1
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Besseling PJ, Szymczyk W, Teraa M, Toorop RJ, Wu DJ, Driessen RCH, Lichauco AM, Janssen HM, van de Kaa M, den Ouden K, de Bree PM, Fledderus JO, Bouten CVC, de Borst GJ, Dankers PYW, Verhaar MC. Off-the-Shelf Synthetic Biodegradable Grafts Transform In Situ into a Living Arteriovenous Fistula in a Large Animal Model. Adv Healthc Mater 2024; 13:e2303888. [PMID: 38451476 PMCID: PMC11469054 DOI: 10.1002/adhm.202303888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.
Collapse
Affiliation(s)
- Paul J. Besseling
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrecht3584 CXthe Netherlands
| | - Wojciech Szymczyk
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | - Martin Teraa
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrecht3584 CXthe Netherlands
| | - Raechel J. Toorop
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrecht3584 CXthe Netherlands
| | - Dan Jing Wu
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | - Rob C. H. Driessen
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
- Mechanobiology Services EindhovenDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | - Arturo M. Lichauco
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | | | - Melanie van de Kaa
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
| | - Krista den Ouden
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
| | - Petra M. de Bree
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | - Gert J. de Borst
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrecht3584 CXthe Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AZthe Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXthe Netherlands
| |
Collapse
|
3
|
West-Livingston L, Lim JW, Lee SJ. Translational tissue-engineered vascular grafts: From bench to bedside. Biomaterials 2023; 302:122322. [PMID: 37713761 DOI: 10.1016/j.biomaterials.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Cardiovascular disease is a primary cause of mortality worldwide, and patients often require bypass surgery that utilizes autologous vessels as conduits. However, the limited availability of suitable vessels and the risk of failure and complications have driven the need for alternative solutions. Tissue-engineered vascular grafts (TEVGs) offer a promising solution to these challenges. TEVGs are artificial vascular grafts made of biomaterials and/or vascular cells that can mimic the structure and function of natural blood vessels. The ideal TEVG should possess biocompatibility, biomechanical mechanical properties, and durability for long-term success in vivo. Achieving these characteristics requires a multi-disciplinary approach involving material science, engineering, biology, and clinical translation. Recent advancements in scaffold fabrication have led to the development of TEVGs with improved functional and biomechanical properties. Innovative techniques such as electrospinning, 3D bioprinting, and multi-part microfluidic channel systems have allowed the creation of intricate and customized tubular scaffolds. Nevertheless, multiple obstacles must be overcome to apply these innovations effectively in clinical practice, including the need for standardized preclinical models and cost-effective and scalable manufacturing methods. This review highlights the fundamental approaches required to successfully fabricate functional vascular grafts and the necessary translational methodologies to advance their use in clinical practice.
Collapse
Affiliation(s)
- Lauren West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Vascular and Endovascular Surgery, Duke University, Durham, NC, 27712, USA
| | - Jae Woong Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital, Bucheon-Si, Gyeonggi-do, 420-767, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Crago M, Winlaw DS, Farajikhah S, Dehghani F, Naficy S. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med 2023; 8:e10501. [PMID: 37476058 PMCID: PMC10354783 DOI: 10.1002/btm2.10501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023] Open
Abstract
Congenital heart diseases (CHDs) frequently impact the right ventricular outflow tract, resulting in a significant incidence of pulmonary valve replacement in the pediatric population. While contemporary pediatric pulmonary valve replacements (PPVRs) allow satisfactory patient survival, their biocompatibility and durability remain suboptimal and repeat operations are commonplace, especially for very young patients. This places enormous physical, financial, and psychological burdens on patients and their parents, highlighting an urgent clinical need for better PPVRs. An important reason for the clinical failure of PPVRs is biofouling, which instigates various adverse biological responses such as thrombosis and infection, promoting research into various antifouling chemistries that may find utility in PPVR materials. Another significant contributor is the inevitability of somatic growth in pediatric patients, causing structural discrepancies between the patient and PPVR, stimulating the development of various growth-accommodating heart valve prototypes. This review offers an interdisciplinary perspective on these challenges by exploring clinical experiences, physiological understandings, and bioengineering technologies that may contribute to device development. It thus aims to provide an insight into the design requirements of next-generation PPVRs to advance clinical outcomes and promote patient quality of life.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - David S. Winlaw
- Department of Cardiothoracic SurgeryHeart Institute, Cincinnati Children's HospitalCincinnatiOHUSA
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| |
Collapse
|
7
|
Besseling PJ, Krebber MM, Fledderus JO, Teraa M, den Ouden K, van de Kaa M, de Bree PM, Serrero A, Bouten CVC, Dankers PYW, Cox MAJ, Verhaar MC. The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts. APL Bioeng 2023; 7:026107. [PMID: 37234843 PMCID: PMC10208679 DOI: 10.1063/5.0138808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.
Collapse
Affiliation(s)
| | - Merle M. Krebber
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Krista den Ouden
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Melanie van de Kaa
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. de Bree
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | | | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Breuer T, Jimenez M, Humphrey JD, Shinoka T, Breuer CK. Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back. Arterioscler Thromb Vasc Biol 2023; 43:399-409. [PMID: 36633008 PMCID: PMC9974789 DOI: 10.1161/atvbaha.122.318236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
For over 25 years, our group has used regenerative medicine strategies to develop improved biomaterials for use in congenital heart surgery. Among other applications, we developed a tissue-engineered vascular graft (TEVG) by seeding tubular biodegradable polymeric scaffolds with autologous bone marrow-derived mononuclear cells. Results of our first-in-human study demonstrated feasibility as the TEVG transformed into a living vascular graft having an ability to grow, making it the first engineered graft with growth potential. Yet, outcomes of this first Food and Drug Administration-approved clinical trial evaluating safety revealed a prohibitively high incidence of early TEVG stenosis, preventing the widespread use of this promising technology. Mechanistic studies in mouse models provided important insight into the development of stenosis and enabled advanced computational models. Computational simulations suggested both a novel inflammation-driven, mechano-mediated process of in vivo TEVG development and an unexpected natural history, including spontaneous reversal of the stenosis. Based on these in vivo and in silico discoveries, we have been able to rationally design strategies for inhibiting TEVG stenosis that have been validated in preclinical large animal studies and translated to the clinic via a new Food and Drug Administration-approved clinical trial. This progress would not have been possible without the multidisciplinary approach, ranging from small to large animal models and computational simulations. This same process is expected to lead to further advances in scaffold design, and thus next generation TEVGs.
Collapse
Affiliation(s)
- Thomas Breuer
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Michael Jimenez
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Jay D Humphrey
- Yale University, School of Engineering and Applied Science, New Haven, CT (J.D.H.)
| | - Toshiharu Shinoka
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | | |
Collapse
|
9
|
Marzi J, Munnig Schmidt EC, Brauchle EM, Wissing TB, Bauer H, Serrero A, Söntjens SHM, Bosman AW, Cox MAJ, Smits AIPM, Schenke-Layland K. Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Front Cardiovasc Med 2022; 9:885873. [PMID: 35656396 PMCID: PMC9152121 DOI: 10.3389/fcvm.2022.885873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.
Collapse
Affiliation(s)
- Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Julia Marzi
| | - Emma C. Munnig Schmidt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eva M. Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tamar B. Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | | | | | | | | | | | - Anthal I. P. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Cramer M, Chang J, Li H, Serrero A, El-Kurdi M, Cox M, Schoen FJ, Badylak SF. Tissue response, macrophage phenotype, and intrinsic calcification induced by cardiovascular biomaterials: Can clinical regenerative potential be predicted in a rat subcutaneous implant model? J Biomed Mater Res A 2022; 110:245-256. [PMID: 34323360 PMCID: PMC8678182 DOI: 10.1002/jbm.a.37280] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The host immune response to an implanted biomaterial, particularly the phenotype of infiltrating macrophages, is a key determinant of biocompatibility and downstream remodeling outcome. The present study used a subcutaneous rat model to compare the tissue response, including macrophage phenotype, remodeling potential, and calcification propensity of a biologic scaffold composed of glutaraldehyde-fixed bovine pericardium (GF-BP), the standard of care for heart valve replacement, with those of an electrospun polycarbonate-based supramolecular polymer scaffold (ePC-UPy), urinary bladder extracellular matrix (UBM-ECM), and a polypropylene mesh (PP). The ePC-UPy and UBM-ECM materials induced infiltration of mononuclear cells throughout the thickness of the scaffold within 2 days and neovascularization at 14 days. GF-BP and PP elicited a balance of pro-inflammatory (M1-like) and anti-inflammatory (M2-like) macrophages, while UBM-ECM and ePC-UPy supported a dominant M2-like macrophage phenotype at all timepoints. Relative to GF-BP, ePC-UPy was markedly less susceptible to calcification for the 180 day duration of the study. UBM-ECM induced an archetypical constructive remodeling response dominated by M2-like macrophages and the PP caused a typical foreign body reaction dominated by M1-like macrophages. The results of this study highlight the divergent macrophage and host remodeling response to biomaterials with distinct physical and chemical properties and suggest that the rat subcutaneous implantation model can be used to predict in vivo biocompatibility and regenerative potential for clinical application of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA, 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Jordan Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Hongshuai Li
- Musculoskeletal Growth and Regeneration Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, 450 Technology Drive, Suite 206, Pittsburgh, PA 15219, USA
| | - Aurelie Serrero
- Xeltis BV, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Frederick J. Schoen
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA, 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Blum KM, Zbinden JC, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, Boe BA, Berman DP, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. COMMUNICATIONS MEDICINE 2022; 2:3. [PMID: 35603301 PMCID: PMC9053249 DOI: 10.1038/s43856-021-00063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid-structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.
Collapse
Affiliation(s)
- Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | | | - Stephanie E. Lindsey
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305 USA
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Megan Heitkemper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Kejal V. Shah
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Joseph D. Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiovascular Surgery at Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Ryuma Iwaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Hira Ahmad
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatric Colorectal and Pelvic Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Robbie Daulton
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- University of Cincinnati College of Medicine 3230 Eden Ave, Cincinnati, OH 45267 USA
| | - Drew Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Matthew G. Wiet
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Eric Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Emily Lawson
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Erica Schwarz
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children’s Hospital, Columbus, Ohio 43205 USA
| | | | - Kan Hor
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aimee K. Armstrong
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Brian A. Boe
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Darren P. Berman
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Alison L. Marsden
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Toshiharu Shinoka
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, OH 43205 USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| |
Collapse
|
12
|
Serruys P, Kawashima H, Chang C, Modolo R, Wang R, de Winter R, Van Hauwermeiren H, El-Kurdi M, van den Bergh W, Cox M, Onuma Y, Flameng W, Soliman O. Chronic haemodynamic performance of a biorestorative transcatheter heart valve in an ovine model. EUROINTERVENTION 2021; 17:e1009-e1018. [PMID: 34278989 PMCID: PMC9725010 DOI: 10.4244/eij-d-21-00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Xeltis biorestorative transcatheter heart valve (BTHV) leaflets are made from an electrospun bioabsorbable supramolecular polycarbonate-urethane and are mounted on a self-expanding nitinol frame. The acute haemodynamic performance of this BTHV was favourable. AIMS We sought to demonstrate the preclinical feasibility of a novel BTHV by evaluating the haemodynamic performances of five pilot valve designs up to 12 months in a chronic ovine model. METHODS Five design iterations (A, B, B', C, and D) of the BTHV were transapically implanted in 46 sheep; chronic data were available in 39 animals. Assessments were performed at implantation, 3, 6, and 12 months including quantitative aortography, echocardiography, and histology. RESULTS At 12 months, greater than or equal to moderate AR on echocardiography was seen in 0%, 100%, 33.3%, 100%, and 0% in the iterations A, B, B', C, and D, respectively. Furthermore, transprosthetic mean gradients on echocardiography were 10.0±2.8 mmHg, 19.0±1.0 mmHg, 8.0±1.7 mmHg, 26.8±2.4 mmHg, and 11.2±4.1 mmHg, and effective orifice area was 0.7±0.3 cm2, 1.1±0.3 cm2, 1.5±1.0 cm2, 1.5±0.6 cm2, and 1.0±0.4 cm2 in the iterations A, B, B', C, and D, respectively. On pathological evaluation, the iteration D demonstrated generally intact leaflets and advanced tissue coverage, while different degrees of structural deterioration were observed in the other design iterations. CONCLUSIONS Several leaflet material iterations were compared for the potential to demonstrate endogenous tissue restoration in an aortic valve in vivo. The most promising iteration showed intact leaflets and acceptable haemodynamic performance at 12 months, illustrating the potential of the BTHV.
Collapse
Affiliation(s)
- Patrick Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG) and CORRIB Corelab and Centre for Research and Imaging, University Road, Galway, H91 TK33, Ireland. E-mail:
| | - Hideyuki Kawashima
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Chun Chang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, National Yang Ming University, Taipei, Taiwan
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands,Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland,Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robbert de Winter
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland
| | - William Flameng
- Department of Cardiac Surgery, Katholieke Universiteit (K.U) Leuven, Leuven, Belgium
| | - Osama Soliman
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland,CÚRAM, the SFI Research Centre for Medical Devices, Galway, Ireland
| |
Collapse
|
13
|
Inflammatory and regenerative processes in bioresorbable synthetic pulmonary valves up to two years in sheep-Spatiotemporal insights augmented by Raman microspectroscopy. Acta Biomater 2021; 135:243-259. [PMID: 34509697 DOI: 10.1016/j.actbio.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
In situ heart valve tissue engineering is an emerging approach in which resorbable, off-the-shelf available scaffolds are used to induce endogenous heart valve restoration. Such scaffolds are designed to recruit endogenous cells in vivo, which subsequently resorb polymer and produce and remodel new valvular tissue in situ. Recently, preclinical studies using electrospun supramolecular elastomeric valvular grafts have shown that this approach enables in situ regeneration of pulmonary valves with long-term functionality in vivo. However, the evolution and mechanisms of inflammation, polymer absorption and tissue regeneration are largely unknown, and adverse valve remodeling and intra- and inter-valvular variability have been reported. Therefore, the goal of the present study was to gain a mechanistic understanding of the in vivo regenerative processes by combining routine histology and immunohistochemistry, using a comprehensive sheep-specific antibody panel, with Raman microspectroscopy for the spatiotemporal analysis of in situ tissue-engineered pulmonary valves with follow-up to 24 months from a previous preclinical study in sheep. The analyses revealed a strong spatial heterogeneity in the influx of inflammatory cells, graft resorption, and foreign body giant cells. Collagen maturation occurred predominantly between 6 and 12 months after implantation, which was accompanied by a progressive switch to a more quiescent phenotype of infiltrating cells with properties of valvular interstitial cells. Variability among specimens in the extent of tissue remodeling was observed for follow-up times after 6 months. Taken together, these findings advance the understanding of key events and mechanisms in material-driven in situ heart valve tissue engineering. STATEMENT OF SIGNIFICANCE: This study describes for the first time the long-term in vivo inflammatory and regenerative processes that underly in situ heart valve tissue engineering using resorbable synthetic scaffolds. Using a unique combinatorial analysis of immunohistochemistry and Raman microspectroscopy, important spatiotemporal variability in graft resorption and tissue formation was pinpointed in in situ tissue-engineered heart valves, with a follow-up time of up to 24 months in sheep. This variability was correlated to heterogenous regional cellular repopulation, most likely instigated by region-specific differences in surrounding tissue and hemodynamics. The findings of this research contribute to the mechanistic understanding of in situ tissue engineering using resorbable synthetics, which is necessary to enable rational design of improved grafts, and ensure safe and robust clinical translation.
Collapse
|
14
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
15
|
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med 2021; 12:12/537/eaax6919. [PMID: 32238576 DOI: 10.1126/scitranslmed.aax6919] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.
Collapse
Affiliation(s)
- Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Victoria K Pepper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Andrew R Yates
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sharon L Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Nakesha King
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric D Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - T Aaron West
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeremy Asnes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60453, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA 94304, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
16
|
Nemoto S, Konishi H, Suzuki T, Shimada R, Katsumata T, Osawa S, Yamaguchi A. Long-term viability and extensibility of an in situ regenerated canine aortic wall using hybrid warp-knitted fabric. Interact Cardiovasc Thorac Surg 2021; 33:165-172. [PMID: 33880514 DOI: 10.1093/icvts/ivab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Many surgical materials promoting tissue regeneration have been explored for use in paediatric cardiac surgery. The aim of this study is to evaluate the long-term viability and extensibility of the canine aortic wall regenerated using a novel synthetic hybrid fabric. METHODS The sheet is a warp-knitted fabric of biodegradable (poly-l-lactic acid) and non-biodegradable (polyethylene terephthalate) yarns coated with cross-linked gelatine. This material was implanted as a patch to fill an oval-shaped defect created in the canine descending aorta. The tissue samples were explanted after 12, 24 or 36 months (N = 3, 2, 2, respectively) for histological examination and biomechanical testing. RESULTS There was no shrinkage, rupture or aneurysmal change after 24 months. The regenerated wall showed prototypical vascular healing without material degeneration, chronic inflammation, calcification or abnormal intimal overgrowth. Bridging tissue across the patch was well-formed and had expanded over time. The biodegradable yarns had completely degraded at 24 months after implantation, as scheduled, but the regenerated aortic wall demonstrated satisfactory levels of mechanical strength and extensibility in tensile strength tests. CONCLUSIONS The sheet achieved good long-term viability and extensibility in the regenerated aortic wall. These findings suggest that it is a promising surgical material for repairing congenital heart defects. Further developments of the sheet are required, including clinical studies.
Collapse
Affiliation(s)
- Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Hayato Konishi
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Tatsuya Suzuki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Ryo Shimada
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Satomi Osawa
- Toxicology Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Ayuko Yamaguchi
- Healthcare Business Development-Medical Device, Teijin Limited, Tokyo, Japan
| |
Collapse
|
17
|
Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020; 7:159. [PMID: 33033720 PMCID: PMC7509093 DOI: 10.3389/fcvm.2020.00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of tissue engineering evolved long before the phrase was forged, driven by the thromboembolic complications associated with the early total artificial heart programs of the 1960s. Yet more than half a century of dedicated research has not fulfilled the promise of successful broad clinical implementation. A historical account outlines reasons for this scientific impasse. For one, there was a disconnect between distinct eras each characterized by different clinical needs and different advocates. Initiated by the pioneers of cardiac surgery attempting to create neointimas on total artificial hearts, tissue engineering became fashionable when vascular surgeons pursued the endothelialisation of vascular grafts in the late 1970s. A decade later, it were cardiac surgeons again who strived to improve the longevity of tissue heart valves, and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of these disciplines and eras started with immense enthusiasm but were only remotely aware of the preceding efforts. Over the decades, the growing complexity of cellular and molecular biology as well as polymer sciences have led to surgeons gradually being replaced by scientists as the champions of tissue engineering. Together with a widening chasm between clinical purpose, human pathobiology and laboratory-based solutions, clinical implementation increasingly faded away as the singular endpoint of all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses in humans resulted in the acceptance of misleading animal models compromising the translation from laboratory to clinical reality. This was most evident in vascular graft healing, where the two main impediments to the in-situ generation of functional tissue in humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium and the build-up of an impenetrable surface thrombus. To overcome this dead-lock, research focus needs to shift from a biologically possible tissue regeneration response to one that is feasible at the intended site and in the intended host environment of patients. Equipped with an impressive toolbox of modern biomaterials and deep insight into cues for facilitated healing, reconnecting to the “user needs” of patients would bring one of the most exciting concepts of cardiovascular medicine closer to clinical reality.
Collapse
Affiliation(s)
- Peter Zilla
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.,Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Manfred Deutsch
- Karl Landsteiner Institute for Cardiovascular Surgical Research, Vienna, Austria
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tim Pennel
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Durko AP, Yacoub MH, Kluin J. Tissue Engineered Materials in Cardiovascular Surgery: The Surgeon's Perspective. Front Cardiovasc Med 2020; 7:55. [PMID: 32351975 PMCID: PMC7174659 DOI: 10.3389/fcvm.2020.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
In cardiovascular surgery, reconstruction and replacement of cardiac and vascular structures are routinely performed. Prosthetic or biological materials traditionally used for this purpose cannot be considered ideal substitutes as they have limited durability and no growth or regeneration potential. Tissue engineering aims to create materials having normal tissue function including capacity for growth and self-repair. These advanced materials can potentially overcome the shortcomings of conventionally used materials, and, if successfully passing all phases of product development, they might provide a better option for both the pediatric and adult patient population requiring cardiovascular interventions. This short review article overviews the most important cardiovascular pathologies where tissue engineered materials could be used, briefly summarizes the main directions of development of these materials, and discusses the hurdles in their clinical translation. At its beginnings in the 1980s, tissue engineering (TE) was defined as “an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function” (1). Currently, the utility of TE products and materials are being investigated in several fields of human medicine, ranging from orthopedics to cardiovascular surgery (2–5). In cardiovascular surgery, reconstruction and replacement of cardiac and vascular structures are routinely performed. Considering the shortcomings of traditionally used materials, the need for advanced materials that can “restore, maintain or improve tissue function” are evident. Tissue engineered substitutes, having growth and regenerative capacity, could fundamentally change the specialty (6). This article overviews the most important cardiovascular pathologies where TE materials could be used, briefly summarizes the main directions of development of TE materials along with their advantages and shortcomings, and discusses the hurdles in their clinical translation.
Collapse
Affiliation(s)
- Andras P Durko
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Magdi H Yacoub
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
19
|
Hui X, Geng X, Jia L, Xu Z, Ye L, Gu Y, Zhang AY, Feng ZG. Preparation and in vivo evaluation of surface heparinized small diameter tissue engineered vascular scaffolds of poly(ε-caprolactone) embedded with collagen suture. J Biomater Appl 2019; 34:812-826. [PMID: 31475873 DOI: 10.1177/0885328219873174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xin Hui
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|