1
|
Park MH, Pandya PK, Zhu Y, Mullis DM, Wang H, Imbrie-Moore AM, Wilkerson R, Marin-Cuartas M, Woo YJ. A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation. Cardiovasc Eng Technol 2023; 14:129-140. [PMID: 35941509 PMCID: PMC9905378 DOI: 10.1007/s13239-022-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Rheumatic heart disease is a major cause of mitral valve (MV) dysfunction, particularly in disadvantaged areas and developing countries. There lacks a critical understanding of the disease biomechanics, and as such, the purpose of this study was to generate the first ex vivo porcine model of rheumatic MV disease by simulating the human pathophysiology and hemodynamics. METHODS Healthy porcine valves were altered with heat treatment, commissural suturing, and cyanoacrylate tissue coating, all of which approximate the pathology of leaflet stiffening and thickening as well as commissural fusion. Hemodynamic data, echocardiography, and high-speed videography were collected in a paired manner for control and model valves (n = 4) in an ex vivo left heart simulator. Valve leaflets were characterized in an Instron tensile testing machine to understand the mechanical changes of the model (n = 18). RESULTS The model showed significant differences indicative of rheumatic disease: increased regurgitant fractions (p < 0.001), reduced effective orifice areas (p < 0.001), augmented transmitral mean gradients (p < 0.001), and increased leaflet stiffness (p = 0.025). CONCLUSION This work represents the creation of the first ex vivo model of rheumatic MV disease, bearing close similarity to the human pathophysiology and hemodynamics, and it will be used to extensively study both established and new treatment techniques, benefitting the millions of affected victims.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Pearly K Pandya
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Robert Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Mutagaywa RK, Mwakigonja A, Chillo P, Ngaiza A, Byomuganyizi M, Fundikira L, Cramer MJ, Kwesigabo G, Kamuhabwa A, Chamuleau S. Histopathological evaluation of chronic rheumatic mitral valve stenosis: the association with clinical presentation, pathogenesis and management at a National Cardiac Institute, Tanzania. Cardiovasc Pathol 2022; 60:107434. [DOI: 10.1016/j.carpath.2022.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
|
3
|
Seckeler MD, Hoke TR. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol 2011; 3:67-84. [PMID: 21386976 PMCID: PMC3046187 DOI: 10.2147/clep.s12977] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 11/23/2022] Open
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are significant public health concerns around the world. Despite decreasing incidence, there is still a significant disease burden, especially in developing nations. This review provides background on the history of ARF, its pathology and treatment, and the current reported worldwide incidence of ARF and prevalence of RHD.
Collapse
Affiliation(s)
- Michael D Seckeler
- Department of Pediatrics, Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|