1
|
Rouzbahani M, Ghanaati H. Intra-Arterial Stem Cell Injection for Treating Various Diseases: A New Frontier in Interventional Radiology. Cardiovasc Intervent Radiol 2025:10.1007/s00270-024-03947-y. [PMID: 39789253 DOI: 10.1007/s00270-024-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
Collapse
Affiliation(s)
- Maedeh Rouzbahani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Solanes N, Bobi J, Arrieta M, Jimenez FR, Palacios C, Rodríguez JJ, Roqué M, Galán-Arriola C, Ibañez B, Freixa X, García-Álvarez A, Sabaté M, Rigol M. An open secret in porcine acute myocardial infarction models: The relevance of anaesthetic regime and breed in ischaemic outcomes. Front Vet Sci 2022; 9:919454. [PMID: 36353254 PMCID: PMC9637910 DOI: 10.3389/fvets.2022.919454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Large animal models of acute myocardial infarction (AMI) play a crucial role in translating novel therapeutic approaches to patients as denoted by their use in the right-before-human testing platform. At present, the porcine model of AMI is used most frequently as it mimics the human condition and its anatomopathological features accurately. We want to describe to, and share with, the translational research community our experience of how different anaesthetic protocols (sevoflurane, midazolam, ketamine+xylazine+midazolam, and propofol) and pig breeds [Large White and Landrace x Large White (LLW)] can dramatically modify the outcomes of a well-established porcine model of closed-chest AMI. Our group has extensive experience with the porcine model of reperfused AMI and, over time, we reduced the time of ischaemia used to induce the disease from 90 to 50 min to increase the salvageable myocardium for cardioprotection studies. For logistical reasons, we changed both the anaesthetic protocol and the pig breed used, but these resulted in a dramatic reduction in the size of the myocardial infarct, to almost zero in some cases (sevoflurane, 50-min ischaemia, LLW, 2.4 ± 3.9% infarct size), and the cardiac function was preserved. Therefore, we had to re-validate the model by returning to 90 min of ischaemia. Here, we report the differences in infarct size and cardiac function, measured by different modalities, for each combination of anaesthetic protocol and pig breed we have used. Furthermore, we discuss these combinations and the limited literature pertaining to how these two factors influence cardiac function and infarct size in the porcine model of AMI.
Collapse
Affiliation(s)
- Núria Solanes
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Bobi
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
- Experimental Cardiology Department, Erasmus MC University Medical Centre, Rotterdam, Netherlands
| | - Marta Arrieta
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Rafael Jimenez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Palacios
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Juan José Rodríguez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Mercè Roqué
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de enfermedades cardiovasculares (CIBERCV), IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de enfermedades cardiovasculares (CIBERCV), IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Xavier Freixa
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Ana García-Álvarez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Manel Sabaté
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Rigol
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
- Bioresearch and Veterinary Services, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Montserrat Rigol
| |
Collapse
|
4
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
5
|
Yoshizaki Y, Takai H, Mayumi N, Fujiwara S, Kuzuya A, Ohya Y. Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:627-642. [PMID: 34393660 PMCID: PMC8354160 DOI: 10.1080/14686996.2021.1938212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Adipose-derived stem cell (AdSC) has been attracting attention as a convenient stem cell source. Not only AdSC can differentiate into various tissue cells, but it can also accelerate cell proliferation, anti-inflammation, and angiogenesis by secreting paracrine factors. Studies have demonstrated AdSC treatment of ischemic heart. However, an improvement in the remaining live AdSCs administered at the injected site while maintaining paracrine factor secretion is desired to achieve effective regenerative medicine. We previously reported the ABA-type tri-block copolymer of poly(ɛ-caprolactone-co-glycolic acid) and poly(ethylene glycol) (tri-PCG), exhibiting temperature-responsive sol-to-gel transition as biodegradable injectable polymer (IP) systems. Moreover, we recently reported that the biodegradable temperature-triggered chemically cross-linked gelation systems exhibited longer gel state durations using tri-PCG attaching acryloyl groups and a polythiol derivative. In this study, we explored this IP-mediated AdSC delivery system. We investigated the cell viability, mRNA expression, and cytokine secretion of AdSCs cultured in the physical or chemical IP hydrogels. Both of these IP hydrogels retained a certain number of viable cells, and RT-PCR and ELISA analyses revealed that mRNA expression and secretion of vascular endothelial growth factor of the AdSCs cultured in the chemical hydrogel were higher than the physical hydrogel. Moreover, AdSCs injected with the chemical hydrogel into ischemic heart model mice showed longer retention of the cells at the injected site and recovery from the ischemic condition. The results mean that the IP system is a promising candidate for a stem cell delivery system that exhibits the recovery of cardiac function for myocardial infarction treatment.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, OsakaJapan
| | - Hiroki Takai
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, Suita, OsakaJapan
| | - Nozomi Mayumi
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, Suita, OsakaJapan
| | - Soichiro Fujiwara
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, Suita, OsakaJapan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, Suita, OsakaJapan
- Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, Suita, Osaka, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, Suita, OsakaJapan
- Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
7
|
Weng CF, Wu CF, Kao SH, Chen JC, Lin HH. Down-Regulation of miR-34a-5p Potentiates Protective Effect of Adipose-Derived Mesenchymal Stem Cells Against Ischemic Myocardial Infarction by Stimulating the Expression of C1q/Tumor Necrosis Factor-Related Protein-9. Front Physiol 2019; 10:1445. [PMID: 31920683 PMCID: PMC6927948 DOI: 10.3389/fphys.2019.01445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/08/2019] [Indexed: 12/04/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have shown great promise for the treatment of myocardial infarction (MI), although their potential therapeutic mechanism remains poorly understood. Growing evidence has implicated microRNAs (miRNAs or miRs) in the biological processes whereby ADSCs could ameliorate cardiovascular disease. In this study, we explored the contribution of miR-34a-5p down-regulation to the protective actions of ADSCs against MI. We initially identified the interaction between miR-34a-5p and C1q/tumor necrosis factor-related protein-9 (CTRP9) through in silico analysis. We next tested the effects of miR-34a-5p and CTRP9 on the expression of extracellular signal-regulated kinase 1 (ERK1), matrix metalloproteinase-9 (MMP-9), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and antioxidant proteins [manganese superoxide dismutase (MnSOD), and heme oxygenase-1 (HO-1)] through gain- and loss-of-function tests. In other experiments, we assessed the proliferation, migration, and apoptosis of ADSCs using the EdU assay, scratch test, Transwell assay, and flow cytometry. Finally, we studied whether miR-34a-5p/CTRP9 axis could modulate the protective effect of ADSCs against MI during stem cell transplantation in MI mouse models. miR-34a-5p could target and down-regulate CTRP9 in cardiomyocytes. Down-regulated miR-34a-5p increased the expression of ERK1, MMP-9, NRF2, MnSOD, and HO-1, whereas down-regulation of miR-34a-5p or up-regulation of CTRP9 in vitro promoted ADSC proliferation and migration and inhibited ADSC apoptosis. Moreover, miR-34a-5p down-regulation or CTRP9 up-regulation promoted the protective role of ADSCs against MI damage in vivo. Thus, inhibition of miR-34a-5p may facilitate ADSC’s protective function against MI damage by stimulating the expression of CTRP9.
Collapse
Affiliation(s)
- Chi-Feng Weng
- Surgical Department Cardiovascular Division, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Ching-Feng Wu
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung City, Taiwan
| | - Jeen-Chen Chen
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| | - Hui-Han Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
8
|
Pagano F, Picchio V, Chimenti I, Sordano A, De Falco E, Peruzzi M, Miraldi F, Cavarretta E, Zoccai GB, Sciarretta S, Frati G, Marullo AGM. On the Road to Regeneration: "Tools" and "Routes" Towards Efficient Cardiac Cell Therapy for Ischemic Cardiomyopathy. Curr Cardiol Rep 2019; 21:133. [PMID: 31673821 DOI: 10.1007/s11886-019-1226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Cardiac regenerative medicine is a field bridging together biotechnology and surgical science. In this review, we present the explored surgical roads to cell delivery and the known effects of each delivery method on cell therapy efficiency. We also list the more recent clinical trials, exploring the safety and efficacy of delivery routes used for cardiac cell therapy approaches. RECENT FINDINGS There is no consensus in defining which way is the most suitable for the delivery of the different therapeutic cell types to the damaged heart tissue. In addition, it emerged that the "delivery issue" has not been systematically addressed in each clinical trial and for each and every cell type capable of cardiac repair. Cardiac damage occurring after an ischemic insult triggers a cascade of cellular events, eventually leading to heart failure through fibrosis and maladaptive remodelling. None of the pharmacological or medical interventions approved so far can rescue or reverse this phenomenon, and cardiovascular diseases are still the leading cause of death in the western world. Therefore, for nearly 20 years, regenerative medicine approaches have focused on cell therapy as a promising road to pursue, with numerous preclinical and clinical testing of cell-based therapies being studied and developed. Nonetheless, consistent clinical results are still missing to reach consensus on the most effective strategy for ischemic cardiomyopathy, based on patient selection, diagnosis and stage of the disease, therapeutic cell type, and delivery route.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | | | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Antonino G M Marullo
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| |
Collapse
|
9
|
Fan M, Huang Y, Chen Z, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Qian J. Efficacy of mesenchymal stem cell therapy in systolic heart failure: a systematic review and meta-analysis. Stem Cell Res Ther 2019; 10:150. [PMID: 31151406 PMCID: PMC6544951 DOI: 10.1186/s13287-019-1258-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background Heart failure (HF) is the end stage of most heart disease. Mesenchymal stem cells (MSCs), with their specific biological effects, have been applied in several clinical trials to evaluate the efficacy in HF therapy. We performed this meta-analysis to review the clinical evidence of their therapeutic effect on HF. Methods Three databases were searched. The outcomes of interest were death, readmission, the 6-min walk test (6MWT), New York Heart Association (NYHA) class and left ventricular ejection fraction (LVEF). The relative risk (RR) and weighted mean difference (WMD) were calculated to evaluate the effects of MSCs on HF compared to placebo. Results A total of nine studies were included, involving 612 patients who underwent MSCs or placebo treatment. The overall rate of death showed a trend of reduction of 36% (RR [CI] = 0.64 [0.35, 1.16], p = 0.143) in the MSC treatment group. The incidence of readmission was reduced by 34% (RR [CI] = 0.66 [0.51, 0.85], p = 0.001). The patients in the MSC treatment group realised an average of 40.44 m (WMD [95% CI] = 40.44 m [19.07, 61.82], p < 0.0001) improvement in 6MWT. The NYHA class was reduced obviously in the MSC group (WMD [95% CI] = − 0.42 [− 0.64, − 0.20], p < 0.0001). The changes of LVEF from baseline were significantly more than 5.25% (WMD [95% CI] = 5.25 [3.58, 6.92], p < 0.0001) in the MSCs group, unlike in the placebo group. Conclusions Our results suggested that MSC treatment is an effective therapy for HF by improving the prognosis and exercise capacity. SCs derived from allosomes have superior therapeutic effects, and intracoronary injection is the optimum MSC delivery approach. Short-term cryopreservation is feasible in MSCs storage or transport.
Collapse
Affiliation(s)
- Mengkang Fan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yin Huang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Liu Y, Niu R, Li W, Lin J, Stamm C, Steinhoff G, Ma N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019; 76:1681-1695. [PMID: 30721319 PMCID: PMC11105669 DOI: 10.1007/s00018-019-03019-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Despite significant developments in medical and surgical strategies, cardiac diseases remain the leading causes of morbidity and mortality worldwide. Numerous studies involving preclinical and clinical trials have confirmed that stem cell transplantation can help improve cardiac function and regenerate damaged cardiac tissue, and stem cells isolated from bone marrow, heart tissue, adipose tissue and umbilical cord are the primary candidates for transplantation. During the past decade, menstrual blood-derived endometrial stem cells (MenSCs) have gradually become a promising alternative for stem cell-based therapy due to their comprehensive advantages, which include their ability to be periodically and non-invasively collected, their abundant source material, their ability to be regularly donated, their superior proliferative capacity and their ability to be used for autologous transplantation. MenSCs have shown positive therapeutic potential for the treatment of various diseases. Therefore, aside from a brief introduction of the biological characteristics of MenSCs, this review focuses on the progress being made in evaluating the functional improvement of damaged cardiac tissue after MenSC transplantation through preclinical and clinical studies. Based on published reports, we conclude that the paracrine effect, transdifferentiation and immunomodulation by MenSC promote both regeneration of damaged myocardium and improvement of cardiac function.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Rongcheng Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Christof Stamm
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| |
Collapse
|
11
|
Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. ACTA ACUST UNITED AC 2018; 16:eRB4538. [PMID: 30281764 PMCID: PMC6178861 DOI: 10.1590/s1679-45082018rb4538] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.
Collapse
Affiliation(s)
| | | | - Rubens Maciel Filho
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | - André Luiz Jardini
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | | |
Collapse
|
12
|
Ambastha C, Bittle GJ, Morales D, Parchment N, Saha P, Mishra R, Sharma S, Vasilenko A, Gunasekaran M, Al-Suqi MT, Li D, Yang P, Kaushal S. Regenerative medicine therapy for single ventricle congenital heart disease. Transl Pediatr 2018; 7:176-187. [PMID: 29770299 PMCID: PMC5938254 DOI: 10.21037/tp.2018.04.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
One of the most complex forms of congenital heart disease (CHD) involving single ventricle physiology is hypoplastic left heart syndrome (HLHS), characterized by underdevelopment of the left ventricle (LV), mitral and aortic valves, and narrowing of the ascending aorta. The underdeveloped LV is incapable of providing long-term systemic flow, and if left untreated, the condition is fatal. Current treatment for this condition consists of three consecutive staged palliative operations: the first is conducted within the first few weeks of birth, the second between 4 to 6 months, and the third and final surgery within the first 4 years. At the conclusion of the third surgery, systemic perfusion is provided by the right ventricle (RV), and deoxygenated blood flows passively to the pulmonary vasculature. Despite these palliative interventions, the RV, which is ill suited to provide long-term systemic perfusion, is prone to eventual failure. In the absence of satisfying curative treatments, stem cell therapy may represent one innovative approach to the management of RV dysfunction in HLHS patients. Several stem cell populations from different tissues (cardiac and non-cardiac), different age groups (adult- vs. neonate-derived), and different donors (autologous vs. allogeneic), are under active investigation. Preclinical trials in small and large animal models have elucidated several mechanisms by which these stem cells affect the injured myocardium, and are driving the shift from a paradigm based upon cellular engraftment and differentiation to one based primarily on paracrine effects. Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of HLHS and other forms of CHD. This article reviews the many stem cell types applied to CHD, their preclinical investigation and the mechanisms by which they might affect RV dysfunction in HLHS patients, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with CHD.
Collapse
Affiliation(s)
- Chetan Ambastha
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory J Bittle
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Morales
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nathaniel Parchment
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Progyaparamita Saha
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rachana Mishra
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sudhish Sharma
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander Vasilenko
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muthukumar Gunasekaran
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manal T Al-Suqi
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deqiang Li
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Abstract
Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.
Collapse
|
14
|
Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A, Mirzaei H. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. J Cell Biochem 2017; 119:95-104. [PMID: 28543595 DOI: 10.1002/jcb.26169] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95-104, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Ghiyami- Hour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Vaisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Hashemzehi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Bobi J, Solanes N, Fernández-Jiménez R, Galán-Arriola C, Dantas AP, Fernández-Friera L, Gálvez-Montón C, Rigol-Monzó E, Agüero J, Ramírez J, Roqué M, Bayés-Genís A, Sánchez-González J, García-Álvarez A, Sabaté M, Roura S, Ibáñez B, Rigol M. Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction. J Am Heart Assoc 2017; 6:e005771. [PMID: 28468789 PMCID: PMC5524109 DOI: 10.1161/jaha.117.005771] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. METHODS AND RESULTS Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6±6% versus 55.9±5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1α gene expression; and increased M2 macrophages (67.2±10% versus 54.7±10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9±28.7 versus 57.4±17.7 mL/min per gram at 7 days; P=0.034 and 99±22.6 versus 43.3±14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118±18 versus 92.4±24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. CONCLUSIONS In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.
Collapse
Affiliation(s)
- Joaquim Bobi
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Núria Solanes
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Ana Paula Dantas
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- Hospital Universitario HM Montepríncipe, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | | | - Jaume Agüero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - José Ramírez
- Servei d'Anatomia Patològica, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercè Roqué
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Antoni Bayés-Genís
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | | | - Ana García-Álvarez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
| | - Manel Sabaté
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, Madrid, Spain
- IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
- CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Montserrat Rigol
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Institut de Malalties Cardiovasculars, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| |
Collapse
|
16
|
Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, Casaní L, Gutiérrez M, Capdevila A, Pons-Lladó G, Carreras F, Hidalgo A, Badimon L. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8:52. [PMID: 28279225 PMCID: PMC5345145 DOI: 10.1186/s13287-017-0509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Methods Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. Results CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Conclusion Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Laura Casaní
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | | | | | | | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain. .,CIBERCV, ISCIII, Madrid, Spain. .,Cardiovascular Research Chair, UAB (Autonomous University of Barcelona), Barcelona, Spain.
| |
Collapse
|
17
|
Joo HJ, Kim JH, Hong SJ. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration. Korean Circ J 2017; 47:151-159. [PMID: 28382066 PMCID: PMC5378017 DOI: 10.4070/kcj.2016.0207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.
Collapse
Affiliation(s)
- Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
18
|
Gálvez‐Montón C, Bragós R, Soler‐Botija C, Díaz‐Güemes I, Prat‐Vidal C, Crisóstomo V, Sánchez‐Margallo FM, Llucià‐Valldeperas A, Bogónez‐Franco P, Perea‐Gil I, Roura S, Bayes‐Genis A. Noninvasive Assessment of an Engineered Bioactive Graft in Myocardial Infarction: Impact on Cardiac Function and Scar Healing. Stem Cells Transl Med 2016; 6:647-655. [PMID: 28191775 PMCID: PMC5442807 DOI: 10.5966/sctm.2016-0063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
Cardiac tissue engineering, which combines cells and biomaterials, is promising for limiting the sequelae of myocardial infarction (MI). We assessed myocardial function and scar evolution after implanting an engineered bioactive impedance graft (EBIG) in a swine MI model. The EBIG comprises a scaffold of decellularized human pericardium, green fluorescent protein‐labeled porcine adipose tissue‐derived progenitor cells (pATPCs), and a customized‐design electrical impedance spectroscopy (EIS) monitoring system. Cardiac function was evaluated noninvasively by using magnetic resonance imaging (MRI). Scar healing was evaluated by using the EIS system within the implanted graft. Additionally, infarct size, fibrosis, and inflammation were explored by histopathology. Upon sacrifice 1 month after the intervention, MRI detected a significant improvement in left ventricular ejection fraction (7.5% ± 4.9% vs. 1.4% ± 3.7%; p = .038) and stroke volume (11.5 ± 5.9 ml vs. 3 ± 4.5 ml; p = .019) in EBIG‐treated animals. Noninvasive EIS data analysis showed differences in both impedance magnitude ratio (−0.02 ± 0.04 per day vs. −0.48 ± 0.07 per day; p = .002) and phase angle slope (−0.18° ± 0.24° per day vs. −3.52° ± 0.84° per day; p = .004) in EBIG compared with control animals. Moreover, in EBIG‐treated animals, the infarct size was 48% smaller (3.4% ± 0.6% vs. 6.5% ± 1%; p = .015), less inflammation was found by means of CD25+ lymphocytes (0.65 ± 0.12 vs. 1.26 ± 0.2; p = .006), and a lower collagen I/III ratio was detected (0.49 ± 0.06 vs. 1.66 ± 0.5; p = .019). An EBIG composed of acellular pericardium refilled with pATPCs significantly reduced infarct size and improved cardiac function in a preclinical model of MI. Noninvasive EIS monitoring was useful for tracking differential scar healing in EBIG‐treated animals, which was confirmed by less inflammation and altered collagen deposit. Stem Cells Translational Medicine2017;6:647–655
Collapse
Affiliation(s)
- Carolina Gálvez‐Montón
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Ramon Bragós
- Electronic and Biomedical Instrumentation Group, Electronic Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Carolina Soler‐Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | | | - Cristina Prat‐Vidal
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | | | | | - Aida Llucià‐Valldeperas
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Paco Bogónez‐Franco
- Electronic and Biomedical Instrumentation Group, Electronic Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Isaac Perea‐Gil
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
| | - Santiago Roura
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Antoni Bayes‐Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain;
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Golpanian S, Schulman IH, Ebert RF, Heldman AW, DiFede DL, Yang PC, Wu JC, Bolli R, Perin EC, Moyé L, Simari RD, Wolf A, Hare JM. Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Transl Med 2015; 5:186-91. [PMID: 26683870 PMCID: PMC4729551 DOI: 10.5966/sctm.2015-0101] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
An important stage in the development of any new therapeutic agent is establishment of the optimal dosage and route of administration. Inconsistent findings have been reported regarding the relationship between the cell dose and clinical benefit. The present study summarizes the data regarding the optimal cell dosage and route of administration from studies of stem cell therapy for heart disease and offers a perspective on future directions. An important stage in the development of any new therapeutic agent is establishment of the optimal dosage and route of administration. This can be particularly challenging when the treatment is a biologic agent that might exert its therapeutic effects via complex or poorly understood mechanisms. Multiple preclinical and clinical studies have shown paradoxical results, with inconsistent findings regarding the relationship between the cell dose and clinical benefit. Such phenomena can, at least in part, be attributed to variations in cell dosing or concentration and the route of administration (ROA). Although clinical trials of cell-based therapy for cardiovascular disease began more than a decade ago, specification of the optimal dosage and ROA has not been established. The present review summarizes what has been learned regarding the optimal cell dosage and ROA from preclinical and clinical studies of stem cell therapy for heart disease and offers a perspective on future directions. Significance Preclinical and clinical studies on cell-based therapy for cardiovascular disease have shown inconsistent results, in part because of variations in study-specific dosages and/or routes of administration (ROA). Future preclinical studies and smaller clinical trials implementing cell-dose and ROA comparisons are warranted before proceeding to pivotal trials.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan W Heldman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Phillip C Yang
- School of Medicine, Stanford University, Stanford, California, USA
| | - Joseph C Wu
- School of Medicine, Stanford University, Stanford, California, USA
| | - Roberto Bolli
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Emerson C Perin
- Texas Heart Institute, CHI St. Luke's Health, Baylor College of Medicine Medical Center, Houston, Texas, USA
| | - Lem Moyé
- School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Robert D Simari
- School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
21
|
Carvalho E, Verma P, Hourigan K, Banerjee R. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med 2015; 10:1025-43. [PMID: 26563414 DOI: 10.2217/rme.15.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular disease, according to the WHO. The review discusses advances in stem cell therapy for myocardial infarction, including cell sources, methods of differentiation, expansion selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs)-derived cardiomyocytes have advanced to the clinical stage, while induced pluripotent cells (iPSCs) are yet to be considered clinically. Delivery of cells to the sites of injury and their subsequent retention is a major issue. The development of supportive scaffold matrices to facilitate stem cell retention and differentiation are analyzed. The review outlines clinical translation of conjugate stem cell-based cellular therapeutics post-myocardial infarction.
Collapse
Affiliation(s)
- Edmund Carvalho
- IITB Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Paul Verma
- Turretfield Research Centre, South Australian Research & Development Institute (SARDI), SA, Australia.,Stem Cells & Reprogramming Group, Monash University, Australia
| | - Kerry Hourigan
- FLAIR/Laboratory for Biomedical Engineering & Department of Mechanical & Aerospace Engineering, Monash University, Australia
| | - Rinti Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, India
| |
Collapse
|
22
|
Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:149-62. [PMID: 26586955 PMCID: PMC4636091 DOI: 10.2147/sccaa.s64373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties.
Collapse
Affiliation(s)
- Vaughan Feisst
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle B Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol 2015; 7:454-465. [PMID: 26322185 PMCID: PMC4549779 DOI: 10.4330/wjc.v7.i8.454] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
Collapse
|
24
|
Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease. ACTA ACUST UNITED AC 2015; 68:599-611. [DOI: 10.1016/j.rec.2015.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
|
25
|
Badimon L, Oñate B, Vilahur G. Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2015.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Castells-Sala C, Martínez-Ramos C, Vallés-Lluch A, Monleón Pradas M, Semino C. in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells. J Biomed Mater Res A 2015; 103:3419-30. [PMID: 25903327 DOI: 10.1002/jbm.a.35482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction.
Collapse
Affiliation(s)
- Cristina Castells-Sala
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Ana Vallés-Lluch
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Carlos Semino
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
27
|
Ishida O, Hagino I, Nagaya N, Shimizu T, Okano T, Sawa Y, Mori H, Yagihara T. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. Transl Res 2015; 165:631-9. [PMID: 25613060 DOI: 10.1016/j.trsl.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/30/2014] [Accepted: 12/20/2014] [Indexed: 01/22/2023]
Abstract
Adipose-derived stem cells (ASCs) are a promising resource for cell transplantation therapy for damaged heart tissue. Cell death in the graft early after transplantation represents the main cause of unsatisfactory therapeutic efficacy, but tissue-engineered cell sheets grown in temperature-responsive cell culture dishes may enable improved engraftment of transplanted cells. We investigated the therapeutic potential of this method in chronic myocardial ischemia in swine. We created a porcine model of chronic heart failure by implanting an ameroid constrictor around the main trunk of the left anterior descending artery, just distal to the circumflex branch. Simultaneously, ASCs were obtained from a piece of subcutaneous adipose tissue and expanded to form ASC sheets using temperature-responsive dishes. Four weeks after ameroid constrictor placement, triple-layered ASC sheets were transplanted onto the area of the ischemic myocardium (sheet group, n = 7). Controls (n = 7) received no sheet. Just before and 4 weeks after transplantation, left ventriculography (LVG) and coronary angiography (CAG) were performed. LVG revealed a significant improvement in the left ventricular ejection fraction of the sheet group compared with controls (47.6 ± 2.9% vs 41.4 ± 2.8%, P < 0.05). Furthermore, development of collateral vessels was only detected in the sheet group with right CAG. Histologic analysis demonstrated that engrafted ASC sheets grew to form a thickened layer that included newly formed vessels. ASC sheet transplantation therapy is an intriguing therapeutic method for ischemic heart failure.
Collapse
Affiliation(s)
- Osamu Ishida
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan; Department of Cardiovascular Surgery, Kawasaki Municipal Hospital, Kawasaki, Japan.
| | - Ikuo Hagino
- Department of Cardiovascular Surgery, Chiba Children Hospital, Chiba, Japan
| | - Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiki Sawa
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidezo Mori
- Department of Physiology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Toshikatsu Yagihara
- Department of Cardiovascular Surgery, National Cardiovascular Center, Osaka, Japan
| |
Collapse
|
28
|
Gautam M, Fujita D, Kimura K, Ichikawa H, Izawa A, Hirose M, Kashihara T, Yamada M, Takahashi M, Ikeda U, Shiba Y. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model. J Mol Cell Cardiol 2015; 81:139-49. [PMID: 25724725 DOI: 10.1016/j.yjmcc.2015.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023]
Abstract
The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100μL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI.
Collapse
Affiliation(s)
- Milan Gautam
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Daiki Fujita
- Department of Anatomy and Organ Technology, Shinshu University, Matsumoto, Japan; Department of Biotechnology and Biomedical Engineering, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Kimura
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Hinako Ichikawa
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Atsushi Izawa
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, Iwate Medical University, Iwate, Japan
| | | | | | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Uichi Ikeda
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan; Department of Biotechnology and Biomedical Engineering, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
29
|
Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. Stem Cell Rev Rep 2014; 10:389-98. [PMID: 24577790 DOI: 10.1007/s12015-014-9502-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The majority of patients survive an acute myocardial infarction (AMI). Their outcome is negatively influenced by post-AMI events, such as loss of viable cardiomyocytes due to a post-AMI inflammatory response, eventually resulting in heart failure and/or death. Recent pre-clinical animal studies indicate that mesenchymal stem cells derived from adipose tissue (ASC) are new promising candidates that may facilitate cardiovascular regeneration in the infarcted myocardium. In this review we have compared all animal studies in which ASC were used as a therapy post-AMI and have focused on aspects that might be important for future successful clinical application of ASC.
Collapse
|
30
|
Smit NW, Coronel R. Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects. Front Physiol 2014; 5:419. [PMID: 25400586 PMCID: PMC4212603 DOI: 10.3389/fphys.2014.00419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022] Open
Abstract
Stem cell therapy has been suggested to be a promising option for regeneration of injured myocardium, for example following a myocardial infarction. For clinical use cell-based therapies have to be safe and applicable and are aimed to renovate the architecture of the heart. Yet for functional and coordinated activity synchronized with the host myocardium stem cells have to be capable of forming electrical connections with resident cardiomyocytes. In this paper we discuss whether stem cells are capable of establishing functional electrotonic connections with cardiomyocytes and whether these may generate a risk for arrhythmias. Application of stem cells in the clinical setting with outcomes concerning arrhythmogenic safety and future perspectives will also briefly be touched upon.
Collapse
Affiliation(s)
- Nicoline W Smit
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Centre, University of Amsterdam Amsterdam, Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Centre, University of Amsterdam Amsterdam, Netherlands ; L'Institut de RYthmologie et modélisation Cardiaque, Université Bordeaux Segalen Bordeaux, France
| |
Collapse
|
31
|
Luo L, Lin T, Zheng S, Xie Z, Chen M, Lian G, Xu C, Wang H, Xie L. Adipose-derived stem cells attenuate pulmonary arterial hypertension and ameliorate pulmonary arterial remodeling in monocrotaline-induced pulmonary hypertensive rats. Clin Exp Hypertens 2014; 37:241-8. [PMID: 25271670 DOI: 10.3109/10641963.2014.954710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the effect of adipose-derived stem cells (ADSCs) transplantation effects on structural remodeling and pulmonary artery pressure in monocrotaline (MCT)-induced pulmonary hypertensive rats. In the first experiment, 32 male Sprague-Dawley (SD) rats were randomly divided into four groups (n = 8/group): 3 ADSCs treated groups and normal control (Ctrl). ADSCs were administered through the left jugular vein at 10(5), 10(6) and 10(7) cells, respectively, and a cell density of 10(6)cells/ml was shown to be optimal. The GFP-tagged ADSCs were identified in the lungs and differentiated into endothelial-like cells. In the second experiment, 96 male SD rats were randomly divided into three groups (n = 32/group): Ctrl, MCT-induced pulmonary arterial hypertension (PAH), and PAH treated with ADSCs (ADSCs). Two weeks post-MCT administration, the ADSCs group received 1 × 10(6) ADSCs via the external jugular vein. Compared to PAH rats, mean pulmonary arterial pressure was decreased in rats at 1, 2, and 3 weeks after ADSCs-treatment (18.63 ± 2.15 mmHg versus 24.53 ± 2.90 mmHg; 23.07 ± 2.84 mmHg versus 33.18 ± 2.30 mmHg; 22.98 ± 2.34 mmHg versus 36.38 ± 3.28 mmHg, p < 0.05). Meanwhile, the right heart hypertrophy index (36.2 1 ± 4.27% versus 41.01 ± 1.29%; 39.47 ± 4.02% versus 48.75 ± 2 .13%; 41.02 ± 0.9% versus 50.52 ± 1.49%, p < 0.05, respectively), ratio of wall/lumen thickness, as well as the wall/lumen area were significantly reduced in PAH rats at these time points following ADSCs-treatment, as compared with untreated PAH rats. In summary, ADSCs may colonize the pulmonary arteries, attenuate pulmonary arterial hypertension and ameliorate pulmonary arterial remodeling.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, the First Affiliated Hospital of Fujian Medical University , Fuzhou , P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Srijaya TC, Ramasamy TS, Kasim NHA. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 2014; 12:243. [PMID: 25182194 PMCID: PMC4163166 DOI: 10.1186/s12967-014-0243-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
Collapse
Affiliation(s)
| | - Thamil Selvee Ramasamy
- />Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- />Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Jiang Y, Chang P, Pei Y, Li B, Liu Y, Zhang Z, Yu J, Zhu D, Liu X. Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine. Cell Tissue Res 2014; 358:417-32. [PMID: 25135062 DOI: 10.1007/s00441-014-1975-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Hypoxic preconditioning is a promising method for improving the anti-apoptotic and paracrine signaling capabilities of adipose-derived stromal cells (ADSCs). The purpose of this study was to analyze the influence of different hypoxic conditions on ADSCs and the therapeutic effects of hypoxia-preconditioned ADSCs (HPADSCs) on an animal model of myocardial infarction (MI). For the in vitro studies, ADSCs were divided into five groups and cultured in different oxygen concentrations (1, 3, 5, 10, and 21 %). After 24 h, RT-PCR and western blots showed that 3 % oxygen preconditioning could improve the viability and cytokine secretion of the ADSCs. A Matrigel assay indicated that the HPADSC-conditioned medium could stimulate endothelial cells to form capillary-like tubes. For the in vivo studies, MI was induced by coronary occlusion in 24 mature Chinese minipigs. The animals were divided into three groups and treated by intramyocardial injection with vehicle alone (saline group), with 1 × 10(8) ADSCs cultured in normoxic conditions (ADSCs group) or with 1 × 10(8) ADSCs precultured in 3 % oxygen (HPADSCs group). SPECT and echocardiography demonstrated that cardiac function was improved significantly in the HPADSC transplant group compared with the vehicle control group (P < 0.05). Immunofluorescence showed fewer apoptotic cells and more small- to medium-sized vessels in the HPADSC transplantation group (P < 0.05). Three percent oxygen is the optimum preconditioning treatment for ADSCs. HPADSC transplantation can prevent ventricular remodeling and reduce the infarct size.
Collapse
Affiliation(s)
- Yiyao Jiang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital Cardiovascular Clinical Hospital of Tianjin Medical University, 61# Third Avenue Tianjin Economic Development Area, Tianjin, 300457, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction. Int J Cardiol 2014; 175:545-53. [DOI: 10.1016/j.ijcard.2014.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/26/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023]
|
35
|
Prat-Vidal C, Gálvez-Montón C, Puig-Sanvicens V, Sanchez B, Díaz-Güemes I, Bogónez-Franco P, Perea-Gil I, Casas-Solà A, Roura S, Llucià-Valldeperas A, Soler-Botija C, Sánchez-Margallo FM, Semino CE, Bragos R, Bayes-Genis A. Online monitoring of myocardial bioprosthesis for cardiac repair. Int J Cardiol 2014; 174:654-61. [DOI: 10.1016/j.ijcard.2014.04.181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 02/07/2023]
|
36
|
Chen Y, Niu Z, Xue Y, Yuan F, Fu Y, Bai N. Improvement in the repair of defects in maxillofacial soft tissue in irradiated minipigs by a mixture of adipose-derived stem cells and platelet-rich fibrin. Br J Oral Maxillofac Surg 2014; 52:740-5. [PMID: 24993354 DOI: 10.1016/j.bjoms.2014.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/09/2014] [Indexed: 01/07/2023]
Abstract
To find out if adipose-derived stem cells (ASC) and platelet-rich fibrin (PRF), alone or combined, had any effect on the repair of maxillofacial soft tissue defects in irradiated minipigs, ASC were isolated, characterised, and expanded. Twenty female minipigs, the right parotid glands of which had been irradiated, were randomly divided into 4 groups of 5 each: those in the first group were injected with both ASC and PRF (combined group), the second group was injected with ASC alone (ASC group), the third group with PRF alone (PRF group), and the fourth group with phosphate buffer saline (PBS) (control group). Six months after the last injection, the size and depth of each defect were assessed, and subcutaneous tissues were harvested, stained with haematoxylin and eosin, and examined immunohistologically and for apoptosis. Expanded cells were successfully isolated and identified. Six months after injection the defects in the 3 treated groups were significantly smaller (p<0.001) and shallower (p<0.001) than those in the control group. Those in the combined group were the smallest and shallowest. Haematoxylin and eosin showed that the 3 treated groups contained more subcutaneous adipose tissue than the control group, and also had significantly greater vascular density (p<0.001) and fewer apoptotic cells (p<0.001). Both ASC and PRF facilitate the repair of defects in maxillofacial soft tissue in irradiated minipigs, and their combined use is more effective than their use as single agents.
Collapse
Affiliation(s)
- Yuanzheng Chen
- Department of Burns Surgery, Linyi People's Hospital, Linyi, Shandong 276000, China
| | - Zhanguo Niu
- Department of Burns and Plastic Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, China
| | - Yan Xue
- Department of Ultrasonography, Linyi People's Hospital, Linyi, Shandong 276000, China
| | - Fukang Yuan
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanjie Fu
- Department of Burns Surgery, Linyi People's Hospital, Linyi, Shandong 276000, China
| | - Nan Bai
- Department of Plastic Surgery, Linyi People's Hospital, Linyi, Shandong 276000, China.
| |
Collapse
|
37
|
Myocardial motion and deformation patterns in an experimental swine model of acute LBBB/CRT and chronic infarct. Int J Cardiovasc Imaging 2014; 30:875-87. [DOI: 10.1007/s10554-014-0403-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
38
|
Van Pham P, Bui KHT, Duong TD, Nguyen NT, Nguyen TD, Le VT, Mai VT, Phan NLC, Le DM, Ngoc NK. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study. BIOMEDICAL RESEARCH AND THERAPY 2014. [DOI: 10.7603/s40730-014-0002-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Liehn EA, Radu E, Schuh A. Chemokine contribution in stem cell engraftment into the infarcted myocardium. Curr Stem Cell Res Ther 2014; 8:278-83. [PMID: 23547962 PMCID: PMC3782704 DOI: 10.2174/1574888x11308040003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/23/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
Modern life styles have made cardiovascular disease the leading cause of morbidity and mortality worldwide. Although current treatments substantially ameliorate patients’ prognosis after MI, they cannot restore the affected tissue or entirely re-establish organ function. Therefore, the main goal of modern cardiology should be to design strategies to reduce myocardial necrosis and optimize cardiac repair following MI. Cell-based therapy was considered a novel and potentially new strategy in regenerative medicine; however, its clinical implementation has not yielded the expected results. Chemokines seem to increase the efficiency of cell-therapy and may represent a reliable method to be exploited in the future. This review surveys current knowledge of cell therapy and highlights key insights into the role of chemokines in stem cell engraftment in infarcted myocardium and their possible clinical implications.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Germany.
| | | | | |
Collapse
|
40
|
Rigol M, Solanes N, Roura S, Roqué M, Novensà L, Dantas AP, Martorell J, Sitges M, Ramírez J, Bayés-Genís A, Heras M. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest 2014; 44:83-92. [PMID: 24350923 DOI: 10.1111/eci.12195] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Stem cell therapy offers a promising approach to reduce the long-term mortality rate associated with heart failure after acute myocardial infarction (AMI). To date, in vivo translational studies have not yet fully studied the immune response to allogeneic adipose tissue-derived mesenchymal stem cells (ATMSCs). We analysed the immune response and the histological and functional effects of allogeneic ATMSCs in a porcine model of reperfused AMI and determine the effect of administration timing. DESIGN Pigs that survived AMI (24/26) received intracoronary administration of culture medium after reperfusion (n = 6), ATMSCs after reperfusion (n = 6), culture medium 7 days after AMI (n = 6) or ATMSCs 7 days after AMI (n = 6). At 3-week follow-up, cardiac function, alloantibodies and histological analysis were evaluated. RESULTS Administration of ATMSCs after reperfusion and 7 days after AMI resulted in similar rates of cell engraftment; some of those cells expressed endothelial, smooth muscle and cardiomyogenic cell lineage markers. Delivery of ATMSCs after reperfusion compared with that performed at 7 days was more effective in increasing: vascular density (249 ± 64 vs. 161 ± 37 vessels/mm2; P < 0.01), T lymphocytes (1 ± 0.4 vs. 0.4 ± 0.3% of area CD3(+) ; P < 0.05) and expression of vascular endothelial growth factor (VEGF; 32 ± 7% vs. 20 ± 4% of area VEGF(+) ; P < 0.01). Allogeneic ATMSC-based therapy did not change ejection fraction but generated alloantibodies. CONCLUSIONS The present study is the first to demonstrate that allogeneic ATMSCs elicit an immune response and, when administered immediately after reperfusion, are more effective in increasing VEGF expression and neovascularization.
Collapse
Affiliation(s)
- Montserrat Rigol
- Department of Cardiology, Institut del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH, Resende RR. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2013; 85:43-77. [DOI: 10.1002/cyto.a.22402] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna R. Sousa
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Ricardo C. Parreira
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Emerson A Fonseca
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Maria J. Amaya
- Department of Internal Medicine, Section of Digestive Diseases; Yale University School of Medicine; New Haven Connecticut
| | - Fernanda M. P. Tonelli
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Samyra M. S. N. Lacerda
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Pritesh Lalwani
- Faculdade de Ciências Farmacêuticas; Universidade Federal do Amazonas; Manaus AM Brazil
| | - Anderson K. Santos
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Katia N. Gomes
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre H. Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição; Universidade Federal do ABC; Santo André SP Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
42
|
Araña M, Gavira JJ, Peña E, González A, Abizanda G, Cilla M, Pérez MM, Albiasu E, Aguado N, Casado M, López B, González S, Soriano M, Moreno C, Merino J, García-Verdugo JM, Díez J, Doblaré M, Pelacho B, Prosper F. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials 2013; 35:143-51. [PMID: 24119456 DOI: 10.1016/j.biomaterials.2013.09.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022]
Abstract
Although transplantation of adipose-derived stem cells (ADSC) in chronic myocardial infarction (MI) models is associated with functional improvement, its therapeutic value is limited due to poor long-term cell engraftment and survival. Thus, the objective of this study was to examine whether transplantation of collagen patches seeded with ADSC could enhance cell engraftment and improve cardiac function in models of chronic MI. With that purpose, chronically infarcted Sprague-Dawley rats (n = 58) were divided into four groups and transplanted with media, collagen scaffold (CS), rat ADSC, or CS seeded with rat ADSC (CS-rADSC). Cell engraftment, histological changes, and cardiac function were assessed 4 months after transplantation. In addition, Göttingen minipigs (n = 18) were subjected to MI and then transplanted 2 months later with CS or CS seeded with autologous minipig ADSC (CS-pADSC). Functional and histological assessments were performed 3 months post-transplantation. Transplantation of CS-rADSC was associated with increased cell engraftment, significant improvement in cardiac function, myocardial remodeling, and revascularization. Moreover, transplantation of CS-pADSC in the pre-clinical swine model improved cardiac function and was associated with decreased fibrosis and increased vasculogenesis. In summary, transplantation of CS-ADSC resulted in enhanced cell engraftment and was associated with a significant improvement in cardiac function and myocardial remodeling.
Collapse
Affiliation(s)
- Miriam Araña
- Laboratory of Cell Therapy, Division of Oncology, Foundation for Applied Medical Research, University of Navarra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hong SJ, Hou D, Brinton TJ, Johnstone B, Feng D, Rogers P, Fearon WF, Yock P, March KL. Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution. Catheter Cardiovasc Interv 2013; 83:E17-25. [PMID: 22972685 DOI: 10.1002/ccd.24659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/09/2012] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To examine the comparative fate of adipose-derived stem cells (ASCs) as well as their impact on coronary microcirculation following either retrograde coronary venous (RCV) or arterial delivery. BACKGROUND Local delivery of ASCs to the heart has been proposed as a practical approach to limiting the extent of myocardial infarction. Mouse models of mesenchymal stem cell effects on the heart have also demonstrated significant benefits from systemic (intravenous) delivery, prompting a question about the advantage of local delivery. There has been no study addressing the extent of myocardial vs. systemic disposition of ASCs in large animal models following local delivery to the myocardium. METHODS In an initial experiment, dose-dependent effects of ASC delivery on coronary circulation in normal swine were evaluated to establish a tolerable ASC dosing range for intracoronary (IC) delivery. In a set of subsequent experiments, an anterior acute myocardial infarction (AMI) was created by balloon occlusion of the proximal left anterior descending (LAD) artery, followed by either IC or RCV infusion of 10(7) (111)Indium-labeled autologous ASCs 6 days following AMI. Indices of microcirculatory resistance (IMR) and coronary flow reserve (CFR) were measured before sacrifices to collect tissues for analysis at 1 or 24 hr after cell delivery. RESULTS IC delivery of porcine ASCs to normal myocardium was well tolerated up to a cumulative dose of 14 × 10(6) cells (approximately 0.5 × 10(6) cells/kg). There was evidence suggesting microcirculatory trapping of ASC: at unit doses of 50 × 10(6) ASCs, IMR and CFR were found to be persistently altered in the target LAD distribution at 7 days following delivery, whereas at 10 × 10(6) ASCs, only CFR was altered. In the context of recent MI, a significantly higher percentage of ASCs was retained at 1 hr with IC delivery compared with RCV delivery (57.2 ± 12.7% vs. 17.9 ± 1.6%, P = 0.037) but this initial difference was not apparent at 24 hr (22.6 ± 5.5% vs. 18.7 ± 8.6%; P = 0.722). In both approaches, most ASC redistributed to the pulmonary circulation by 24 hr postdelivery. There were no significant differences in CFR or IMR following ASC delivery to infarcted tissue by either route. CONCLUSIONS Selective intravascular delivery of ASC by coronary arterial and venous routes leads to similarly limited myocardial cell retention with predominant redistribution of cells to the lungs. IC arterial delivery of ASC leads to only transiently greater myocardial retention, which is accompanied by obstruction of normal regions of coronary microcirculation at higher doses. The predominant intrapulmonary localization of cells following local delivery via both methods prompts the notion that systemic delivery of ASC might provide similarly beneficial outcomes while avoiding risks of inadvertent microcirculatory compromise.
Collapse
Affiliation(s)
- Soon Jun Hong
- Krannert Institute of Cardiology, Indianapolis; Indiana Center for Vascular Biology and Medicine, Indianapolis; Indiana University School of Medicine, Indianapolis, Indianapolis; Korea University Anam Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Pham P, Bui KHT, Ngo DQ, Vu NB, Truong NH, Phan NLC, Le DM, Duong TD, Nguyen TD, Le VT, Phan NK. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther 2013; 4:91. [PMID: 23915433 PMCID: PMC3854675 DOI: 10.1186/scrt277] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation to improve the treatment efficiency. METHODS ADSCs were isolated and expanded from human adipose tissue. PRP was collected and activated from human peripheral blood. The effects of PRP were evaluated in vitro and in ADSC transplantation in vivo. In vitro, the effects of PRP on ADSC proliferation, differentiation into chondrogenic cells, and inhibition of angiogenic factors were investigated at three concentrations of PRP (10%, 15% and 20%). In vivo, ADSCs pretreated with or without PRP were transplanted into murine models of injured articular cartilage. RESULTS PRP promoted ADSC proliferation and differentiation into chondrogenic cells that strongly expressed collagen II, Sox9 and aggrecan. Moreover, PRP inhibited expression of the angiogenic factor vascular endothelial growth factor. As a result, PRP-pretreated ADSCs improved healing of injured articular cartilage in murine models compared with that of untreated ADSCs. CONCLUSION Pretreatment of ADSCs with PRP is a simple method to efficiently apply ADSCs in cartilage regeneration. This study provides an important step toward the use of autologous ADSCs in the treatment of injured articular cartilage.
Collapse
|
45
|
Sca-1+ cardiac progenitor cell therapy with cells overexpressing integrin-linked kinase improves cardiac function after myocardial infarction. Transplantation 2013; 95:1187-96. [PMID: 23598943 DOI: 10.1097/tp.0b013e31828a9423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study was to investigate the effect of integrin-linked kinase (ILK) on the transplantation efficiency of stem cell antigen-1-positive cardiac progenitor cells (Sca-1 CPCs) in a mouse myocardial infarction (MI) model. METHODS Sca-1 CPCs were isolated from C57/BL6 mice heart tissues and genetically modified with adenovirus vector containing green fluorescent protein (GFP)/ILK or GFP. Cell viability, migration, DNA synthesis, proliferation, and apoptosis were assessed in vitro. Immediately after MI, treated animals received 5×10 GFP-CPC or ILK-CPC transplantation into the peri-infarct myocardium. Cardiac function, exercise ability, cardiac morphology, angiogenesis, cardiomyocyte apoptosis, as well as ILK-related protein expression were measured. Acute and long-term cell survival after cell transplantation was assessed. RESULTS Overexpression of ILK increased the viability, migration, DNA synthesis, proliferation, and survival of Sca-1 CPCs in vitro. Protein expression of phosphorylated Akt and cyclin D1 were up-regulated. In our in vivo experiment, more transplanted cells were found in the peri-infarct myocardium in ILK-CPC group 3 days after cell transplantation, but there was no difference between the two groups 4 weeks later. ILK-CPC group showed reduced infarct size 7 days after cell transplantation. Long-term observation showed improved cardiac function indicated by higher percent fractional shortening and lower left ventricular end systolic diameter/left ventricular end diastolic diameter, better exercise ability, increased angiogenesis, decreased fibrosis and apoptosis, as well as up-regulation of ILK, Cdc42, and Aurora B protein expression in ILK-CPC group 4 weeks after cell transplantation. CONCLUSIONS ILK-overexpressed Sca-1 CPCs showed improved therapeutic efficacy in MI.
Collapse
|
46
|
Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Ingeniería tisular cardiaca y corazón bioartificial. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Rigol M, Solanes N, Fernandez-Armenta J, Silva E, Doltra A, Duchateau N, Barcelo A, Gabrielli L, Bijnens B, Berruezo A, Brugada J, Sitges M. Development of a Swine Model of Left Bundle Branch Block for Experimental Studies of Cardiac Resynchronization Therapy. J Cardiovasc Transl Res 2013; 6:616-22. [DOI: 10.1007/s12265-013-9464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
48
|
Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Update: Innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart. ACTA ACUST UNITED AC 2013; 66:391-9. [PMID: 24775822 DOI: 10.1016/j.rec.2012.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/21/2012] [Indexed: 01/16/2023]
Abstract
Heart failure is the end-stage of many cardiovascular diseases-such as acute myocardial infarction-and remains one of the most appealing challenges for regenerative medicine because of its high incidence and prevalence. Over the last 20 years, cardiomyoplasty, based on the isolated administration of cells with regenerative capacity, has been the focal point of most studies aimed at regenerating the heart. Although this therapy has proved feasible in the clinical setting, the degree of infarcted myocardium regenerated and of improved cardiac function are at best modest. Hence, tissue engineering has emerged as a novel technology using cells with regenerative capacity, biological and/or synthetic materials, growth, proangiogenic and differentiation factors, and online registry systems, to induce the regeneration of whole organs or locally damaged tissue. The next step, seen recently in pioneering animal studies, is de novo generation of bioartificial hearts by decellularization and preservation of supporting structures for their subsequent repopulation with new contractile, vascular muscle tissue. Ultimately, this new approach would entail transplantation of the "rebuilt" heart, reestablishing cardiac function in the recipient.
Collapse
Affiliation(s)
- Carolina Gálvez-Montón
- Grupo de Investigación ICREC, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain.
| | - Cristina Prat-Vidal
- Grupo de Investigación ICREC, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Santiago Roura
- Grupo de Investigación ICREC, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Carolina Soler-Botija
- Grupo de Investigación ICREC, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Grupo de Investigación ICREC, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departamento de Medicina, UAB, Barcelona, Spain
| |
Collapse
|
49
|
Shin S, Kim Y, Jeong S, Hong S, Kim I, Lee W, Choi S. The therapeutic effect of human adult stem cells derived from adipose tissue in endotoxemic rat model. Int J Med Sci 2013; 10:8-18. [PMID: 23289000 PMCID: PMC3534872 DOI: 10.7150/ijms.5385] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/02/2012] [Indexed: 12/16/2022] Open
Abstract
Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesenchymal stem cells (MSCs), has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. We investigated the therapeutic effects of human ATSCs (hATSCs) in endotoxemic rat model and their capacity to modulate the inflammatory response. Endotoxemia was induced with Lipopolysaccaride intravenously injection (LPS, 10mg/kg). Animals were divided into the following three groups: (1) saline + saline (n=5), (2) LPS + saline (n=5) and (3) LPS + hATSCs (2x10(6)) (n=5). The administration of LPS caused a consistent systemic inflammatory responses, increased concentrations of the pro-inflammatory cytokines that have an important role in sepsis. Treatment of endotoxemia with hATSCs decreased the level of inflammatory cytokines both in serum and in the lung, reduced inflammatory changes in the lung, prevented apoptosis in the kidney and improved multi-organ injury. In conclusion, our data demonstrates that hATSCs regulate the immue/inflammatory responses and improve multi-organ injury and they could be attractive candidates for cell therapy to treat endotoxemia.
Collapse
Affiliation(s)
- Soyoung Shin
- Department of Laboratory Medicine, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Gomez-Mauricio RG, Acarregui A, Sánchez-Margallo FM, Crisóstomo V, Gallo I, Hernández RM, Pedraz JL, Orive G, Martín-Cancho MF. A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. Eur J Pharm Biopharm 2012; 84:29-39. [PMID: 23266493 DOI: 10.1016/j.ejpb.2012.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 01/18/2023]
Abstract
Adipose tissue-derived stem cells (ASCs) have properties of self-renewal, pluripotency and high proliferative capability that make them useful for the treatment of cardiac ventricular function following ischaemic injury. However, their therapeutic use is limited due to the low retention of the cells at the targeted site. To address this issue, we developed semipermeable membrane microcapsules labelled with Endorem (magnetocapsules) that provide mechanical and immunological immune protection to the cells while maintaining internal cell microenvironment. In addition, the particles allow tracking the presence and migration of injected cells in vivo by Magnetic Resonance Imaging (MRI). Results indicate that after 21 days in culture, the cells encapsulated in the magnetocapsules showed similar viabilities than cells encapsulated in conventional microcapsules. MRI confirmed a gradual loss of the intensity of the iron oxide label in the non-encapsulated Endorem labelled cells, while magnetocapsules were detected throughout the study period, suggesting that cell retention in the myocardium is improved when cells are enclosed within the magnetocapsules. To further evaluate treatment's effect on global cardiac function, MRI determination of infarct size and left ventricular ejection fraction (LVEF) was performed. In vivo results showed no statistically significant differences in heart rate and cardiac output between treatment groups. In conclusion, cells enclosed within magnetocapsules have shown suitable viability and have been detected in vivo throughout the study period. Further studies will evaluate whether increasing cell loading with the particles may help to improve the therapeutic results.
Collapse
|