1
|
Ritchie JA, Ng JQ, Kemi OJ. When one says yes and the other says no; does calcineurin participate in physiologic cardiac hypertrophy? ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:84-95. [PMID: 34762541 DOI: 10.1152/advan.00104.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only two studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by two main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher level cognitive processing.
Collapse
Affiliation(s)
- Jonathan A Ritchie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Q Ng
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ole J Kemi
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Shemarova IV, Nesterov VP. Molecular Basis of Cardioprotection in Ischemic Heart Disease. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Wang Y, Keskanokwong T, Cheng J. Kv4.3 expression abrogates and reverses norepinephrine-induced myocyte hypertrophy by CaMKII inhibition. J Mol Cell Cardiol 2018; 126:77-85. [PMID: 30462989 DOI: 10.1016/j.yjmcc.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 11/17/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Down-regulation of Kv4.3 protein is a general feature of cardiac hypertrophy. Based on our recent studies, we propose that Kv4.3 reduction may be a hypertrophic stimulator. OBJECTIVE We tested whether Kv4.3 expression can prevent or reverse cardiac hypertrophy induced by norepinephrine (NE). METHODS AND RESULTS Incubation of 20 μM NE in cultured neonatal rat ventricular myocytes (NRVMs) for 48 h and 96 h induced myocyte hypertrophy in a time-dependent manner, characterized by progressive increase in cell size, protein/DNA ratio, ANP and BNP, along with an progressive increase in the activity of CaMKII and calcineurin and reduction of Kv4.3 mRNA and proteins. Interestingly, PKA-dependent phosphorylation of phospholamban (PLB) at Ser16 was increased at 48 h but reduced to the basal level at 96 h NE incubation. CaMKII inhibitors KN93 and AIP blunted NE-induced hypertrophic response and caused regression of hypertrophy, which is associated with a reduction of CaMKII activity and calcineurin expression. Kv4.3 expression completely suppressed the development of NE-induced hypertrophy and led to a regression in the hypertrophic myocytes. These effects were accompanied by a reduction in CaMKII autophosphorylation, PLB phosphorylation at Thr-17 without changing PLB phosphorylation at Ser-16. NFATc3 was also reduced by Kv4.3 expression. CONCLUSIONS Our results demonstrated that Kv4.3 reduction is an important mediator in cardiac hypertrophy development via excessive CaMKII activation and that Kv4.3 expression is likely a potential therapeutic strategy for prevention and reversion of adrenergic stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Medical Research Institute, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| | | | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Gray B, Behr ER. New Insights Into the Genetic Basis of Inherited Arrhythmia Syndromes. ACTA ACUST UNITED AC 2018; 9:569-577. [PMID: 27998945 DOI: 10.1161/circgenetics.116.001571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Belinda Gray
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Elijah R Behr
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.).
| |
Collapse
|
6
|
Cheng J, Cao J, Jiang X, Xu L, Wang Y. Kv4.3 expression reverses I Ca remodeling in ventricular myocytes of heart failure. Oncotarget 2017; 8:104037-104045. [PMID: 29262619 PMCID: PMC5732785 DOI: 10.18632/oncotarget.21956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent L-type calcium channel (LTCC) current (ICa) remodeling is an important contributor to the disruption of calcium homeostasis in heart failure (HF). We have reported that Kv4.3 proteins play an important role in delicate regulation of the membrane-associated CaMKII activity in ventricular myocytes. Here, we investigated the effect of in vivo Kv4.3 expression on ICa in HF left ventricular (LV) myocytes. Results Kv4.3 expression reduced overall CaMKII autophosphorylation with much greater reduction in the membrane compartmentalized CaMKII activity. ICa density in subepicardial (SEP) and subendocardial (SEN) myocytes was proportionately reduced, without changing the transmural gradient. While the time course of ICa decay was hastened, the voltage-dependence of ICa activation and inactivation, however, remained unchanged. ICa recovery from inactivation was significantly accelerated. In line with the partial inhibition of CaMKII, the frequency-dependent Ca2+-induced ICa facilitation was recovered in the HF myocytes transfected with Kv4.3. Materials and Methods Pressure-overload HF was induced by thoracic aortic banding. Kv4.3 expression was achieved by Ad-Kv4.3 injection in the LV myocardium. ICa was recorded in dissociated SEP and SEN myocytes using whole-cell patch clamp method. Conclusions Kv4.3 expression in HF ventricle can effectively reverse ICa remodeling via inhibition of the membrane-associated CaMKII, pointing to Kv4.3 restoration as a potential therapeutic approach for the disordered calcium regulation in HF.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xingchen Jiang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
|
8
|
Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, Gröne HJ, Müller OJ, Katus HA, Backs J. Inducible cardiomyocyte-specific deletion of CaM kinase II protects from pressure overload-induced heart failure. Basic Res Cardiol 2016; 111:65. [PMID: 27683174 DOI: 10.1007/s00395-016-0581-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
CaM kinase II (CaMKII) has been suggested to drive pathological cardiac remodeling and heart failure. However, the evidence provided so far is based on inhibitory strategies using chemical compounds and peptides that also exert off-target effects and followed exclusively preventive strategies. Therefore, the aim of this study was to investigate whether specific CaMKII inhibition after the onset of cardiac stress delays or reverses maladaptive cardiac remodeling and dysfunction. Combined genetic deletion of the two redundant CaMKII genes δ and γ was induced after the onset of overt heart failure as the result of pathological pressure overload induced by transverse aortic constriction (TAC). We used two different strategies to engineer an inducible cardiomyocyte-specific CaMKIIδ/CaMKIIγ double knockout mouse model (DKO): one model bases on tamoxifen-inducible mER/Cre/mER expression under control of the cardiac-specific αMHC promoter; the other strategy bases on overexpression of Cre recombinase via cardiac-specific gene transfer through adeno-associated virus (AAV9) under control of the cardiac-specific myosin light chain promoter. Both models led to a substantial deletion of CaMKII in failing hearts. To approximate the clinical situation, CaMKII deletion was induced 3 weeks after TAC surgery. In both models of DKO, the progression of cardiac dysfunction and interstitial fibrosis could be slowed down as compared to control animals. Taken together, we show for the first time that "therapeutic" CaMKII deletion after cardiac damage is sufficient to attenuate maladaptive cardiac remodeling and to reverse signs of heart failure. These data suggest that CaMKII inhibition is a promising therapeutic approach to combat heart failure.
Collapse
Affiliation(s)
- Michael M Kreusser
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Lorenz H Lehmann
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Nora Wolf
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Stanislav Keranov
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Oliver J Müller
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany.
| |
Collapse
|
9
|
Vielma AZ, León L, Fernández IC, González DR, Boric MP. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart. PLoS One 2016; 11:e0160813. [PMID: 27529477 PMCID: PMC4986959 DOI: 10.1371/journal.pone.0160813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022] Open
Abstract
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.
Collapse
Affiliation(s)
- Alejandra Z. Vielma
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Luisa León
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Ignacio C. Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Av. Lircay S.N., Talca, Chile
| | - Mauricio P. Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
- * E-mail:
| |
Collapse
|
10
|
Jiménez-Jáimez J, Palomino Doza J, Ortega Á, Macías-Ruiz R, Perin F, Rodríguez-Vázquez del Rey MM, Ortiz-Genga M, Monserrat L, Barriales-Villa R, Blanca E, Álvarez M, Tercedor L. Calmodulin 2 Mutation N98S Is Associated with Unexplained Cardiac Arrest in Infants Due to Low Clinical Penetrance Electrical Disorders. PLoS One 2016; 11:e0153851. [PMID: 27100291 PMCID: PMC4839566 DOI: 10.1371/journal.pone.0153851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background Calmodulin 1, 2 and 3 (CALM) mutations have been found to cause cardiac arrest in children at a very early age. The underlying aetiology described is long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT) and idiopathic ventricular fibrillation (IVF). Little phenotypical data about CALM2 mutations is available. Objectives The aim of this paper is to describe the clinical manifestations of the Asn98Ser mutation in CALM2 in two unrelated children in southern Spain with apparently unexplained cardiac arrest/death. Methods Two unrelated children aged 4 and 7, who were born to healthy parents, were studied. Both presented with sudden cardiac arrest. The first was resuscitated after a VF episode, and the second died suddenly. In both cases the baseline QTc interval was within normal limits. Peripheral blood DNA was available to perform targeted gene sequencing. Results The surviving 4-year-old girl had a positive epinephrine test for LQTS, and polymorphic ventricular ectopic beats were seen on a previous 24-hour Holter recording from the deceased 7-year-old boy, suggestive of a possible underlying CPVT phenotype. A p.Asn98Ser mutation in CALM2 was detected in both cases. This affected a highly conserved across species residue, and the location in the protein was adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain, predicting a high pathogenic effect. Conclusions Human calmodulin 2 mutation p.Asn98Ser is associated with sudden cardiac death in childhood with a variable clinical penetrance. Our results provide new phenotypical information about clinical behaviour of this mutation.
Collapse
Affiliation(s)
- Juan Jiménez-Jáimez
- Cardiology Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Instituto de Investigación Biosanitario de Granada, Granada, Spain
- * E-mail:
| | | | - Ángeles Ortega
- Paediatrics Department, Hospital de Torrecárdenas, Almería, Spain
| | - Rosa Macías-Ruiz
- Cardiology Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Instituto de Investigación Biosanitario de Granada, Granada, Spain
| | - Francesca Perin
- Paediatrics Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | | | | | | | - Enrique Blanca
- Paediatrics Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Miguel Álvarez
- Cardiology Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Instituto de Investigación Biosanitario de Granada, Granada, Spain
| | - Luis Tercedor
- Cardiology Department, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Instituto de Investigación Biosanitario de Granada, Granada, Spain
| |
Collapse
|
11
|
Systems Pharmacology Dissecting Holistic Medicine for Treatment of Complex Diseases: An Example Using Cardiocerebrovascular Diseases Treated by TCM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:980190. [PMID: 26101539 PMCID: PMC4460250 DOI: 10.1155/2015/980190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 01/04/2023]
Abstract
Holistic medicine is an interdisciplinary field of study that integrates all types of biological information (protein, small molecules, tissues, organs, external environmental signals, etc.) to lead to predictive and actionable models for health care and disease treatment. Despite the global and integrative character of this discipline, a comprehensive picture of holistic medicine for the treatment of complex diseases is still lacking. In this study, we develop a novel systems pharmacology approach to dissect holistic medicine in treating cardiocerebrovascular diseases (CCDs) by TCM (traditional Chinese medicine). Firstly, by applying the TCM active ingredients screened out by a systems-ADME process, we explored and experimentalized the signed drug-target interactions for revealing the pharmacological actions of drugs at a molecule level. Then, at a/an tissue/organ level, the drug therapeutic mechanisms were further investigated by a target-organ location method. Finally, a translational integrating pathway approach was applied to extract the diseases-therapeutic modules for understanding the complex disease and its therapy at systems level. For the first time, the feature of the drug-target-pathway-organ-cooperations for treatment of multiple organ diseases in holistic medicine was revealed, facilitating the development of novel treatment paradigm for complex diseases in the future.
Collapse
|
12
|
Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C, Ladeira LO, Resende RR, Botoni FA, Barrouin Melo M, Lima CX, Carballido JM, Cunha TM, Menezes GB, Guatimosim S, Leite MF. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal 2014; 12:78. [PMID: 25539979 PMCID: PMC4296677 DOI: 10.1186/s12964-014-0078-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/28/2014] [Indexed: 12/28/2022] Open
Abstract
Background Succinate is an intermediate of the citric acid cycle as well as an extracellular circulating molecule, whose receptor, G protein-coupled receptor-91 (GPR91), was recently identified and characterized in several tissues, including heart. Because some pathological conditions such as ischemia increase succinate blood levels, we investigated the role of this metabolite during a heart ischemic event, using human and rodent models. Results We found that succinate causes cardiac hypertrophy in a GPR91 dependent manner. GPR91 activation triggers the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), the expression of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and the translocation of histone deacetylase 5 (HDAC5) into the cytoplasm, which are hypertrophic-signaling events. Furthermore, we found that serum levels of succinate are increased in patients with cardiac hypertrophy associated with acute and chronic ischemic diseases. Conclusions These results show for the first time that succinate plays an important role in cardiomyocyte hypertrophy through GPR91 activation, and extend our understanding of how ischemia can induce hypertrophic cardiomyopathy. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0078-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla J Aguiar
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - João A Rocha-Franco
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Pedro A Sousa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Anderson K Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Marina Ladeira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Fernando A Botoni
- Department of Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Marcos Barrouin Melo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Cristiano X Lima
- Department of Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - José M Carballido
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland.
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto, Medical School, University of São Paulo, São Paulo, Brazil.
| | - Gustavo B Menezes
- Department of Morphology, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| | - M Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG - CEP: 31270-901, Brazil.
| |
Collapse
|
13
|
Shi L, Xu H, Wei J, Ma X, Zhang J. Caffeine induces cardiomyocyte hypertrophy via p300 and CaMKII pathways. Chem Biol Interact 2014; 221:35-41. [DOI: 10.1016/j.cbi.2014.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/20/2014] [Accepted: 07/25/2014] [Indexed: 01/05/2023]
|
14
|
Choong G, Liu Y, Templeton DM. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 2014; 211:54-65. [PMID: 24463198 DOI: 10.1016/j.cbi.2014.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
The environmentally important toxic metal, cadmium, exists as the Cd(2+) ion in biological systems, and in this state structurally resembles Ca(2+). Thus, although cadmium exerts a broad range of adverse actions on cells by virtue of its propensity to bind to protein thiol groups, it is now well appreciated that Cd(2+) participates in a number of Ca(2+)-dependent pathways, attributable to its actions as a Ca(2+) mimetic, with a central role for calmodulin, and the Ca(2+)/calmodlin-dependent protein kinase II (CaMK-II) that mediates effects on cytoskeletal dynamics and apoptotic cell death. Cadmium interacts with receptors and ion channels on the cell surface, and with the intracellular estrogen receptor where it binds competitively to residues shared by Ca(2+). It increases cytosolic [Ca(2+)] through several mechanisms, but also decreases transcript levels of some Ca(2+)-transporter genes. It initiates mitochondrial apoptotic pathways, and activates calpains, contributing to mitochondria-independent apoptosis. However, the recent discovery of the role CaMK-II plays in Cd(2+)-induced cell death, and subsequent implication of CaMK-II in Cd(2+)-dependent alterations of cytoskeletal dynamics, has opened a new area of mechanistic cadmium toxicology that is a focus of this review. Calmodulin is necessary for induction of apoptosis by several agents, yet induction of apoptosis by Cd(2+) is prevented by CaMK-II block, and Ca(2+)-dependent phosphorylation of CaMK-II has been linked to increased Cd(2+)-dependent apoptosis. Calmodulin antagonism suppresses Cd(2+)-induced phosphorylation of Erk1/2 and the Akt survival pathway. The involvement of CaMK-II in the effects of Cd(2+) on cell morphology, and particularly the actin cytoskeleton, is profound, favouring actin depolymerization, disrupting focal adhesions, and directing phosphorylated FAK into a cellular membrane. CaMK-II is also implicated in effects of Cd(2+) on microtubules and cadherin junctions. A key question for future cadmium research is whether cytoskeletal disruption leads to apoptosis, or rather if apoptosis initiates cytoskeletal disruption in the context of Cd(2+).
Collapse
Affiliation(s)
- Grace Choong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Douglas M Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
15
|
Schwartz PJ, Ackerman MJ, George AL, Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol 2013; 62:169-180. [PMID: 23684683 DOI: 10.1016/j.jacc.2013.04.044] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/24/2013] [Indexed: 12/29/2022]
Abstract
There are few areas in cardiology in which the impact of genetics and genetic testing on clinical management has been as great as in cardiac channelopathies, arrhythmic disorders of genetic origin related to the ionic control of the cardiac action potential. Among the growing number of diseases identified as channelopathies, 3 are sufficiently prevalent to represent significant clinical and societal problems and to warrant adequate understanding by practicing cardiologists: long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, and Brugada syndrome. This review will focus selectively on the impact of genetic discoveries on clinical management of these 3 diseases. For each disorder, we will discuss to what extent genetic knowledge and clinical genetic test results modify the way cardiologists should approach and manage affected patients. We will also address the optimal use of genetic testing, including its potential limitations and the potential medico-legal implications when such testing is not performed. We will highlight how important it is to understand the ways that genotype can affect clinical manifestations, risk stratification, and responses to the therapy. We will also illustrate the close bridge between molecular biology and clinical medicine, and will emphasize that consideration of the genetic basis for these heritable arrhythmia syndromes and the proper use and interpretation of clinical genetic testing should remain the standard of care.
Collapse
Affiliation(s)
- Peter J Schwartz
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Stellenbosch, Stellenbosch, South Africa; Chair of Sudden Death, Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Michael J Ackerman
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; Department of Pediatrics, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Alfred L George
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Institute for Integrative Genomics, Vanderbilt University, Nashville, Tennessee
| | - Arthur A M Wilde
- Department of Cardiology, Heart Failure Research Centre, Academic Medical Centre, Amsterdam, the Netherlands; Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Perera RK, Nikolaev VO. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 2013; 207:650-62. [PMID: 23383621 DOI: 10.1111/apha.12077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/27/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger critically involved in the regulation of heart function. It has been shown to act in discrete subcellular signalling compartments formed by differentially localized receptors, phosphodiesterases and protein kinases. Cardiac diseases such as hypertrophy or heart failure are associated with structural and functional remodelling of these microdomains which leads to changes in cAMP compartmentation. In this review, we will discuss recent key findings which provided new insights into cAMP compartmentation in cardiomyocytes with a particular focus on its alterations in heart disease.
Collapse
Affiliation(s)
- R. K. Perera
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| | - V. O. Nikolaev
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| |
Collapse
|
17
|
Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kääb S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 2013; 127:1009-17. [PMID: 23388215 DOI: 10.1161/circulationaha.112.001216] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. METHODS AND RESULTS We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. CONCLUSIONS Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.
Collapse
Affiliation(s)
- Lia Crotti
- Section of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koch LG, Kemi OJ, Qi N, Leng SX, Bijma P, Gilligan LJ, Wilkinson JE, Wisløff H, Høydal MA, Rolim N, Abadir PM, van Grevenhof EM, Smith GL, Burant CF, Ellingsen O, Britton SL, Wisløff U. Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res 2011; 109:1162-72. [PMID: 21921265 DOI: 10.1161/circresaha.111.253807] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. OBJECTIVES Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). METHODS AND RESULTS Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO(2max), measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca(2+) handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. CONCLUSIONS These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.
Collapse
Affiliation(s)
- Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaurstad G, Alves MN, Kemi OJ, Rolim N, Høydal MA, Wisløff H, Stølen TO, Wisløff U. Chronic CaMKII inhibition blunts the cardiac contractile response to exercise training. Eur J Appl Physiol 2011; 112:579-88. [PMID: 21614506 PMCID: PMC3258410 DOI: 10.1007/s00421-011-1994-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/30/2011] [Indexed: 11/29/2022]
Abstract
Activation of the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a critical role modulating cardiac function in both health and disease. Here, we determined the effect of chronic CaMKII inhibition during an exercise training program in healthy mice. CaMKII was inhibited by KN-93 injections. Mice were randomized to the following groups: sham sedentary, sham exercise, KN-93 sedentary, and KN-93 exercise. Cardiorespiratory function was evaluated by ergospirometry during treadmill running, echocardiography, and cardiomyocyte fractional shortening and calcium handling. The results revealed that KN-93 alone had no effect on exercise capacity or fractional shortening. In sham animals, exercise training increased maximal oxygen uptake by 8% (p < 0.05) compared to a 22% (p < 0.05) increase after exercise in KN-93 treated mice (group difference p < 0.01). In contrast, in vivo fractional shortening evaluated by echocardiography improved after exercise in sham animals only: from 25 to 32% (p < 0.02). In inactive mice, KN-93 reduced rates of diastolic cardiomyocyte re-lengthening (by 25%, p < 0.05) as well as Ca(2+) transient decay (by 16%, p < 0.05), whereas no such effect was observed after exercise training. KN-93 blunted exercise training response on cardiomyocyte fractional shortening (63% sham vs. 18% KN-93; p < 0.01 and p < 0.05, respectively). These effects could not be solely explained by the Ca(2+) transient amplitude, as KN-93 reduced it by 20% (p < 0.05) and response to exercise training was equal (64% sham and 47% KN-93; both p < 0.01). We concluded that chronic CaMKII inhibition increased time to 50% re-lengthening which were recovered by exercise training, but paradoxically led to a greater increase in maximal oxygen uptake compared to sham mice. Thus, the effect of chronic CaMKII inhibition is multifaceted and of a complex nature.
Collapse
Affiliation(s)
- Guri Kaurstad
- K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Murea M, Lu L, Ma L, Hicks PJ, Divers J, McDonough CW, Langefeld CD, Bowden DW, Freedman BI. Genome-wide association scan for survival on dialysis in African-Americans with type 2 diabetes. Am J Nephrol 2011; 33:502-9. [PMID: 21546767 DOI: 10.1159/000327985] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND African-Americans (AAs) with diabetes have high incidence rates of end-stage renal disease (ESRD) with associated high mortality. Genetic factors modulating the risk of mortality on dialysis are poorly understood. METHODS A genome-wide association study was performed in 610 AAs with type 2 diabetes (T2D) and ESRD on dialysis, using the Affymetrix 6.0 platform (868,155 SNPs). Time to death was assessed using Cox proportional hazards model adjusting for ancestry and other confounding variables. Cases were censored at kidney transplant or (if living) at study conclusion. RESULTS Mean follow-up was 5.4 ± 3.5 years; 434 deaths were recorded. Five SNPs were associated with time to death at p < 1.00 × 10(-6): rs2681019 (HR = 2.58, P(REC) = 8.00 × 10(-8)), rs815815 in CALM2 (HR = 1.51, P(ADD) = 6.50 × 10(-7)), rs926392 (HR = 2.37, P(REC) = 4.80 × 10(-7)), and rs926391 (HR = 2.30, P(REC) = 7.30 × 10(-7)) near DHX35, and rs11128347 in PDZRN3 (HR = 0.57, P(ADD) = 6.00 × 10(-7)). Other SNPs had nominal associations with time to death (p < 1.00 × 10(-5)). CONCLUSION Genetic variation may modify the risk of death on dialysis. SNPs in proximity to genes regulating vascular extracellular matrix, cardiac ventricular repolarization, and smoking cessation are associated with dialysis survival in AAs with T2D. These results warrant replication in other cohorts and races.
Collapse
Affiliation(s)
- Mariana Murea
- Department of Internal Medicine, Section on Nephrology, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157-1053, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koivumäki JT, Korhonen T, Takalo J, Weckström M, Tavi P. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC PHYSIOLOGY 2009; 9:16. [PMID: 19715618 PMCID: PMC2745357 DOI: 10.1186/1472-6793-9-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/31/2009] [Indexed: 12/05/2022]
Abstract
Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective cellular physiology. We propose that integrative modelling as in the present work is a valuable complement to experiments in understanding the causality within complex biological systems such as cardiac myocytes.
Collapse
Affiliation(s)
- Jussi T Koivumäki
- Department of Physics, University of Oulu & Biocenter Oulu, Finland.
| | | | | | | | | |
Collapse
|
22
|
Katz G, Arad M, Eldar M. Catecholaminergic polymorphic ventricular tachycardia from bedside to bench and beyond. Curr Probl Cardiol 2009; 34:9-43. [PMID: 19068246 DOI: 10.1016/j.cpcardiol.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a primary electrical myocardial disease characterized by exercise- and stress-related ventricular tachycardia manifested as syncope and sudden death. The disease has a heterogeneous genetic basis, with mutations in the cardiac Ryanodine Receptor channel (RyR2) gene accounting for an autosomal-dominant form (CPVT1) in approximately 50% and mutations in the cardiac calsequestrin gene (CASQ2) accounting for an autosomal-recessive form (CPVT2) in up to 2% of CPVT cases. Both RyR2 and calsequestrin are important participants in the cardiac cellular calcium homeostasis. We review the physiology of the cardiac calcium homeostasis, including the cardiac excitation contraction coupling and myocyte calcium cycling. The pathophysiology of cardiac arrhythmias related to myocyte calcium handling and the effects of different modulators are discussed. The putative derangements in myocyte calcium homeostasis responsible for CPVT, as well as the clinical manifestations and therapeutic options available, are described.
Collapse
|
23
|
Wang Y, Tandan S, Cheng J, Yang C, Nguyen L, Sugianto J, Johnstone JL, Sun Y, Hill JA. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem 2008; 283:25524-25532. [PMID: 18622016 DOI: 10.1074/jbc.m803043200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is increased in heart failure (HF), a syndrome characterized by markedly increased risk of arrhythmia. Activation of CaMKII increases peak L-type Ca(2+) current (I(Ca)) and slows I(Ca) inactivation. Whether these events are linked mechanistically is unknown. I(Ca) was recorded in acutely dissociated subepicardial and subendocardial murine left ventricular (LV) myocytes using the whole cell patch clamp method. Pressure overload heart failure was induced by surgical constriction of the thoracic aorta. I(Ca) density was significantly larger in subepicardial myocytes than in subendocardial/myocytes. Similar patterns were observed in the cell surface expression of alpha1c, the channel pore-forming subunit. In failing LV, I(Ca) density was increased proportionately in both cell types, and the time course of I(Ca) inactivation was slowed. This typical pattern of changes suggested a role of CaMKII. Consistent with this, measurements of CaMKII activity revealed a 2-3-fold increase (p < 0.05) in failing LV. To test for a causal link, we measured frequency-dependent I(Ca) facilitation. In HF myocytes, this CaMKII-dependent process could not be induced, suggesting already maximal activation. Internal application of active CaMKII in failing myocytes did not elicit changes in I(Ca). Finally, CaMKII inhibition by internal diffusion of a specific peptide inhibitor reduced I(Ca) density and inactivation time course to similar levels in control and HF myocytes. I(Ca) density manifests a significant transmural gradient, and this gradient is preserved in heart failure. Activation of CaMKII, a known pro-arrhythmic molecule, is a major contributor to I(Ca) remodeling in load-induced heart failure.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Jun Cheng
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Chunmei Yang
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Lan Nguyen
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Jessica Sugianto
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Janet L Johnstone
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Yuyang Sun
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573 and the.
| |
Collapse
|
24
|
Ikeda Y, Hoshijima M, Chien KR. Toward biologically targeted therapy of calcium cycling defects in heart failure. Physiology (Bethesda) 2008; 23:6-16. [PMID: 18268360 DOI: 10.1152/physiol.00033.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of evidence indicates that heart failure progression is tightly associated with dysregulation of phosphorylation of Ca2+ regulators localized in the sub-cellular microdomain of the sarcoplasmic reticulum. Chemical or genetic correction of abnormalities in cardiac phosphorylation cascades is emerging as a potential target in the treatment of heart failure. Here, we review how specific kinases and phosphatases finely tune Ca2+ cycling and regulate excitation-contraction (E-C) coupling in cardiomyocytes.
Collapse
Affiliation(s)
- Yasuhiro Ikeda
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | |
Collapse
|