a poly(acrylamide-co-acrylic acid) smart hydrogel (PAAH), followed by incorporation of plentiful SCX6 units into the PAAH via hydrogen bonding interactions. The specific recognition of SCX6 to CHO leads to the volume expansion of the hydrogel, causing a shift in the photonic band gap and a change in the hydrogel's structural color. The sensor demonstrated a linear detection range of 2.83-5.20 mM, covering the typical CHO levels in the human body. Importantly, the PAAH@SCX6 biosensor showed high selectivity and satisfactory stability, making it highly suitable for practical applications. Such a photonic hydrogel-based biosensor provides a convenient, simple, and efficient strategy for visual CHO detection.
Collapse
Affiliation(s)
- Xi Wang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jingjing Mu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hairong Yu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Ting Liang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Changjing Cheng
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| |
Collapse
|
2
|
Yuan L, Liu C, Li B, Wang S, Zhang H, Sun J, Mao X. A green extraction method for agar with improved thermal stability and water holding capacity. Int J Biol Macromol 2024; 278:134663. [PMID: 39134202 DOI: 10.1016/j.ijbiomac.2024.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/23/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The conventional agar extraction method has drawbacks such as high energy consumption, low yield, poor quality, and possible residual harmful factors, which greatly limit its application in high-end fields such as biomedicine and high-end materials. This work explored a new freezing-thawing-high-temperature coupling technique for agar extraction. It increased the yield and the strength of agar by 10.6 % and 13.7 %, respectively, as compared to direct high-temperature extraction of agar (HA). The greater molecular weight and lower sulfate content of agar obtained from freeze-thaw cycles combined with high temperature extraction (FA) may be attributed to the desulfurization effect caused by freeze-thaw cycles and the preservation of the molecular chain structure. The reduction in sulfate content decreases the steric hindrance resistance of the polysaccharide chains, enhances their interactions, and promotes the regularity and density of the agar structure, while also improving its water retention and thermal stability. In conclusion, this research can offer a theoretical basis and guidance for the eco-friendly extraction of agar with improved agar characteristics and expended its applications.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
3
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
4
|
Liu S, Wang Y, Huang Y, Hu M, Lv X, Zhang Y, Dai H. Gelatin-nanocellulose stabilized emulsion-filled hydrogel beads loaded with curcumin: Preparation, encapsulation and release behavior. Int J Biol Macromol 2024:133551. [PMID: 38997845 DOI: 10.1016/j.ijbiomac.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
In this study, the curcumin was firstly encapsulated in gelatin (GLT) and/or cellulose nanocrystals (CNC) stabilized emulsions, then further mixed with sodium alginate (SA) to form emulsion-filled hydrogel beads loaded with curcumin (Cur). The Cur-loaded emulsions showed a droplet size of 20.3-24.4 μm with a uniform distribution. Introducing CNC and/or SA increased the viscosity of emulsions accompanied by viscoelastic transition, while the modulus was reduced due to destruction of GLT gel. Cur was doubly immobilized in the hydrogel beads with >90 % of encapsulation efficiency. The results of simulated gastrointestinal tract experiments revealed that the beads possessed a good pH sensitivity and controlled release behavior to prolong the retention of Cur in the gastrointestinal tract. After 6 h of UV irradiation, the Cur-loaded emulsion-filled hydrogel beads showed a higher antioxidant activity than that of pure Cur, effectively delaying the photodegradation of Cur. In addition, the beads had better stability in aqueous and acidic environments, which was favorable for prolonging the release of Cur. These results suggest that the emulsion-filled hydrogel beads have great potential for the delivery of lipophilic bioactive molecules.
Collapse
Affiliation(s)
- Siyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
5
|
Maurya R, Misro L, Boini T, Radhakrishnan T, Nair PG, Gaidhani SN, Jain A. Transforming Medicinal Oil into Advanced Gel: An Update on Advancements. Gels 2024; 10:342. [PMID: 38786260 PMCID: PMC11121385 DOI: 10.3390/gels10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
The present study delves into the evolution of traditional Ayurvedic oil preparations through innovative strategies to develop advanced gel formulations, aiming at amplifying their therapeutic efficacy. Ayurvedic oils have a rich historical context in healing practices, yet their conversion into contemporary gel-based formulations represents a revolutionary approach to augment their medicinal potential. The primary objective of this transformation is to leverage scientific advancements and modern pharmaceutical techniques to enhance the application, absorption, and overall therapeutic impact of these traditional remedies. By encapsulating the essential constituents of Ayurvedic oils within gel matrices, these novel strategies endeavor to improve their stability, bioavailability, and targeted delivery mechanisms. This review highlights the fusion of traditional Ayurvedic wisdom with cutting-edge pharmaceutical technology, paving the way for more effective and accessible utilization of these revered remedies in modern healthcare.
Collapse
Affiliation(s)
- Rahul Maurya
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Lakshminarayana Misro
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thirupataiah Boini
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thulasi Radhakrishnan
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Parvathy G. Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
6
|
Jiang F, Xu X, Xiao Q, Li Z, Weng H, Chen F, Xiao A. Fabrication, structure, characterization and emulsion application of citrate agar. Int J Biol Macromol 2024; 268:131451. [PMID: 38614177 DOI: 10.1016/j.ijbiomac.2024.131451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Xinwei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Zhenyi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
7
|
Deng Y, Li J, Tao R, Zhang K, Yang R, Qu Z, Zhang Y, Huang J. Molecular Engineering of Electrosprayed Hydrogel Microspheres to Achieve Synergistic Anti-Tumor Chemo-Immunotherapy with ACEA Cargo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308051. [PMID: 38350727 PMCID: PMC11077688 DOI: 10.1002/advs.202308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Indexed: 02/15/2024]
Abstract
Molecular engineering of drug delivering platforms to provide collaborative biological effects with loaded drugs is of great medical significance. Herein, cannabinoid receptor 1 (CB1)- and reactive oxygen species (ROS)-targeting electrosprayed microspheres (MSs) are fabricated by loading with the CB1 agonist arachidonoyl 2'-chloroethylamide (ACEA) and producing ROS in a photoresponsive manner. The synergistic anti-tumor effects of ACEA and ROS released from the MSs are assessed. ACEA inhibits epidermal growth factor receptor signaling and altered tumor microenvironment (TME) by activating CB1 to induce tumor cell death. The MSs are composed of glycidyl methacrylate-conjugated xanthan gum (XGMA) and Fe3+, which form dual molecular networks based on a Fe3+-(COO-)3 network and a C═C addition reaction network. Interestingly, the Fe3+-(COO-)3 network can be disassembled instantly under the conditions of lactate sodium and ultraviolet exposure, and the disassembly is accompanied by massive ROS production, which directly injures tumor cells. Meanwhile, the transition of dual networks to a single network boosts the ACEA release. Together, the activities of the ACEA and MSs promote immunogenic tumor cell death and create a tumor-suppressive TME by increasing M1-like tumor-associated macrophages and CD8+ T cells. In summation, this study demonstrates strong prospects of improving anti-tumor effects of drug delivering platforms through molecular design.
Collapse
Affiliation(s)
- Youming Deng
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jiayang Li
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| | - Ran Tao
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Ke Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Rong Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Zhan Qu
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jinjian Huang
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| |
Collapse
|
8
|
Chen H, Li H, Wu Y, Kan J. Functionality differences between esterified and pregelatinized esterified starches simultaneously prepared by octenyl succinic anhydride modification and its application in dough. Int J Biol Macromol 2024; 260:129594. [PMID: 38253147 DOI: 10.1016/j.ijbiomac.2024.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Wu
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Wang X, Ji F, Jia L. Chimeric AQP4-based immunosorbent for highly-specific removal of AQP4-IgG from blood. J Chromatogr A 2024; 1717:464701. [PMID: 38310704 DOI: 10.1016/j.chroma.2024.464701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Anti-aquaporin-4 autoantibodies (AQP4-IgG) are implicated in the pathogenesis of neuromyelitis optica spectrum disorders (NMOSD), and their removal from the blood circulation is considered to be an effective method for acute treatment. An ideal extracorporeal AQP4-IgG removal system should have high specificity, which means that it can selectively remove AQP4-IgG without affecting normal immunoglobulins. However, the conventional tryptophan immobilized column lacks sufficient specificity and cannot achieve this goal. In this study, we successfully prepared a fusion protein chimeric AQP4, which consists of the complete antigenic epitopes of human AQP4 and the constant region of scaffold protein DARPin. Chimeric AQP4 was expressed and purified from Escherichia coli, and then immobilized on agarose gel as a ligand for selective capture of AQP4-IgG immunosorbent. The prepared immunosorbent had a theoretical maximum adsorption capacity of 20.48 mg/g gel estimated by Langmuir isotherm. In vitro plasma perfusion tests demonstrated that the chimeric AQP4 coupled adsorbent had remarkable adsorption performance, and could eliminate more than 85 % of AQP4-IgG under the gel-to-plasma ratio of 1:50. Moreover, it exhibited high specificity because other human plasma proteins were not adsorbed in the dynamic adsorption experiment. These results suggest that the chimeric AQP4 coupled immunosorbent can provide a new approach for specific immunoadsorption (IA) treatment of NMOSD.
Collapse
Affiliation(s)
- Xiaofei Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fangling Ji
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
10
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
11
|
Chen Z, Liang G, Ru Y, Weng H, Zhang Y, Chen J, Xiao Q, Xiao A. Media-milled agar particles as a novel emulsifier for food Pickering emulsion. Int J Biol Macromol 2023; 253:127185. [PMID: 37797859 DOI: 10.1016/j.ijbiomac.2023.127185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsions was successfully fabricated using ball-milled agar particles with sizes and sulfate content around 7 μm and 0.62 %, respectively. These particles were obtained through a simple media-milling process using agar powders initially sized at 120 μm. The lamellated agar is aggregated into a mass after the milling process. The surface charge and hydrophobicity of the ball-milled agar particles were characterized through zeta potential and contact angle measurements, respectively. The droplet size of Pickering emulsions was related to oil fraction and particle concentration, ranging from approximately 45 μm to 80 μm. Ball-milled agar stabilized emulsions were sensitive to pH and salt conditions. The results of confocal laser scanning microscopy and cryo-SEM showed that at low particle concentrations and oil fractions, ball-milled agar stabilized the emulsions by dispersing particles on the surface of the oil droplets through electrostatic repulsion. Conversely, ball-milled agar stabilized the emulsions under high particle concentrations and oil fractions by forming a gel network structure to bind the oil droplets. In this research, this developed method provides the basis for the high-value application of agar and a new idea for preparing stable food-grade Pickering emulsion-based functional foods using raw-food material without surface wettability.
Collapse
Affiliation(s)
- Zizhou Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Guanglin Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
12
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Jiang F, Xu XW, Chen FQ, Weng HF, Chen J, Ru Y, Xiao Q, Xiao AF. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar Drugs 2023; 21:md21050299. [PMID: 37233493 DOI: 10.3390/md21050299] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments. Therefore, agarose can be developed into different forms through physical, biological, and chemical modifications, enabling it to perform optimally in different environments. Agarose biomaterials are being increasingly used for isolation, purification, drug delivery, and tissue engineering, but most are still far from clinical approval. This review classifies and discusses the preparation, modification, and biomedical applications of agarose, focusing on its applications in isolation and purification, wound dressings, drug delivery, tissue engineering, and 3D printing. In addition, it attempts to address the opportunities and challenges associated with the future development of agarose-based biomaterials in the biomedical field. It should help to rationalize the selection of the most suitable functionalized agarose hydrogels for specific applications in the biomedical industry.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xin-Wei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|