1
|
Angeli E, Jordan M, Otto M, Stojanović SD, Karsdal M, Bauersachs J, Thum T, Fiedler J, Genovese F. The role of fibrosis in cardiomyopathies: An opportunity to develop novel biomarkers of disease activity. Matrix Biol 2024; 128:65-78. [PMID: 38423395 DOI: 10.1016/j.matbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Cardiomyopathies encompass a spectrum of heart disorders with diverse causes and presentations. Fibrosis stands out as a shared hallmark among various cardiomyopathies, reflecting a common thread in their pathogenesis. This prevalent fibrotic response is intricately linked to the consequences of dysregulated extracellular matrix (ECM) remodeling, emphasizing its significance in the development and progression the disease. This review explores the ECM involvement in various cardiomyopathies and its impact on myocardial stiffness and fibrosis. Additionally, we discuss the potential of ECM fragments as early diagnosis, prognosis, and risk stratification. Biomarkers deriving from turnover of collagens and other ECM proteins hold promise in clinical applications. We outline current clinical management, future directions, and the potential for personalized ECM-targeted therapies with specific focus on microRNAs. In summary, this review examines the role of the fibrosis in cardiomyopathies, highlighting the potential of ECM-derived biomarkers in improving disease management with implications for precision medicine.
Collapse
Affiliation(s)
- Elisavet Angeli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Nordic Bioscience A/S, Herlev, Denmark.
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Federica Genovese
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
3
|
Novitskaya T, Nishat S, Covarrubias R, Wheeler DG, Chepurko E, Bermeo-Blanco O, Xu Z, Baer B, He H, Moore SN, Dwyer KM, Cowan PJ, Su YR, Absi TS, Schoenecker J, Bellan LM, Koch WJ, Bansal S, Feoktistov I, Robson SC, Gao E, Gumina RJ. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39) impacts TGF-β1 responses: insights into cardiac fibrosis and function following myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 323:H1244-H1261. [PMID: 36240436 PMCID: PMC9722260 DOI: 10.1152/ajpheart.00138.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Extracellular purine nucleotides and nucleosides released from activated or injured cells influence multiple aspects of cardiac physiology and pathophysiology. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1; CD39) hydrolyzes released nucleotides and thereby regulates the magnitude and duration of purinergic signaling. However, the impact of CD39 activity on post-myocardial infarction (MI) remodeling is incompletely understood. We measured the levels and activity of ectonucleotidases in human left ventricular samples from control and ischemic cardiomyopathy (ICM) hearts and examined the impact of ablation of Cd39 expression on post-myocardial infarction remodeling in mice. We found that human CD39 levels and activity are significantly decreased in ICM hearts (n = 5) compared with control hearts (n = 5). In mice null for Cd39, cardiac function and remodeling are significantly compromised in Cd39-/- mice following myocardial infarction. Fibrotic markers including plasminogen activator inhibitor-1 (PAI-1) expression, fibrin deposition, α-smooth muscle actin (αSMA), and collagen expression are increased in Cd39-/- hearts. Importantly, we found that transforming growth factor β1 (TGF-β1) stimulates ATP release and induces Cd39 expression and activity on cardiac fibroblasts, constituting an autocrine regulatory pathway not previously appreciated. Absence of CD39 activity on cardiac fibroblasts exacerbates TGF-β1 profibrotic responses. Treatment with exogenous ectonucleotidase rescues this profibrotic response in Cd39-/- fibroblasts. Together, these data demonstrate that CD39 has important interactions with TGF-β1-stimulated autocrine purinergic signaling in cardiac fibroblasts and dictates outcomes of cardiac remodeling following myocardial infarction. Our results reveal that ENTPD1 (CD39) regulates TGF-β1-mediated fibroblast activation and limits adverse cardiac remodeling following myocardial infarction.NEW & NOTEWORTHY We show that CD39 is a critical modulator of TGF-β1-mediated fibroblast activation and cardiac remodeling following myocardial infarction via modulation of nucleotide signaling. TGF-β1-induced CD39 expression generates a negative feedback loop that attenuates cardiac fibroblast activation. In the absence of CD39 activity, collagen deposition is increased, elastin expression is decreased, and diastolic dysfunction is worsened. Treatment with ecto-apyrase attenuates the TGF-β1-induced profibrotic cardiac fibroblast phenotype, revealing a novel approach to combat post-myocardial infarction cardiac fibrosis.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shamama Nishat
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Roman Covarrubias
- Division of Cardiac Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Debra G Wheeler
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Elena Chepurko
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oscar Bermeo-Blanco
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zhaobin Xu
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bradly Baer
- Department of Mechanical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Heng He
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stephanie N Moore
- Division of Orthopedic Surgery, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karen M Dwyer
- Immunology Research Center, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Center, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tarek S Absi
- Division of Cardiac Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Schoenecker
- Division of Orthopedic Surgery, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | | | - Shyam Bansal
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon C Robson
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erhe Gao
- Temple University, Philadelphia, Pennsylvania
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
4
|
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells 2022; 11:cells11203218. [PMID: 36291087 PMCID: PMC9600539 DOI: 10.3390/cells11203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.
Collapse
|
5
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
6
|
Chalise U, Becirovic-Agic M, Daseke MJ, Konfrst SR, Rodriguez-Paar JR, Feng D, Salomon JD, Anderson DR, Cook LM, Lindsey ML. S100A9 is a functional effector of infarct wall thinning after myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 322:H145-H155. [PMID: 34890276 PMCID: PMC8742737 DOI: 10.1152/ajpheart.00475.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Neutrophils infiltrate into the left ventricle (LV) early after myocardial infarction (MI) and launch a proinflammatory response. Along with neutrophil infiltration, LV wall thinning due to cardiomyocyte necrosis also peaks at day 1 in the mouse model of MI. To understand the correlation, we examined a previously published data set that included day 0 (n = 10) and MI day (D) 1 (n = 10) neutrophil proteome and echocardiography assessments. Out of 123 proteins, 4 proteins positively correlated with the infarct wall thinning index (1/wall thickness): histone 1.2 (r = 0.62, P = 0.004), S100A9 (r = 0.60, P = 0.005), histone 3.1 (r = 0.55, P = 0.01), and fibrinogen (r = 0.47, P = 0.04). As S100A9 was the highest ranked secreted protein, we hypothesized that S100A9 is a functional effector of infarct wall thinning. We exogenously administered S100A8/A9 at the time of MI to mice [C57BL/6J, male, 3-6 mo of age, n = 7 M (D1), and n = 5 M (D3)] and compared with saline vehicle control-treated mice [n = 6 M (D1) and n = 6 M (D3)] at MI days 1 and 3. At MI day 3, the S100A8/A9 group showed a 22% increase in the wall thinning index compared with saline (P = 0.02), along with higher dilation and lower ejection fraction. The decline in cardiac physiology occurred subsequent to increased neutrophil and macrophage infiltration at MI day 1 and increased macrophage infiltration at D3. Our results reveal that S100A9 is a functional effector of infarct wall thinning.NEW & NOTEWORTHY S100A9 is a functional marker of infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dan Feng
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jeffrey D Salomon
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
7
|
Chute M, Aujla PK, Li Y, Jana S, Zhabyeyev P, Rasmuson J, Owen CA, Abraham T, Oudit GY, Kassiri Z. ADAM15 is required for optimal collagen cross-linking and scar formation following myocardial infarction. Matrix Biol 2022; 105:127-143. [PMID: 34995785 DOI: 10.1016/j.matbio.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023]
Abstract
Collagen cross-linking is an important step in optimal scar formation. Myocardial infarction (MI) results in loss of cardiomyocytes that are replaced with a scar (infarct) tissue. Disintegrin and metalloproteinases (ADAMs) are membrane-bound proteases that can interact with molecules intra- and extra-cellularly to mediate various cellular functions. ADAM15 is expressed in the myocardium, however its function in heart disease has been poorly explored. We utilized mice lacking ADAM15 (Adam15-/-) and wildtype (WT) mice. MI, induced by ligation of the left anterior descending artery, resulted in a transient but significant rise in ADAM15 protein in the WT myocardium at 3-days. Following MI, Adam15-/- mice exhibited markedly higher rate of left ventricular (LV) rupture compared to WT mice (66% vs. 15%, p<0.05). Echocardiography and strain analyses showed worsened LV dysfunction in Adam15-/- mice at 3days, prior to the onset of LV rupture. Second harmonic generation imaging revealed significant disarray and reduction in fibrillar collagen density in Adam15-/- compared to WT hearts. This was associated with lower insoluble and higher soluble collagen fractions, reduced cross-linking enzyme, lysyl oxidase-1 (LOX-1), and fibronectin which is required for LOX-1 function, in Adam15-/--MI hearts. Post-MI myocardial inflammation was comparable between the genotypes. In vitro, primary adult cardiac fibroblasts from Adam15-/- mice showed suppressed activation in response to ischemia (hypoxia+nutrient depletion) compared to WT fibroblasts. Adam15-deficiency was associated with reduced PAK1(p21-activated kinase-1) levels, a regulator of fibronectin and LOX-1 expression. In female mice, the rate of post-MI LV rupture, PAK1 signaling, LOX-1 and fibronectin protein levels were comparable between Adam15-/- and WT, indicating lack of sex-dependent effects of ADAM15 post- MI. This study reports a novel function for ADAM15 in collagen cross-linking and optimal scar formation post-MI which may also apply to scar formation in other tissues.
Collapse
Affiliation(s)
- Michael Chute
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Preetinder K Aujla
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Yingxi Li
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Sayantan Jana
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA, Penn State College of Medicine, Hershey, PA, USA
| | | | - Gavin Y Oudit
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Chachques JC, Lila N, Soler-Botija C, Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N, Monleon-Pradas M, Bayes-Genis A, Semino CE. Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. Eur J Cardiothorac Surg 2021; 57:545-555. [PMID: 31539050 DOI: 10.1093/ejcts/ezz252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Prevention of postischaemic ventricular dilatation progressing towards pathological remodelling is necessary to decrease ventricular wall deterioration. Myocardial tissue engineering may play a therapeutic role due to its capacity to replace the extracellular matrix, thereby creating niches for cell homing. In this experimental animal study, a biomimetic cardiopatch was created with elastomeric scaffolds and nanotechnologies. METHODS In an experimental animal study in 18 sheep, a cardiopatch was created with adipose tissue-derived progenitor cells seeded into an engineered bioimplant consisting of 3-dimensional bioabsorbable polycaprolactone scaffolds filled with a peptide hydrogel (PuraMatrix™). This patch was then transplanted to cover infarcted myocardium. Non-absorbable poly(ethyl) acrylate polymer scaffolds were used as controls. RESULTS Fifteen sheep were followed with ultrasound scans at 6 months, including echocardiography scans, tissue Doppler and spectral flow analysis and speckle-tracking imaging, which showed a reduction in longitudinal left ventricular deformation in the cardiopatch-treated group. Magnetic resonance imaging (late gadolinium enhancement) showed reduction of infarct size relative to left ventricular mass in the cardiopatch group versus the controls. Histopathological analysis at 6 months showed that the cardiopatch was fully anchored and integrated to the infarct area with minimal fibrosis interface, thereby promoting angiogenesis and migration of adipose tissue-derived progenitor cells to surrounding tissues. CONCLUSIONS This study shows the feasibility and effectiveness of a cardiopatch grafted onto myocardial infarction scars in an experimental animal model. This treatment decreased fibrosis, limited infarct scar expansion and reduced postischaemic ventricular deformity. A capillary network developed between our scaffold and the heart. The elastomeric cardiopatch seems to have a positive impact on ventricular remodelling and performance in patients with heart failure.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Laboratory Biosurgical Research, Alain Carpentier Foundation, Cardiac Surgery Pompidou Hospital, University Paris-Descartes, Paris, France
| | - Nermine Lila
- Laboratory Biosurgical Research, Alain Carpentier Foundation, Cardiac Surgery Pompidou Hospital, University Paris-Descartes, Paris, France
| | - Carolina Soler-Botija
- Research Cardiology Institute, Germans-Trias-Pujol Hospital, Badalona, Spain.,CIBER Cardiovascular, Carlos III Health Institute, Madrid, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Polytechnic University Valencia, Valencia, Spain
| | - Ana Valles
- Center for Biomaterials and Tissue Engineering, Polytechnic University Valencia, Valencia, Spain
| | - Gwennhael Autret
- Microcirculation Imaging Lab, Paris Cardiovascular Research Center (PARCC), University Paris, Paris, France
| | | | - Nicolas Mirochnik
- Cardiology Department, Pompidou Hospital, University Paris, Paris, France
| | - Manuel Monleon-Pradas
- Center for Biomaterials and Tissue Engineering, Polytechnic University Valencia, Valencia, Spain
| | - Antoni Bayes-Genis
- Research Cardiology Institute, Germans-Trias-Pujol Hospital, Badalona, Spain
| | - Carlos E Semino
- Bioengineering Department, IQS-School Engineering, Ramon-Llull University, Barcelona, Spain
| |
Collapse
|
9
|
Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules 2021; 11:biom11040491. [PMID: 33805901 PMCID: PMC8064345 DOI: 10.3390/biom11040491] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.
Collapse
|
10
|
Shen Z, Shen A, Chen X, Wu X, Chu J, Cheng Y, Peng M, Chen Y, Weygant N, Wu M, Lin X, Peng J, Chen K. Huoxin pill attenuates myocardial infarction-induced apoptosis and fibrosis via suppression of p53 and TGF-β1/Smad2/3 pathways. Biomed Pharmacother 2020; 130:110618. [PMID: 34321167 DOI: 10.1016/j.biopha.2020.110618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 11/24/2022] Open
Abstract
Huoxin Pill (HXP), a Traditional Chinese Medicine, is used widely to treat patients with coronary heart disease and angina pectoris in China. However, the underlying protective mechanism of HXP on cardiac apoptosis and fibrosis has never been evaluated. Therefore, the aim of this study was to investigate the role of HXP in a myocardial infarction (MI) mouse model. The mice were randomly divided into 3 groups and subjected to surgical ligation of the left anterior descending (LAD) coronary artery or sham surgery (n = 6 for each group) and treated with HXP (50 mg/kg/day) or saline by gavage for 2 weeks. At 2 weeks post MI, we found that HXP significantly enhanced myocardial function and attenuated the increase of heart weight index (HWI) and pathological changes in MI mice. RNA-sequencing and KEGG pathway analyses identified 660 differentially expressed genes and multiple enriched signaling pathways including p53 and TGF-β. In support of these findings, HXP attenuated cardiac apoptosis and decreased p53 and Bax protein expression, while increasing Bcl-2 protein expression in cardiac tissues of MI mice. Furthermore, HXP treatment inhibited cardiac fibrosis and significantly down-regulated TGF-β1 protein expression and Smad2/3 phosphorylation in cardiac tissues. In summary, HXP can improve cardiac function in mice after MI by attenuating cardiac apoptosis and fibrosis partly via supression of the p53/Bax/Bcl-2 and TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Zhiqing Shen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiaoping Chen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiangyan Wu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Ying Cheng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Meizhong Peng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Youqin Chen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| | - Nathaniel Weygant
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiaoying Lin
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Keji Chen
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
11
|
Kolpakov MA, Guo X, Rafiq K, Vlasenko L, Hooshdaran B, Seqqat R, Wang T, Fan X, Tilley DG, Kostyak JC, Kunapuli SP, Houser SR, Sabri A. Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation 2020; 142:758-775. [PMID: 32489148 DOI: 10.1161/circulationaha.119.044340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.
Collapse
Affiliation(s)
- Mikhail A Kolpakov
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xinji Guo
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Khadija Rafiq
- Thomas Jefferson University, Philadelphia, PA (K.R.)
| | - Liudmila Vlasenko
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Bahman Hooshdaran
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Rachid Seqqat
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Tao Wang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xiaoxuan Fan
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Douglas G Tilley
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - John C Kostyak
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Satya P Kunapuli
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Abdelkarim Sabri
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| |
Collapse
|
12
|
Lindsey ML, Jung M, Yabluchanskiy A, Cannon PL, Iyer RP, Flynn ER, DeLeon-Pennell KY, Valerio FM, Harrison CL, Ripplinger CM, Hall ME, Ma Y. Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovasc Res 2020; 115:395-408. [PMID: 30169632 DOI: 10.1093/cvr/cvy211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Aims Macrophage phagocytosis of dead cells is a prerequisite for inflammation resolution. Because CXCL4 induces macrophage phagocytosis in vitro, we examined the impact of exogenous CXCL4 infusion on cardiac wound healing and macrophage phagocytosis following myocardial infarction (MI). Methods and results CXCL4 expression significantly increased in the infarct region beginning at Day 3 post-MI, and macrophages were the predominant source. Adult male C57BL/6J mice were subjected to coronary artery occlusion, and MI mice were randomly infused with recombinant mouse CXCL4 or saline beginning at 24 h post-MI by mini-pump infusion. Compared with saline controls, CXCL4 infusion dramatically reduced 7 day post-MI survival [10% (3/30) for CXCL4 vs. 47% (7/15) for saline, P < 0.05] as a result of acute congestive heart failure. By echocardiography, CXCL4 significantly increased left ventricular (LV) volumes and dimensions at Day 5 post-MI (all P < 0.05), despite similar infarct areas compared with saline controls. While macrophage numbers were similar at Day 5 post-MI, CXCL4 infusion increased Ccr4 and Itgb4 and decreased Adamts8 gene levels in the infarct region, all of which linked to CXCL4-mediated cardiac dilation. Isolated Day 5 post-MI macrophages exhibited comparable levels of M1 and M4 markers between saline and CXCL4 groups. Interestingly, by both ex vivo and in vitro phagocytosis assays, CXCL4 reduced macrophage phagocytic capacity, which was connected to decreased levels of the phagocytosis receptor CD36. In vitro, a CD36 neutralizing antibody (CD36Ab) significantly inhibited macrophage phagocytic capacity. The combination of CXCL4 and CD36Ab did not have an additive effect, indicating that CXCL4 regulated phagocytosis through CD36 signalling. CXCL4 infusion significantly elevated infarct matrix metalloproteinase (MMP)-9 levels at Day 5 post-MI, and MMP-9 can cleave CD36 as a down-regulation mechanism. Conclusion CXCL4 infusion impaired macrophage phagocytic capacity by reducing CD36 levels through MMP-9 dependent and independent signalling, leading to higher mortality and LV dilation.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Mira Jung
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine, Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Presley L Cannon
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Rugmani Padmanabhan Iyer
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Fritz M Valerio
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Courtney L Harrison
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Department of Medicine, Division of Cardiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| |
Collapse
|
13
|
Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA, Furtado MB. Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep 2020; 30:3149-3163.e6. [PMID: 32130914 PMCID: PMC7059115 DOI: 10.1016/j.celrep.2020.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/08/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac ischemia leads to the loss of myocardial tissue and the activation of a repair process that culminates in the formation of a scar whose structural characteristics dictate propensity to favorable healing or detrimental cardiac wall rupture. To elucidate the cellular processes underlying scar formation, here we perform unbiased single-cell mRNA sequencing of interstitial cells isolated from infarcted mouse hearts carrying a genetic tracer that labels epicardial-derived cells. Sixteen interstitial cell clusters are revealed, five of which were of epicardial origin. Focusing on stromal cells, we define 11 sub-clusters, including diverse cell states of epicardial- and endocardial-derived fibroblasts. Comparing transcript profiles from post-infarction hearts in C57BL/6J and 129S1/SvImJ inbred mice, which displays a marked divergence in the frequency of cardiac rupture, uncovers an early increase in activated myofibroblasts, enhanced collagen deposition, and persistent acute phase response in 129S1/SvImJ mouse hearts, defining a crucial time window of pathological remodeling that predicts disease outcome.
Collapse
Affiliation(s)
- Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | - Mandy Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Olivia Hon
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW72BX, UK
| | | |
Collapse
|
14
|
Qishen capsule safely boosts cardiac function and angiogenesis via the MEK/ERK pathway in a rat myocardial infarction model. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2019; 16:764-774. [PMID: 31700516 PMCID: PMC6828606 DOI: 10.11909/j.issn.1671-5411.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Qishen (QS) capsules, a Traditional Chinese Medicine, has been widely used to treat coronary heart disease in China. However, evidence of its effectiveness remains unclear. Methods To explore whether QS has cardioprotective efficacy and/or promotes angiogenesis after myocardial infarction (MI), we performed experiments in a preclinical rat MI model. One month after left anterior descending coronary artery ligation, the rats received either QS solution (0.4 g/kg/day) or the same volume of saline by intragastric injection for four weeks. Results Echocardiographic and hemodynamic analyses demonstrated relatively preserved cardiac function in MI rats administered QS. Indeed, QS treatment was associated with reduced infarct scar size and heart weight index, and these beneficial effects were responsible for enhancing angiogenesis. Mechanistically, QS treatment increased phosphorylation of protein kinase B (Akt) and downregulated phosphorylation of mitogen-activated protein kinase/extracellular-regulated kinase (MEK/ERK). Conclusions QS therapy can improve the cardiac function of rats after MI by an underlying mechanism involving increased angiogenesis, at least partially via activation of the Akt signaling pathway and inhibition of MEK/ERK phosphorylation.
Collapse
|
15
|
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors have been studied in the myocardium for the past 2 decades. An incomplete knowledge base and experimental design issues with inhibitors have hampered attempts at translation, but clinical interest remains high because of strong associations between MMPs and outcomes after myocardial infarction (MI) as well as mechanistic studies showing MMP involvement at multiple stages of the MI wound-healing process. This Review focuses on how our understanding of MMPs has evolved from a one-dimensional early focus on measuring MMP activity, monitoring MMP:inhibitor ratios, and evaluating one MMP-substrate pair to the current use of systems biology approaches to integrate the whole MMP repertoire of roles in the left ventricular response to MI. MMP9 is used as an example MMP to explain these concepts and to provide a template for examining MMPs as mechanistic mediators of cardiac remodelling.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Research Service,, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
16
|
Mao S, Taylor S, Chen Q, Zhang M, Hinek A. Sodium tanshinone IIA sulfonate prevents the adverse left ventricular remodelling: Focus on polymorphonuclear neutrophil-derived granule components. J Cell Mol Med 2019; 23:4592-4600. [PMID: 31066232 PMCID: PMC6584480 DOI: 10.1111/jcmm.14306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS The aims of this study were to evaluate the effects of sodium tanshinone IIA sulfonate (STS) on left ventricular (LV) remodelling after for ST-elevated myocardial infarction (STEMI). METHODS AND RESULTS In this prospective, randomized clinical trial, 101 patients with the ST-elevated MI (STEMI) and a successful reperfusion were immediately randomized to receive STS (80 mg qd for 7 days) or saline control, along with standard therapy. The primary effectiveness endpoint is the % change in LV end diastolic volumes index (%∆ LVEDVi) as measured by echocardiography from baseline to 6 months. Secondary effectiveness endpoints include 6-month period for major adverse cardiac events (MACE), including the occurrence of recurrent myocardial infarction, death, hospitalization for heart failure and malignant arrhythmia. The 6-month changes in %∆ LVEDVi were significantly smaller in the STS group than in the control group [-5.05% vs 3.32%; P < 0.001]. With respect to MACE, there was a significant difference between those who received STS (8.16%) and those patients on control (26.00%) (P = 0.019). Meaningfully, results of parallel tests aimed at mechanistic explanation of the reported clinical effects, revealed a significantly reduced levels of neutrophils-derived granule components in the blood of STS treated patients. CONCLUSION We found that short-term treatment with STS reduced progressive left ventricular remodelling and subsequent better clinical outcome that could be mechanistically linked to the inhibition of the ultimate damage of infarcted myocardium by infiltrating neutrophils.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Shalina Taylor
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Qubo Chen
- Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
17
|
Nawaito SA, Sahadevan P, Clavet-Lanthier MÉ, Pouliot P, Sahmi F, Shi Y, Gillis MA, Lesage F, Gaestel M, Sirois MG, Calderone A, Tardif JC, Allen BG. MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. Am J Physiol Heart Circ Physiol 2019; 316:H1281-H1296. [PMID: 30901279 DOI: 10.1152/ajpheart.00532.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.
Collapse
Affiliation(s)
- Sherin Ali Nawaito
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | | | | | - Fatiha Sahmi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | - Yanfen Shi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | | | - Frederic Lesage
- Department of Electrical Engineering, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Martin G Sirois
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Angelo Calderone
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| |
Collapse
|
18
|
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2017; 75-76:43-57. [PMID: 29247693 DOI: 10.1016/j.matbio.2017.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Cardiovascular Disease (CVD) is the most common cause of death in industrialized countries, and myocardial infarction (MI) is a major CVD with significant morbidity and mortality. Following MI, the left ventricle (LV) undergoes a wound healing response to ischemia that results in extracellular matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle (LV) wall integrity and ECM accumulation that increases LV wall stiffness to exacerbate dilation and stimulate the progression to heart failure. This review focuses on post-MI LV ECM remodeling, targeting the discussion on ECM biomarkers that could be useful for predicting MI outcomes.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | | | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
19
|
Ishii M, Kaikita K, Sato K, Sueta D, Fujisue K, Arima Y, Oimatsu Y, Mitsuse T, Onoue Y, Araki S, Yamamuro M, Nakamura T, Izumiya Y, Yamamoto E, Kojima S, Kim-Mitsuyama S, Ogawa H, Tsujita K. Cardioprotective Effects of LCZ696 (Sacubitril/Valsartan) After Experimental Acute Myocardial Infarction. JACC Basic Transl Sci 2017; 2:655-668. [PMID: 30062181 PMCID: PMC6059351 DOI: 10.1016/j.jacbts.2017.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022]
Abstract
LCZ696 (sacubitril/valsartan) can lower the risk of cardiovascular events in chronic heart failure. However, it is unclear whether LCZ696 can improve prognosis in patients with acute myocardial infarction (MI). The present study shows that LCZ696 can prevent cardiac rupture after MI, probably due to the suppression of pro-inflammatory cytokines, matrix metalloproteinase-9 activity and aldosterone production, and enhancement of natriuretic peptides in mice. These findings suggest the mechanistic insight of cardioprotective effects of LCZ696 against acute MI, resulting in the belief that LCZ696 might be useful clinically to improve survival after acute MI.
Collapse
Affiliation(s)
- Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Sato
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Oimatsu
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuro Mitsuse
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshiro Onoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Megumi Yamamuro
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sunao Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University, Kumamoto, Japan
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Apoptosis inhibitor of macrophage depletion decreased M1 macrophage accumulation and the incidence of cardiac rupture after myocardial infarction in mice. PLoS One 2017; 12:e0187894. [PMID: 29121663 PMCID: PMC5679665 DOI: 10.1371/journal.pone.0187894] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/27/2017] [Indexed: 12/05/2022] Open
Abstract
Background Cardiac rupture is an important cause of death in the acute phase after myocardial infarction (MI). Macrophages play a pivotal role in cardiac remodeling after MI. Apoptosis inhibitor of macrophage (AIM) is secreted specifically by macrophages and contributes to macrophage accumulation in inflamed tissue by maintaining survival and recruiting macrophages. In this study, we evaluated the role of AIM in macrophage accumulation in the infarcted myocardium and cardiac rupture after MI. Methods and results Wild-type (WT) and AIM‒/‒ mice underwent permanent left coronary artery ligation and were followed-up for 7 days. Macrophage accumulation and phenotypes (M1 pro-inflammatory macrophage or M2 anti-inflammatory macrophage) were evaluated by immunohistological analysis and RT-PCR. Matrix metalloproteinase (MMP) activity levels were measured by gelatin zymography. The survival rate was significantly higher (81.1% vs. 48.2%, P<0.05), and the cardiac rupture rate was significantly lower in AIM‒/‒ mice than in WT mice (10.8% vs. 31.5%, P<0.05). The number of M1 macrophages and the expression levels of M1 markers (iNOS and IL-6) in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. In contrast, there was no difference in the number of M2 macrophages and the expression of M2 markers (Arg-1, CD206 and TGF-β1) between the two groups. The ratio of apoptotic macrophages in the total macrophages was significantly higher in AIM‒/‒ mice than in WT mice, although MCP-1 expression did not differ between the two groups. MMP-2 and 9 activity levels in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. Conclusions These findings suggest that AIM depletion decreases the levels of M1 macrophages, which are a potent source of MMP-2 and 9, in the infarcted myocardium in the acute phase after MI by promoting macrophage apoptosis, and leads to a decrease in the incidence of cardiac rupture and improvements in survival rates.
Collapse
|
21
|
Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture. Cardiovasc Drugs Ther 2017; 31:145-156. [DOI: 10.1007/s10557-017-6717-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1813-21. [DOI: 10.1016/j.bbamcr.2016.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
|
23
|
Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun 2016; 22:85-99. [PMID: 26608308 DOI: 10.1177/1753425915617521] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.
Collapse
Affiliation(s)
- Hatem Alfakry
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
24
|
Altara R, Manca M, Sabra R, Eid AA, Booz GW, Zouein FA. Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Fail Rev 2015; 21:25-47. [PMID: 26498937 DOI: 10.1007/s10741-015-9513-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite dramatic improvements in short-term mortality rates following myocardial infarction (MI), long-term survival for MI patients who progress to heart failure remains poor. MI occurs when the left ventricle (LV) is deprived of oxygen for a sufficient period of time to induce irreversible necrosis of the myocardium. The LV response to MI involves significant tissue, cellular, and molecular level modifications, as well as substantial hemodynamic changes that feedback negatively to amplify the response. Inflammation to remove necrotic myocytes and fibroblast activation to form a scar are key wound healing responses that are highly variable across individuals. Few biomarkers of early remodeling stages are currently clinically adopted. The discovery of underlying pathophysiological mechanisms and associated novel biomarkers has the potential of improving prognostic capability and therapeutic monitoring. Combining these biomarkers with other prominent ones could constitute a powerful diagnostic and prognostic tool that directly reflects the pathophysiological remodeling of the LV. Understanding temporal remodeling at the tissue, cellular, and molecular level and its link to a well-defined set of biomarkers at early stages post-MI is a prerequisite for improving personalized care and devising more successful therapeutic interventions. Here we summarize the integral mechanisms that occur during early cardiac remodeling in the post-MI setting and highlight the most prominent biomarkers for assessing disease progression.
Collapse
Affiliation(s)
- Raffaele Altara
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marco Manca
- DG-DI, Medical Applications, CERN, Geneva, Switzerland
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
25
|
Qian G, Wu C, Chen YD, Tu CC, Wang JW, Qian YA. Predictive factors of cardiac rupture in patients with ST-elevation myocardial infarction. J Zhejiang Univ Sci B 2015; 15:1048-54. [PMID: 25471834 DOI: 10.1631/jzus.b1400095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac rupture (CR) is a potentially fatal mechanical complication of ST-elevation myocardial infarction (STEMI). We aimed to determine the incidence and risk factors of CR in Chinese STEMI patients. A total of 9798 consecutive STEMI patients from four centers in China were retrospectively analyzed, among which 178 patients had CR. STEMI patients without CR were chosen as a control group. Clinical characteristics were compared between STEMI patients with CR and those without CR. The incidence of CR in STEMI patients was 1.82%, and the 30-d mortality was up to 61.2%. CR patients were significantly older, more female, and associated with a longer time from onset of pain to hospital admission than their non-CR counterparts (P<0.001). More patients with anterior myocardial infarction (82.1%) were found in the CR group, and CR patients had significantly higher heart rates than the control group ((91±19) bpm vs. (71±16) bpm; P<0.001). In multiple-adjusted models, the independent risk factors of CR were advanced age, female gender, anaemia, increased heart rate, anterior myocardial infarction, increased white blood cell (WBC) count, delayed admission, and renal dysfunction. The level of hemoglobin remained a significant determinant factor of CR (OR (95% CI): 0.82 (0.75-0.89); P<0.001) after adjusting for various potential confounding factors. Counts of WBC also remained a significant determinant of the CR (OR (95% CI): 1.08 (1.04-1.12); P<0.001). A number of variables were independently related to CR. This study indicated, for the first time, that both hemoglobin and WBC levels were independently correlated with occurrence of CR.
Collapse
Affiliation(s)
- Geng Qian
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Department of Cardiology, Lujiang People's Hospital, Anhui 231500, China
| | | | | | | | | | | |
Collapse
|
26
|
Pinheiro BA, Yamada AT, Aiello VD. Case 02/2015 - A 67 Year-Old Woman with Sudden Cardiogenic Shock in the 7th Day after Acute Myocardial Infarction. Arq Bras Cardiol 2015; 105:86-92. [PMID: 26270068 PMCID: PMC4523292 DOI: 10.5935/abc.20150079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bruno Aguiar Pinheiro
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Alice Tatsuko Yamada
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Vera Demarchi Aiello
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| |
Collapse
|
27
|
Lindsey ML, Yabluchanskiy A, Ma Y. Tissue Inhibitor of Metalloproteinase-1: Actions beyond Matrix Metalloproteinase Inhibition. Cardiology 2015; 132:147-50. [PMID: 26279068 DOI: 10.1159/000433419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Merry L Lindsey
- San Antonio Cardiovascular Proteomics Center, Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss., USA
| | | | | |
Collapse
|
28
|
Cellular Immunity and Cardiac Remodeling After Myocardial Infarction: Role of Neutrophils, Monocytes, and Macrophages. Curr Heart Fail Rep 2015; 12:247-54. [DOI: 10.1007/s11897-015-0255-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Peng H, Xu J, Yang XP, Dai X, Peterson EL, Carretero OA, Rhaleb NE. Thymosin-β4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2014; 307:H741-51. [PMID: 25015963 DOI: 10.1152/ajpheart.00129.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymosin-β4 (Tβ4) promotes cell survival, angiogenesis, and tissue regeneration and reduces inflammation. Cardiac rupture after myocardial infarction (MI) is mainly the consequence of excessive regional inflammation, whereas cardiac dysfunction after MI results from a massive cardiomyocyte loss and cardiac fibrosis. It is possible that Tβ4 reduces the incidence of cardiac rupture post-MI via anti-inflammatory actions and that it decreases adverse cardiac remodeling and improves cardiac function by promoting cardiac cell survival and cardiac repair. C57BL/6 mice were subjected to MI and treated with either vehicle or Tβ4 (1.6 mg·kg(-1)·day(-1) ip via osmotic minipump) for 7 days or 5 wk. Mice were assessed for 1) cardiac remodeling and function by echocardiography; 2) inflammatory cell infiltration, capillary density, myocyte apoptosis, and interstitial collagen fraction histopathologically; 3) gelatinolytic activity by in situ zymography; and 4) expression of ICAM-1 and p53 by immunoblot analysis. Tβ4 reduced cardiac rupture that was associated with a decrease in the numbers of infiltrating inflammatory cells and apoptotic myocytes, a decrease in gelatinolytic activity and ICAM-1 and p53 expression, and an increase in the numbers of CD31-positive cells. Five-week treatment with Tβ4 ameliorated left ventricular dilation, improved cardiac function, markedly reduced interstitial collagen fraction, and increased capillary density. In a murine model of acute MI, Tβ4 not only decreased mortality rate as a result of cardiac rupture but also significantly improved cardiac function after MI. Thus, the use of Tβ4 could be explored as an alternative therapy in preventing cardiac rupture and restoring cardiac function in patients with MI.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiangguo Dai
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan; and
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
30
|
Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 2014; 466:1113-27. [PMID: 24519465 PMCID: PMC4033805 DOI: 10.1007/s00424-014-1463-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 01/17/2023]
Abstract
The cardiac extracellular matrix (ECM) fills the space between cells, supports tissue organization, and transduces mechanical, chemical, and biological signals to regulate homeostasis of the left ventricle (LV). Following myocardial infarction (MI), a multitude of ECM proteins are synthesized to replace myocyte loss and form a reparative scar. Activated fibroblasts (myofibroblasts) are the primary source of ECM proteins, thus playing a key role in cardiac repair. A balanced turnover of ECM through regulation of synthesis by myofibroblasts and degradation by matrix metalloproteinases (MMPs) is critical for proper scar formation. In this review, we summarize the current literature on the roles of myofibroblasts, MMPs, and ECM proteins in MI-induced LV remodeling. In addition, we discuss future research directions that are needed to further elucidate the molecular mechanisms of ECM actions to optimize cardiac repair.
Collapse
Affiliation(s)
- Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Lisandra E. de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Hiroe Toba
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Michael E. Hall
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Cardiology Division, University of Mississippi Medical Center, Jackson, MS USA
| | - Michael D. Winniford
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Cardiology Division, University of Mississippi Medical Center, Jackson, MS USA
| | - Richard A. Lange
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY USA
| | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Research and Medicine Services, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| |
Collapse
|
31
|
Kormi I, Alfakry H, Tervahartiala T, Pussinen PJ, Sinisalo J, Sorsa T. The effect of prolonged systemic doxycycline therapy on serum tissue degrading proteinases in coronary bypass patients: a randomized, double-masked, placebo-controlled clinical trial. Inflamm Res 2013; 63:329-34. [PMID: 24378958 DOI: 10.1007/s00011-013-0704-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Serum matrix metalloproteinases (MMP-8, MMP-7) and their regulators may be associated with the risk of incident cardiovascular disease events. Doxycycline can be used as matrix metalloproteinase (MMP) inhibitor independent of its antimicrobial activity. We aimed to investigate serum inflammatory biomarkers during 4 months of doxycycline therapy in coronary bypass patients. MATERIALS AND METHODS Thirty-one non-smoking men who had previous coronary bypass surgery were randomly assigned to receive placebo or 100 mg doxycycline daily for 4 months. Serum samples were collected at baseline before the treatment, and at 2, 4, and 10 months. Serum levels of MMP-7, tissue inhibitor of matrix metalloproteinase (TIMP)-1, myeloperoxidase, and neutrophil elastase were analyzed with enzyme-linked immunosorbent assay, MMP-8 by immunofluorometric assay, and C-reactive protein by rate nephelometry. RESULTS At baseline, no significant differences existed between the two groups. Serum levels of MMP-8, MMP-7, and MMP-8/TIMP-1 were and remained lower (p = 0.034, p = 0.041, and NS) in the doxycycline group relative to the placebo group at 4 months of follow-up. CONCLUSIONS Doxycycline decreases the systemic inflammatory burden in patients with myocardial infarction and especially down-regulates MMP-7, MMP-8, and MMP-8/TIMP-1. Doxycycline might prevent or reduce the risk of secondary myocardial infarctions by providing a systemic anti-proteolytic and -inflammatory shield.
Collapse
Affiliation(s)
- Immi Kormi
- Oral and Maxillofacial Department, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Fertin M, Lemesle G, Turkieh A, Beseme O, Chwastyniak M, Amouyel P, Bauters C, Pinet F. Serum MMP-8: a novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction. PLoS One 2013; 8:e71280. [PMID: 23967183 PMCID: PMC3743841 DOI: 10.1371/journal.pone.0071280] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Left ventricular (LV) remodeling following myocardial infarction (MI) is characterized by progressive alterations of structure and function, named LV remodeling. Although several risk factors such as infarct size have been identified, LV remodeling remains difficult to predict in clinical practice. Changes within the extracellular matrix, involving matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), are an integral part of left ventricular (LV) remodeling after myocardial infarction (MI). We investigated the temporal profile of circulating MMPs and TIMPs and their relations with LV remodeling at 1 year and clinical outcome at 3 years in post-MI patients. METHODS This prospective multicentre study included 246 patients with a first anterior MI. Serial echocardiographic studies were performed at hospital discharge, 3 months, and 1 year after MI, and analysed at a core laboratory. LV remodeling was defined as the percent change in LV end-diastolic volume (EDV) from baseline to 1 year. Serum samples were obtained at hospital discharge, 1, 3, and 12 months. Multiplex technology was used for analysis of MMP-1, -2, -3, -8, -9, -13, and TIMP-1, -2, -3, -4 serum levels. RESULTS Baseline levels of MMP-8 and MMP-9 were positively associated with changes in LVEDV (P = 0.01 and 0.02, respectively). When adjusted for major baseline characteristics, MMP-8 levels remained an independent predictor LV remodeling (P = 0.025). By univariate analysis, there were positive relations between cardiovascular death or hospitalization for heart failure during the 3-year follow-up and the baseline levels of MMP-2 (P = 0.03), MMP-8 (P = 0.002), and MMP-9 (P = 0.03). By multivariate analysis, MMP-8 was the only MMP remaining significantly associated with clinical outcome (P = 0.02). CONCLUSION Baseline serum MMP-8 is a significant predictor of LV remodeling and cardiovascular outcome after MI and may help to improve risk stratification.
Collapse
Affiliation(s)
- Marie Fertin
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
- Faculté de Médecine de Lille, Lille, France
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Gilles Lemesle
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
- Faculté de Médecine de Lille, Lille, France
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Annie Turkieh
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Olivia Beseme
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | | | - Philippe Amouyel
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Christophe Bauters
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
- Faculté de Médecine de Lille, Lille, France
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Florence Pinet
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
- Inserm, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| |
Collapse
|
33
|
The balance of serum matrix metalloproteinase-8 and its tissue inhibitor in acute coronary syndrome and its recurrence. Int J Cardiol 2013; 167:362-8. [DOI: 10.1016/j.ijcard.2011.12.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 12/19/2011] [Accepted: 12/24/2011] [Indexed: 11/24/2022]
|
34
|
Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. FIBROGENESIS & TISSUE REPAIR 2013; 6:11. [PMID: 23731794 PMCID: PMC3681584 DOI: 10.1186/1755-1536-6-11] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/11/2013] [Indexed: 12/20/2022]
Abstract
Polymorphonuclear granulocytes (PMNs; neutrophils) serve as key effector cells in the innate immune system and provide the first line of defense against invading microorganisms. In addition to producing inflammatory cytokines and chemokines and undergoing a respiratory burst that stimulates the release of reactive oxygen species, PMNs also degranulate to release components that kill pathogens. Recently, neutrophil extracellular traps have been shown to be an alternative way to trap microorganisms and contain infection. PMN-derived granule components are also involved in multiple non-infectious inflammatory processes, including the response to myocardial infarction (MI). In this review, we will discuss the biological characteristics, recruitment, activation, and removal of PMNs, as well as the roles of PMN-derived granule proteins in inflammation and innate immunity, focusing on the MI setting when applicable. We also discuss future perspectives that will direct research in PMN biology.
Collapse
Affiliation(s)
- Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.
| | | | | |
Collapse
|
35
|
Bengel FM, George RT, Schuleri KH, Lardo AC, Wollert KC. Image-guided therapies for myocardial repair: concepts and practical implementation. Eur Heart J Cardiovasc Imaging 2013; 14:741-51. [PMID: 23720377 DOI: 10.1093/ehjci/jet038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell- and molecule-based therapeutic strategies to support wound healing and regeneration after myocardial infarction (MI) are under development. These emerging therapies aim at sustained preservation of ventricular function by enhancing tissue repair after myocardial ischaemia and reperfusion. Such therapies will benefit from guidance with regard to timing, regional targeting, suitable candidate selection, and effectiveness monitoring. Such guidance is effectively obtained by non-invasive tomographic imaging. Infarct size, tissue characteristics, muscle mass, and chamber geometry can be determined by magnetic resonance imaging and computed tomography. Radionuclide imaging can be used for the tracking of therapeutic agents and for the interrogation of molecular mechanisms such as inflammation, angiogenesis, and extracellular matrix activation. This review article portrays the hypothesis that an integrated approach with an early implementation of structural and molecular tomographic imaging in the development of novel therapies will provide a framework for achieving the goal of improved tissue repair after MI.
Collapse
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | | | | | | | | |
Collapse
|
36
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
37
|
Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 2013; 139:32-40. [PMID: 23562601 DOI: 10.1016/j.pharmthera.2013.03.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 01/08/2023]
Abstract
Adverse cardiac remodeling following myocardial infarction (MI) remains a significant cause of congestive heart failure. Additional and novel strategies that improve our ability to predict, diagnose, or treat remodeling are needed. Numerous groups have explored single and multiple biomarker strategies to identify diagnostic prognosticators of remodeling progression, which will improve our ability to promptly and accurately identify high-risk individuals. The identification of better clinical indicators should further lead to more effective prediction and timely treatment. Matrix metalloproteinase (MMP-9) is one potential biomarker for cardiac remodeling, as demonstrated by both animal models and clinical studies. In animal MI models, MMP-9 expression significantly increases and is linked with inflammation, diabetic microvascular complications, extracellular matrix degradation and synthesis, and cardiac dysfunction. Clinical studies have also established a relationship between MMP-9 and post-MI remodeling and mortality, making MMP-9 a viable candidate to add to the multiple biomarker list. By definition, a proximal biomarker shows a close relationship with its target disease, whereas a distal biomarker exhibits non-targeted disease modifying outcomes. In this review, we explore the ability of MMP-9 to serve as a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. We summarize the current molecular basis and clinical platform that allow us to include MMP-9 as a biomarker in both categories.
Collapse
Affiliation(s)
- Ganesh V Halade
- San Antonio Cardiovascular Proteomics Center, The University of Texas Health Science Center at San Antonio, United States
| | | | | |
Collapse
|
38
|
Berezin AE, Samura TA. Prognostic value of biological markers in myocardial infarction patients. Asian Cardiovasc Thorac Ann 2013; 21:142-150. [PMID: 24532611 DOI: 10.1177/0218492312449341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
OBJECTIVE The aim of this study was to compare the prognostic value of matrix metalloproteinase-3 and -9, and NT-pro-natriuretic peptide for fatal and nonfatal complications in Q-wave myocardial infarction patients in the acute and postinfarction periods. PATIENTS AND METHODS 85 men and women with documented Q-wave myocardial infarction were observed for 1 year after hospitalization. Clinical endpoints were identified through the hospital patient-tracking system, with a review of medical records for each recorded endpoint. Left ventricular ejection fraction and wall motion index were calculated. Measurements of matrix metalloproteinases and NT-pro-natriuretic peptide were performed by an enzyme-linked immunosorbent assay. RESULTS A cutoff value of 9.7 ng·mL(-1) for matrix metalloproteinase-3 showed the best discriminatory power (sensitivity = 77.8%, specificity = 90.8%). The optimal cutoff value of matrix metalloproteinase-9 was 18.1 ng·mL(-1) (sensitivity, 70.5%; specificity, 75%), and the cutoff for NT-pro-natriuretic peptide was 885 pmol·L(-1) (sensitivity, 58%; specificity, 68.6%). Matrix metalloproteinase-3 and -9 were strongly related with a positive prognostic value of 70% (sensitivity and specificity, 84% and 82%, respectively). CONCLUSION These data may be helpful for further stratification of patients into cardiovascular mortality risk groups.
Collapse
|
39
|
Guzel S, Serin O, Guzel EC, Buyuk B, Yılmaz G, Güvenen G. Interleukin-33, matrix metalloproteinase-9, and tissue inhibitor [corrected] of matrix metalloproteinase-1 in myocardial infarction. Korean J Intern Med 2013; 28:165-73. [PMID: 23525523 PMCID: PMC3604606 DOI: 10.3904/kjim.2013.28.2.165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/25/2012] [Accepted: 07/02/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND/AIMS Acute coronary syndrome (ACS) is characterized by increased inflammatory processes and endothelial activation. We investigated the association between ACS and inflammatory mediators and matrix-degrading enzymes. METHODS We prospectively enrolled 55 consecutive patients with ACS: 25 with unstable angina (UA) and 30 with non-ST elevated myocardial infarction (NSTEMI). For comparison, 25 age- and sex-matched subjects with no significant coronary artery stenosis were included as the control group. Peripheral serum levels of interleukin (IL)-33, matrix metalloproteinase (MMP)-9, tissue inhibitor of MMP-1, and C-reactive protein (CRP) were measured on admission, and at 12, 24, 48, and 72 hours after the initial evaluation. RESULTS Compared to serum levels in the control group, serum levels of IL-33 decreased in the NSTEMI group (p < 0.05), and levels of MMP-9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 increased in the UA group (p < 0.01, p < 0.05, respectively) and NSTEMI group (p < 0.05, p < 0.05, respectively). IL-33 levels were significantly lower on admission than at 12 hours after the initial evaluation (p < 0.05). IL-33 levels were negatively correlated with MMP-9 levels (r = -0.461, p < 0.05) and CRP levels (r = -0.441, p < 0.05). CONCLUSIONS Elevated levels of MMP-9, TIMP-1, and decreased levels of IL-33 play a role in the development and progression of ACS.
Collapse
Affiliation(s)
- Savas Guzel
- Department of Biochemistry, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey.
| | | | | | | | | | | |
Collapse
|
40
|
Turkdogan KA, Zorlu A, Guven FMK, Ekinozu I, Eryigit U, Yilmaz MB. Usefulness of admission matrix metalloproteinase 9 as a predictor of early mortality after cardiopulmonary resuscitation in cardiac arrest patients. Am J Emerg Med 2012; 30:1804-9. [DOI: 10.1016/j.ajem.2012.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
|
41
|
Hermans KC, Daskalopoulos EP, Blankesteijn WM. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. FIBROGENESIS & TISSUE REPAIR 2012; 5:16. [PMID: 22967504 PMCID: PMC3472244 DOI: 10.1186/1755-1536-5-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/20/2012] [Indexed: 01/12/2023]
Abstract
Following myocardial infarction, wound healing takes place in the infarct area where the non-viable cardiac tissue is replaced by a scar. Inadequate wound healing or insufficient maintenance of the extracellular matrix in the scar can lead to excessive dilatation of the ventricles, one of the hallmarks of congestive heart failure. Therefore, it is important to better understand the wound-healing process in the heart and to develop new therapeutic agents that target the infarct area in order to maintain an adequate cardiac function. One of these potential novel therapeutic targets is Wnt signaling. Wnt signaling plays an important role in embryonic myocardial development but in the adult heart the pathway is thought to be silent. However, there is increasing evidence that components of the Wnt pathway are re-expressed during cardiac repair, implying a regulatory role. Recently, several studies have been published where the effect of interventions in Wnt signaling on infarct healing has been studied. In this review, we will summarize the results of these studies and discuss the effects of these interventions on the different cell types that are involved in the wound healing process.
Collapse
Affiliation(s)
- Kevin Cm Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, PO Box 616 6200MD, Maastricht, The Netherlands.
| | | | | |
Collapse
|
42
|
Alfakry H, Sinisalo J, Paju S, Nieminen MS, Valtonen V, Tervahartiala T, Pussinen PJ, Sorsa T. The Association of Serum Neutrophil Markers and Acute Coronary Syndrome. Scand J Immunol 2012; 76:181-7. [DOI: 10.1111/j.1365-3083.2012.02718.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Gao XM, White DA, Dart AM, Du XJ. Post-infarct cardiac rupture: Recent insights on pathogenesis and therapeutic interventions. Pharmacol Ther 2012; 134:156-79. [DOI: 10.1016/j.pharmthera.2011.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 01/15/2023]
|
44
|
Gomes VA, Vieira CS, Jacob-Ferreira AL, Belo VA, Soares GM, França JB, Ferriani RA, Tanus-Santos JE. Oral contraceptive containing chlormadinone acetate and ethinylestradiol reduces plasma concentrations of matrix metalloproteinase-2 in women with polycystic ovary syndrome. Basic Clin Pharmacol Toxicol 2012; 111:211-6. [PMID: 22510229 DOI: 10.1111/j.1742-7843.2012.00895.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 12/28/2022]
Abstract
Biochemical markers of cardiovascular disease, including matrix metalloproteinases (MMPs), are altered in women with polycystic ovary syndrome (PCOS), with many of these alterations thought to be due to excess androgen concentrations. Despite oral contraceptives (OCs) being the first-line pharmacological treatment in women with PCOS and the importance of MMPs in many physiological conditions and pathological states, including cardiovascular diseases, no study has yet evaluated whether OCs alter plasma concentrations of MMPs. We therefore assessed whether treatment with an OC containing the anti-androgenic progestogen alters MMP profiles in women with PCOS. We analysed 20 women with PCOS who wanted hormonal contraception (OC-PCOS group), 20 ovulatory women who required hormonal contraception (OC-control group) and 20 ovulatory women who wanted non-hormonal contraception (non-OC-control group). OC consisted of cyclic use of 2 mg chlormadinone acetate/30 μg ethinylestradiol for 6 months. Plasma concentrations of MMP-2, MMP-9, TIMP-1 and TIMP-2 were measured by gelatin zymography or enzyme-linked immunoassays. OC treatment for 6 months significantly reduced plasma MMP-2 concentrations in the OC-control and OC-PCOS groups and TIMP-2 and TIMP-1 concentrations levels in the OC-control group (all p < 0.05), but had no effects on MMP-9 concentrations or on MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios in any group (all p > 0.05). These findings indicated that long-term treatment with an OC containing chlormadinone acetate plus ethinylestradiol reduced plasma MMP-2 concentrations in both healthy and PCOS women. As the latter have imbalances in circulating matrix MMPs, treatment of these women with an OC may be beneficial.
Collapse
Affiliation(s)
- Valéria A Gomes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hahn NE, Meischl C, Kawahara T, Musters RJP, Verhoef VMJ, van der Velden J, Vonk ABA, Paulus WJ, van Rossum AC, Niessen HWM, Krijnen PAJ. NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2222-9. [PMID: 22503554 DOI: 10.1016/j.ajpath.2012.02.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/23/2012] [Accepted: 02/21/2012] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species producing NADPH oxidases play important roles under different (patho)physiological conditions. NOX1, NOX2, and NOX4 are important sources of reactive oxygen species in the heart, but knowledge of the calcium-dependent NOX5 in the heart is lacking. The presence of NOX5 was studied via RT-PCR in heart tissue from patients with end-stage heart failure; the tissue was obtained during cardiac transplantation surgery. NOX5 positivity and cellular localization were studied via IHC and digital-imaging microscopy in heart tissues of patients who did not have heart disease and in infarction areas of patients who died of myocardial infarctions of different durations. Furthermore, NOX5 expression was analyzed in vitro by using Western blot analysis. NOX5 RNA was found in the hearts of controls and patients with ischemic cardiomyopathy. In controls, NOX5 localized to the endothelium of a limited number of intramyocardial blood vessels and to a limited number of scattered cardiomyocytes. In infarcted hearts, NOX5 expression increased, especially in infarctions >12 hours, which manifested as an increase in NOX5-positive intramyocardial blood vessels, as well as in endothelium, smooth muscle, and cardiomyocytes. NOX5 was found in cardiomyocyte cytoplasm, plasma membrane, intercalated disks, and cross striations. Western blot analysis confirmed NOX5 expression in isolated human cardiomyocytes. For the first time to our knowledge, we demonstrate NOX5 expression in human intramyocardial blood vessels and cardiomyocytes, with significant increases in the affected myocardium after acute myocardial infarction.
Collapse
Affiliation(s)
- Nynke E Hahn
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The myocardial interstitium is highly organized and orchestrated, whereby small disruptions in composition, spatial relationships, or content lead to altered myocardial systolic and/or diastolic performance. These changes in extracellular matrix structure and function are important in the progression to heart failure in pressure overload hypertrophy, dilated cardiomyopathy, and ischemic heart disease. The myocardial interstitium is not a passive entity, but rather a complex and dynamic microenvironment that represents an important structural and signaling system within the myocardium.
Collapse
|
47
|
Daskalopoulos EP, Janssen BJA, Blankesteijn WM. Myofibroblasts in the infarct area: concepts and challenges. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:35-49. [PMID: 22214878 DOI: 10.1017/s143192761101227x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Myofibroblasts are differentiated fibroblasts that hold a key role in wound healing and remodeling following myocardial infarction (MI). A large repertoire of stimuli, such as mechanical stretch, growth factors, cytokines, and vasoactive peptides, induces myofibroblast differentiation. Myofibroblasts are responsible for the production and deposition of collagen, leading to the establishment of a dense extracellular matrix that strengthens the infarcted tissue and minimizes dilatation of the infarct area. In addition, cells contributing to fibrosis act on sites distal from the infarct area and promote collagen deposition in noninfarcted tissue, thus contributing to adverse remodeling and consequently to the development of congestive heart failure (CHF). Current drugs that are used to treat post-MI CHF do influence fibroblasts and myofibroblasts; however, their therapeutic efficacy is far from being regarded as ideal. Novel therapeutic agents targeting (myo)fibroblasts are being developed to successfully prevent the cardiac remodeling of sites remote from the infarct area and therefore hinder the establishment of CHF. The purpose of this review article is to discuss the basic concepts of the myofibroblasts' actions in cardiac wound healing processes, factors that influence them, currently available pharmacological agents, and future challenges in this area.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | | | | |
Collapse
|
48
|
Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med (Berl) 2012; 90:361-9. [DOI: 10.1007/s00109-011-0847-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 12/14/2022]
|
49
|
Turner NA, Porter KE. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. IUBMB Life 2012; 64:143-50. [PMID: 22215527 DOI: 10.1002/iub.594] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in orchestrating the structural remodeling of the myocardium in response to injury or stress, in part through direct regulation of extracellular matrix (ECM) turnover. The matrix metalloproteinases (MMPs) are a family of over 25 zinc-dependent proteases that together have the capacity to degrade all the protein components of the ECM. Fibroblasts are a major source of several MMPs in the heart, thereby representing a viable therapeutic target for regulating ECM turnover in cardiac pathologies characterized by adverse remodeling, such as myocardial infarction, cardiomyopathy, hypertension and heart failure. This review summarizes current knowledge on the identity and regulation of MMPs expressed by CF and discusses future directions for reducing adverse myocardial remodeling by modulating the expression and/or activity of CF-derived MMPs.
Collapse
Affiliation(s)
- Neil A Turner
- Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics (LIGHT) and Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK.
| | | |
Collapse
|
50
|
Hunt DL, Campbell PH, Zambon AC, Vranizan K, Evans SM, Kuo HC, Yamaguchi KD, Omens JH, McCulloch AD. Early postmyocardial infarction survival in Murphy Roths Large mice is mediated by attenuated apoptosis and inflammation but depends on genetic background. Exp Physiol 2012; 97:102-14. [PMID: 21967898 PMCID: PMC3253239 DOI: 10.1113/expphysiol.2011.060269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Murphy Roths Large (MRL) mouse, a strain capable of regenerating right ventricular myocardium, has a high postmyocardial infarction (post-MI) survival rate compared with C57BL/6J (C57) mice. The biological processes responsible for this survival advantage are unknown. To assess the effect of genetic background, the LG/J strain, which harbours 75% of the MRL composite genome, was included in the study. The MRL survival advantage versus C57 mice (92 versus 68%, P < 0.05) occurred primarily in the first 5 days; LG/J survival was intermediate (P = n.s.). Microarray data analysis revealed an attenuation of apoptotic (P < 0.05) and stress response transcripts in MRL hearts compared with C57 hearts post-MI. Supporting the microarray results, there were fewer TUNEL-positive cells 1 day post-MI in MRL infarcts compared with C57 infarcts (P = 0.001) and fewer CD45-positive cells in the MRL infarct border zone 2 days post-MI (P < 0.01); the LG/J results were intermediate (P = n.s.). The MRL hearts had smaller infarct scars and attenuated ventricular dilatation 30 days post-MI compared with C57 hearts (P < 0.05). We conclude that the early post-MI survival advantage of MRL mice over the C57 strain is mediated at least in part by reductions in apoptosis and inflammatory infiltration, and that these reductions may influence chronic remodelling. The intermediate survival, apoptosis and inflammation profile of LG/J mice suggests that this high tolerance for MI in the MRL mouse could be derived from its shared genetic background with the LG/J mouse.
Collapse
Affiliation(s)
- Darlene L. Hunt
- Department of Bioengineering, University of California at San Diego, La Jolla, CA
| | - Patrick H. Campbell
- Department of Bioengineering, University of California at San Diego, La Jolla, CA
| | - Alexander C. Zambon
- Department of Pharmacology, University of California at San Diego, La Jolla, CA
- Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Karen Vranizan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Functional Genomics Laboratory, University of California, Berkeley, CA
| | - Sylvia M. Evans
- School of Pharmacy, University of California at San Diego, La Jolla, CA
| | - Hai-Chien Kuo
- Department of Cardiovascular Research, Berlex Biosciences, Richmond, CA
| | - Ken D. Yamaguchi
- Department of Computational Biology, Berlex Biosciences, Richmond, CA
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California at San Diego, La Jolla, CA
- Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California at San Diego, La Jolla, CA
| |
Collapse
|