1
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
2
|
Wang Z, Chen Y, Li W, Gao C, Zhang J, Zang X, Zhao Z, Fan H, Zhao Y. Identification and validation of diagnostic biomarkers and immune infiltration in dilated cardiomyopathies with heart failure and construction of diagnostic model. Gene 2024; 934:149007. [PMID: 39427832 DOI: 10.1016/j.gene.2024.149007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dilated cardiomyopathy (DCM) is characterized by immune cell infiltration and can readily progress to heart failure (HF). In the study, differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on DCM with HF-related datasets. The CytoHubba was used to identify hub genes. Diagnostic biomarkers were obtained by validating their expression and diagnostic value in another external dataset, and a diagnostic model was constructed. Finally, single-sample gene set enrichment analysis (ssGSEA) was used to predict immune cell infiltration in cardiac samples. The associations between diagnostic biomarkers and immune cells were investigated. The NetworkAnalyst and miRDB databases were used to predict transcription factors and microRNAs, followed by establishing regulatory networks. The DSigDB database was used to predict drug candidates. Subsequently, a mouse model of DCM with HF was used to validate the expression levels of these genes. The present study revealed that differentially expressed genes were enriched in the extracellular matrix organization, cardiac muscle hypertrophy, and other immune-related biological processes. OMD and THBS4 were finally identified, and the nomogram has satisfactory prediction and strong calibration ability. In addition, the two diagnostic biomarkers exhibited significant associations with multiple immune infiltrating cells. Finally, two TFs, 65 microRNAs, and 10 drug candidates were obtained. In animal experiments, two diagnostic biomarkers showed expression trends consistent with the results of bioinformatic analysis. OMD and THBS4 have been identified as hub immune-related diagnostic biomarkers for DCM with HF. Our research provides novel insights into the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Zhaodi Wang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450000, China; Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yihan Chen
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Weidong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450000, China; Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou University Central China Fuwai Hospital, Zhengzhou 450000, China
| | - Jing Zhang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450000, China; Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hongkun Fan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Yonghui Zhao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450000, China; Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Elkenani M, Barallobre-Barreiro J, Schnelle M, Mohamed BA, Beuthner BE, Jacob CF, Paul NB, Yin X, Theofilatos K, Fischer A, Puls M, Zeisberg EM, Shah AM, Mayr M, Hasenfuß G, Toischer K. Cellular and extracellular proteomic profiling of paradoxical low-flow low-gradient aortic stenosis myocardium. Front Cardiovasc Med 2024; 11:1398114. [PMID: 39355352 PMCID: PMC11443424 DOI: 10.3389/fcvm.2024.1398114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024] Open
Abstract
Aims Patients with severe aortic stenosis (AS), low transvalvular flow (LF) and low gradient (LG) with normal ejection fraction (EF)-are referred to as paradoxical LF-LG AS (PLF-LG). PLF-LG patients develop more advanced heart failure symptoms and have a worse prognosis than patients with normal EF and high-gradient AS (NEF-HG). Despite its clinical relevance, the mechanisms underlying PLF-LG are still poorly understood. Methods Left ventricular (LV) myocardial biopsies of PLF-LG (n = 5) and NEF-HG patients (n = 6), obtained during transcatheter aortic valve implantation, were analyzed by LC-MS/MS after sequential extraction of cellular and extracellular matrix (ECM) proteins using a three-step extraction method. Proteomic data are available via ProteomeXchange with identifier PXD055391. Results 73 cellular proteins were differentially abundant between the 2 groups. Among these, a network of proteins related to muscle contraction and arrhythmogenic cardiomyopathy (e.g., cTnI, FKBP1A and CACNA2D1) was found in PLF-LG. Extracellularly, upregulated proteins in PLF-LG were related to ATP synthesis and oxidative phosphorylation (e.g., ATP5PF, COX5B and UQCRB). Interestingly, we observed a 1.3-fold increase in cyclophilin A (CyPA), proinflammatory cytokine, in the extracellular extracts of PLF-LG AS patients (p < 0.05). Consistently, immunohistochemical analysis confirmed its extracellular localization in PLF-LG AS LV sections along with an increase in its receptor, CD147, compared to the NEF-HG AS patients. Levels of core ECM proteins, namely collagens and proteoglycans, were comparable between groups. Conclusion Our study pinpointed novel candidates and processes with potential relevance in the pathophysiology of PLF-LG. The role of CyPA in particular warrants further investigation.
Collapse
Affiliation(s)
- Manar Elkenani
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Javier Barallobre-Barreiro
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Belal A. Mohamed
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Bo E. Beuthner
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Christoph Friedemann Jacob
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Niels B. Paul
- Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany
| | - Xiaoke Yin
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Andreas Fischer
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Miriam Puls
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Elisabeth M. Zeisberg
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Ajay M. Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Manuel Mayr
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Gerd Hasenfuß
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Karl Toischer
- Clinic for Cardiology & Pneumology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Goettingen, Germany
| |
Collapse
|
4
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024. [PMID: 39267379 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
5
|
Meng XM, Pang QY, Zhou ZF, Yuan JH, You L, Feng QP, Zhu BM. Histone methyltransferase MLL4 protects against pressure overload-induced heart failure via a THBS4-mediated protection in ER stress. Pharmacol Res 2024; 205:107263. [PMID: 38876442 DOI: 10.1016/j.phrs.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Fang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Han Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
7
|
Yang Y, Feng H, Tang Y, Wang Z, Qiu P, Huang X, Chang L, Zhang J, Chen YE, Mizrak D, Yang B. Bioengineered vascular grafts with a pathogenic TGFBR1 variant model aneurysm formation in vivo and reveal underlying collagen defects. Sci Transl Med 2024; 16:eadg6298. [PMID: 38718134 PMCID: PMC11193908 DOI: 10.1126/scitranslmed.adg6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.
Collapse
MESH Headings
- Animals
- Humans
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Induced Pluripotent Stem Cells/metabolism
- Collagen/metabolism
- Blood Vessel Prosthesis
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Nude
- Disease Models, Animal
- Rats
- Bioengineering
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Gene Editing
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Male
Collapse
Affiliation(s)
- Ying Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xihua Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuqing Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Vasudevan P, Wolfien M, Lemcke H, Lang CI, Skorska A, Gaebel R, Galow AM, Koczan D, Lindner T, Bergmann W, Mueller-Hilke B, Vollmar B, Krause BJ, Wolkenhauer O, Steinhoff G, David R. CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome Med 2023; 15:61. [PMID: 37563727 PMCID: PMC10416392 DOI: 10.1186/s13073-023-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The immune response is a crucial factor for mediating the benefit of cardiac cell therapies. Our previous research showed that cardiomyocyte transplantation alters the cardiac immune response and, when combined with short-term pharmacological CCR2 inhibition, resulted in diminished functional benefit. However, the specific role of innate immune cells, especially CCR2 macrophages on the outcome of cardiomyocyte transplantation, is unclear. METHODS We compared the cellular, molecular, and functional outcome following cardiomyocyte transplantation in wildtype and T cell- and B cell-deficient Rag2del mice. The cardiac inflammatory response was assessed using flow cytometry. Gene expression profile was assessed using single-cell and bulk RNA sequencing. Cardiac function and morphology were determined using magnetic resonance tomography and immunohistochemistry respectively. RESULTS Compared to wildtype mice, Rag2del mice show an increased innate immune response at steady state and disparate macrophage response after MI. Subsequent single-cell analyses after MI showed differences in macrophage development and a lower prevalence of CCR2 expressing macrophages. Cardiomyocyte transplantation increased NK cells and monocytes, while reducing CCR2-MHC-IIlo macrophages. Consequently, it led to increased mRNA levels of genes involved in extracellular remodelling, poor graft survival, and no functional improvement. Using machine learning-based feature selection, Mfge8 and Ccl7 were identified as the primary targets underlying these effects in the heart. CONCLUSIONS Our results demonstrate that the improved functional outcome following cardiomyocyte transplantation is dependent on a specific CCR2 macrophage response. This work highlights the need to study the role of the immune response for cardiomyocyte cell therapy for successful clinical translation.
Collapse
Affiliation(s)
- Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18057 Rostock, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | | | - Anna Skorska
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Ralf Gaebel
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Brigitte Mueller-Hilke
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Olaf Wolkenhauer
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
10
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Wang Z, Zhao X, Zhao G, Guo Y, Lu H, Mu W, Zhong J, Garcia-Barrio M, Zhang J, Chen YE, Chang L. PRDM16 deficiency in vascular smooth muscle cells aggravates abdominal aortic aneurysm. JCI Insight 2023; 8:e167041. [PMID: 37079380 PMCID: PMC10393233 DOI: 10.1172/jci.insight.167041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is usually asymptomatic until life-threatening complications occur, predominantly involving aortic rupture. Currently, no drug-based treatments are available, primarily due to limited understanding of AAA pathogenesis. The transcriptional regulator PR domain-containing protein 16 (PRDM16) is highly expressed in the aorta, but its functions in the aorta are largely unknown. By RNA-seq analysis, we found that vascular smooth muscle cell-specific (VSMC-specific) Prdm16-knockout (Prdm16SMKO) mice already showed extensive changes in the expression of genes associated with extracellular matrix (ECM) remodeling and inflammation in the abdominal aorta under normal housing conditions without any pathological stimuli. Human AAA lesions displayed lower PRDM16 expression. Periadventitial elastase application to the suprarenal region of the abdominal aorta aggravated AAA formation in Prdm16SMKO mice. During AAA development, VSMCs undergo apoptosis because of both intrinsic and environmental changes, including inflammation and ECM remodeling. Prdm16 deficiency promoted inflammation and apoptosis in VSMCs. A disintegrin and metalloproteinase 12 (ADAM12) is a gelatinase that can degrade various ECMs. We found that ADAM12 is a target of transcriptional repression by PRDM16. Adam12 knockdown reversed VSMC apoptosis induced by Prdm16 deficiency. Our study demonstrated that PRDM16 deficiency in VSMCs promoted ADAM12 expression and aggravates AAA formation, which may provide potential targets for AAA treatment.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xiangjie Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Key Laboratory of Animal Cellular and Genetics, Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, P.R. China
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Wenjuan Mu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Juan Zhong
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Ukkat J, Rebelo A, Trojanowicz B. Angiogenetic transcriptional profiling reveals potential targets modulated in blood of patients with cardiovascular disorders. Vascular 2023; 31:152-162. [PMID: 34816786 DOI: 10.1177/17085381211052379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Based on the angiogenetic, transcriptional profile of non-diseased and arteriosclerotic vessels, we aim to identify the leucocytic markers as a potential, minimal invasive tool supporting diagnosis of vascular pathology. METHODS Transcriptional profiling was performed with Angiogenesis RT2 Profiler PCR (Polymerase Chain Reaction) array on three non-pathological and three arteriosclerotic vessels, followed by immunohistochemical staining. Based on these screening results, selected transcripts were employed for qPCR with specific primers and investigated on the blood RNA (RiboNucleic Acid) obtained from nine healthy controls and 29 patients with cardiovascular disorders. Thereafter, expression of these transcripts was investigated in vitro in human monocytes under calcification-mimicking conditions. RESULTS AND CONCLUSIONS Transcriptional profiling on the vessels revealed that out of 84 targets investigated two were up-regulated more than 100-fold, 18 more than 30 and 15 more than 10, while the most noticeable down-regulation was observed by ephrin-A3 and platelet-derived growth factor alpha (PDGFA) genes. Based on the vessel results, investigations of the selected blood transcripts revealed that thrombospondin 1 (THBS1), thrombospondin 3 (THBS3), transforming growth factor, beta receptor 1 (TGFBR1), platelet-derived growth factor alpha, plasminogen activator, urokinase (PLAU) and platelet/endothelial cell adhesion molecule 1 (PECAM-1) were significantly elevated in cardiovascular blood as compared to corresponding controls. Induction of calcification-related conditions in vitro to human THP-1 monocytes led to noticeable modulation of these transcripts. Taken together, these data demonstrate that leucocytic THBS1, THBS3, TGFBR1, platelet-derived growth factor alpha, PLAU and PECAM-1 have a correlation with cardiovascular disorders and could be used as a supportive tool predicting development of this pathological condition.
Collapse
Affiliation(s)
- Joerg Ukkat
- Department of Visceral, Vascular and Endocrine Surgery, 9176Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Artur Rebelo
- Department of Visceral, Vascular and Endocrine Surgery, 9176Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, 9176Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Joshua J, Caswell J, O’Sullivan ML, Wood G, Fonfara S. Feline myocardial transcriptome in health and in hypertrophic cardiomyopathy-A translational animal model for human disease. PLoS One 2023; 18:e0283244. [PMID: 36928240 PMCID: PMC10019628 DOI: 10.1371/journal.pone.0283244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heart disease in cats, characterized by primary left ventricular hypertrophy. Feline HCM closely resembles human HCM and is suggested as translational animal model for the human disease. A genetic cause is established in humans and suspected for cats, but little is known about the gene expression and pathways involved in the pathogenesis of HCM. To investigate the myocardial transcriptome changes in HCM, RNA sequencing was conducted on left ventricle (LV) and left atrium (LA) samples of healthy cats and cats with HCM (each n = 5; 20 samples). Ingenuity Pathway Analysis was used to determine functional pathways, regulators, and networks. Distinct gene expression profiles were identified in the LV and LA of the feline healthy and HCM myocardium. Analysis of differentially expressed mRNAs (>2 fold; FDR < 0.01) found chamber-specific (LV vs. LA) expression in both healthy and HCM groups, with higher transcriptional activity in the LA. Genes that contribute to the distinct structure and function of each chamber in health and HCM were identified in the regional comparison. The gene expression profiles of HCM compared to healthy hearts revealed disease related genes, including THBS4 and KLHL33 (LV), FAM177B and THRSP (LA), the latter 3 have not been reported for the myocardium so far, as the top differently expressed genes in the HCM heart. Differently expressed genes and functional pathways found in the HCM heart are associated with cardiac remodeling and fibrosis, inflammation, microvascular changes, calcium signaling and cardiac metabolism, with some regional differences. RhoGDI-RhoGTPase signaling, integrin and ILK signaling pathways, the LXR/RXR pathway in the LA, and the PPARα/RXRα, HIF1α and CXCR4 pathways in the LV might be of particular importance in the HCM disease process. This study identified region-specific myocardial gene transcription patterns as well as novel genes and pathways associated with HCM.
Collapse
Affiliation(s)
- Jessica Joshua
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
| | - Jeff Caswell
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
| | - M. Lynne O’Sullivan
- University of Prince Edward Island, Department of Companion Animals, Charlottetown, Prince Edward Island, Canada
| | - Geoffrey Wood
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
| | - Sonja Fonfara
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models. Sci Rep 2022; 12:12190. [PMID: 35842487 PMCID: PMC9288451 DOI: 10.1038/s41598-022-16344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously established a novel mouse model of lung fibrosis based on Adeno-associated virus (AAV)-mediated pulmonary overexpression of TGFβ1. Here, we provide an in-depth characterization of phenotypic and transcriptomic changes (mRNA and miRNA) in a head-to-head comparison with Bleomycin-induced lung injury over a 4-week disease course. The analyses delineate the temporal state of model-specific and commonly altered pathways, thereby providing detailed insights into the processes underlying disease development. They further guide appropriate model selection as well as interventional study design. Overall, Bleomycin-induced fibrosis resembles a biphasic process of acute inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFβ1-driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis and rich data resource based on RNA-sequencing, along with a strategy for transcriptome-phenotype coupling. The results will be of value for TGFβ research, drug discovery and biomarker identification in progressive fibrosing interstitial lung diseases.
Collapse
|
15
|
Plana E, Oto J, Medina P, Herranz R, Fernández-Pardo Á, Requejo L, Miralles M. Thrombospondins in human aortic aneurysms. IUBMB Life 2022; 74:982-994. [PMID: 35293116 DOI: 10.1002/iub.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Thrombospondins are a family of matricellular proteins with a multimeric structure that is known to be involved in several biological and pathological processes. Their relationship with vascular disorders has raised special interest recently. Aortic aneurysms are related to the impairment of vascular remodeling, in which extracellular matrix proteins seem to play an important role. Thus, research in thrombospondins, and their potential role in aneurysm development is progressively gaining importance. Nevertheless, studies showing thrombospondin dysregulation in human samples are still scarce. Although studies performed in vitro and in vivo models are essential to understand the molecular mechanisms and pathways underlying the disorder, descriptive studies in human samples are also necessary to ascertain their real value as biomarkers and/or novel therapeutic targets. The present article reviews the latest findings regarding the role of thrombospondins in aortic aneurysm development, paying particular attention to the studies performed in human samples.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Lucia Requejo
- Angiology and Vascular Surgery Service, La Ribera University Hospital, Alzira, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain.,Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
16
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
17
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
STEMI, Cardiogenic Shock, and Mortality in Patients Admitted for Acute Angiography: Associations and Predictions from Plasma Proteome Data. Shock 2020; 55:41-47. [PMID: 32590698 DOI: 10.1097/shk.0000000000001595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM Acute myocardial infarction (AMI) remains a major cause of mortality and morbidity, and cardiogenic shock (CS) a major cause of hospital mortality after AMI. Especially for ST elevation myocardial infarction (STEMI) patients, fast intervention is essential.Few proteins have proven clinically applicable for AMI. Most proposed biomarkers are based on a priori hypothesis-driven studies of single proteins, not enabling identification of novel candidates. For clinical use, the ability to predict AMI is important; however, studies of proteins in prediction models are surprisingly scarce.Consequently, we applied proteome data for identifying proteins associated with definitive STEMI, CS, and all-cause mortality after admission, and examined the ability of the proteins to predict these outcomes. METHODS AND RESULTS Proteome-wide data of 497 patients with suspected STEMI were investigated; 381 patients were diagnosed with STEMI, 35 with CS, and 51 died during the first year. Data analysis was conducted by logistic and Cox regression modeling for association analysis, and by multivariable LASSO regression models for prediction modeling.Association studies identified 4 and 29 proteins associated with definitive STEMI or mortality, respectively. Prediction models for CS and mortality (holding two and five proteins, respectively) improved the prediction ability as compared with protein-free prediction models; AUC of 0.92 and 0.89, respectively. CONCLUSION The association analyses propose individual proteins as putative protein biomarkers for definitive STEMI and survival after suspected STEMI, while the prediction models put forward sets of proteins with putative predicting ability of CS and survival. These proteins may be verified as biomarkers of potential clinical relevance.
Collapse
|
19
|
Zierfuss B, Höbaus C, Herz CT, Pesau G, Koppensteiner R, Schernthaner GH. Thrombospondin-4 increases with the severity of peripheral arterial disease and is associated with diabetes. Heart Vessels 2019; 35:52-58. [PMID: 31227875 PMCID: PMC6942020 DOI: 10.1007/s00380-019-01453-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Thrombospondin-4 (TSP-4) is an extracellular matrix protein of the vessel wall. Despite bench evidence, its significance in the clinical setting of atherosclerosis is missing. TSP-4 (ng/ml) was measured in 365 PAD patientsusing a commercially available ELISA. PAD was diagnosed by the ankle–brachial index (ABI) and clinically graded using the Fontaine classification. TSP-4 levels were significantly higher in Fontaine II vs. Fontaine I (4.78 ± 0. 42, 4.69 ± 0.42, p = 0.043). TSP-4 significantly correlated with ABI (r = − 0.141, p = 0.023, n = 259) after the exclusion of mediasclerotic patients. Binary logistic regression analysis for Fontaine I vs. II showed an OR of 1.70 (1.02–2.82) in a multivariable model adjusted for traditional risk factors. Interestingly, TSP-4 levels were higher in patients with type 2 diabetes mellitus or prediabetes (DGT) compared with normal glucose tolerance (NGT) (4.76 ± 0.42 vs. 4.66 ± 0.41, p = 0.035). ANOVA for PAD and diabetes subgroups showed a linear increase with disease burden with the highest difference between Fontaine I-NGT and Fontaine II-DGT (4.59 ± 0.40, 4.79 ± 0.43, p = 0.015). TSP-4 levels increased with PAD severity and showed a former unknown association with diabetes. Thus, TSP-4 could be a novel marker of atherosclerotic activity, especially in the major subgroup of patients with concomitant diabetes.
Collapse
Affiliation(s)
- Bernhard Zierfuss
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Clemens Höbaus
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Gerfried Pesau
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
20
|
Maly K, Schaible I, Riegger J, Brenner RE, Meurer A, Zaucke F. The Expression of Thrombospondin-4 Correlates with Disease Severity in Osteoarthritic Knee Cartilage. Int J Mol Sci 2019; 20:ijms20020447. [PMID: 30669608 PMCID: PMC6359043 DOI: 10.3390/ijms20020447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease characterized by a continuous degradation of the cartilage extracellular matrix (ECM). The expression of the extracellular glycoprotein thrombospondin-4 (TSP-4) is known to be increased in injured tissues and involved in matrix remodeling, but its role in articular cartilage and, in particular, in OA remains elusive. In the present study, we analyzed the expression and localization of TSP-4 in healthy and OA knee cartilage by reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and immunoblot. We found that TSP-4 protein expression is increased in OA and that expression levels correlate with OA severity. TSP-4 was not regulated at the transcriptional level but we detected changes in the anchorage of TSP-4 in the altered ECM using sequential protein extraction. We were also able to detect pentameric and fragmented TSP-4 in the serum of both healthy controls and OA patients. Here, the total protein amount was not significantly different but we identified specific degradation products that were more abundant in sera of OA patients. Future studies will reveal if these fragments have the potential to serve as OA-specific biomarkers.
Collapse
Affiliation(s)
- Kathrin Maly
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstraße 2, 60528 Frankfurt/Main, Germany.
| | - Inna Schaible
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstraße 2, 60528 Frankfurt/Main, Germany.
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedics, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedics, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstraße 2, 60528 Frankfurt/Main, Germany.
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstraße 2, 60528 Frankfurt/Main, Germany.
| |
Collapse
|