1
|
Zahid MK, Ahmad D, Amin R, Bao J. Sorghum starch: Composition, structure, functionality, and strategies for its improvement. Compr Rev Food Sci Food Saf 2025; 24:e70101. [PMID: 39746861 DOI: 10.1111/1541-4337.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Sorghum (Sorghum bicolor L. Moench) is increasingly recognized as a resilient and climate-adaptable crop that holds significant potential to enhance global food security sustainably. Compared to other common cereal grains, sorghum boasts a more diverse nutritional profile. The starch component accounts for more than 80% of total sorghum grain weight. Sorghum starch functionality and diverse industrial applications are determined by its physiochemical properties, including pasting, gelatinization, retrogradation, texture, and digestion kinetics. This review provides a comprehensive evaluation of the morphology, minor composition, crystalline structure, fine molecular structure, and structure-function relationships of sorghum starch. It further explores how these properties can be optimized through chemical, physical and enzymatic modifications to extend the applications of sorghum starch. Additionally, the review highlights the role of key enzymes in the biosynthesis of sorghum starch and discusses how biological modifications, enabled by advanced genetic and molecular breeding strategies, can modify starch quality. This review also provides a foundation for developing tailored sorghum varieties with enhanced starch properties that can expand applications of sorghum both in food and non-food industries, potentially contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Khubaib Zahid
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Raheela Amin
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Yazhou Bay Science and Technology City, Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
2
|
Yadav H, Malviya R, Kaushik N. Chitosan in biomedicine: A comprehensive review of recent developments. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 8:100551. [DOI: 10.1016/j.carpta.2024.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Iftime MM, Nicolescu A, Oancea F, Georgescu F, Marin L. Chitosan-strigolactone mimics with synergistic effect: A new concept for plant biostimulants. Carbohydr Polym 2024; 344:122524. [PMID: 39218547 DOI: 10.1016/j.carbpol.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The paper reports new multifunctional plant biostimulant formulations obtained via in situ hydrogelation of chitosan with salicylaldehyde in the presence of a mimetic naphthalimide-based strigolactone, in specific conditions. Various analytical techniques (FTIR, 1H NMR, SEM, POM, TGA, WRXD) were employed to understand the particularities of the hydrogelation mechanism and its consequences on the formulations' properties. Further, in order to evaluate their potential for the targeted application, the swelling in media of pH characteristic for different soils, water holding capacity, soil biodegradability, in vitro release of the strigolactone mimic and impact on tomatoes plant growth in laboratory conditions were investigated and discussed. It was found that the strigolactone mimic has the ability to bond to the chitosan matrix via physical forces, favoring a prolonged release. Moreover, the combination of chitosan with the strigolactone mimic in an optimal mass ratio triggered a synergistic effect on the plant growth, up to 4 times higher compared to the neat control soil.
Collapse
Affiliation(s)
- M M Iftime
- "Petru Poni" Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania.
| | - A Nicolescu
- "Petru Poni" Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania; "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania.
| | - F Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, RO-060201 Bucharest, Romania.
| | - F Georgescu
- Enpro Soctech Com srl, Str. Elefterie 51, Bucharest RO-050524, Romania
| | - L Marin
- "Petru Poni" Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania.
| |
Collapse
|
4
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
5
|
Elsayed Mahmoud D, Billa N. Physicochemical modifications in microwave-irradiated chitosan: biopharmaceutical and medical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:898-915. [PMID: 38284331 DOI: 10.1080/09205063.2024.2306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Biopharmaceutical and biomedical applications of chitosan has evolved exponentially in the past decade, owing to its unique physicochemical properties. However, further applications can be garnered from modified chitosan, specifically, depolymerized chitosan, with potentially useful applications in drug delivery or biomedicine. The use of microwave irradiation in depolymerization of chitosan appears to be more consequential than other methods, and results in modification of key physicochemical properties of chitosan, including molecular weight, viscosity and degree of deacetylation. In-depth review of such microwave-depolymerized chitosan and subsequent potential biopharmaceutical or biomedical applications has not been presented before. Herein, we present a detailed review of key physicochemical changes in chitosan following various depolymerization approaches, with focus on microwave irradiation and how these changes impact relevant biopharmaceutical or biomedical applications.
Collapse
Affiliation(s)
- Doaa Elsayed Mahmoud
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Rivero-Ramos P, Unthank MG, Sanz T, Rodrigo MD, Benlloch-Tinoco M. Synergistic depolymerisation of alginate and chitosan by high hydrostatic pressure (HHP) and pulsed electric fields (PEF) treatment in the presence of H 2O 2. Carbohydr Polym 2023; 316:120999. [PMID: 37321720 DOI: 10.1016/j.carbpol.2023.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Physically-induced depolymerisation procedures are often preferred for obtaining alginate and chitosan oligosaccharides as they either do not use or make minimal use of additional chemicals; therefore, separation of the final products is facile. In this work, solutions of three types of alginate with different mannuronic and guluronic acid residues ratio (M/G ratio) and molecular weights (Mw) and one type of chitosan were non-thermally processed by applying high hydrostatic pressures (HHP) up to 500 MPa (20 min) or pulsed electric fields (PEF) up to 25 kV cm-1 (4000 μm) in the absence or presence of 3 % hydrogen peroxide (H2O2). The impact on the physicochemical properties of alginate and chitosan was investigated by rheology, GPC, XRD, FTIR, and 1H NMR. In the rheological investigations, the apparent viscosities of all samples decreased with increasing shear rate, indicating a non-Newtonian shear-thinning behaviour. GPC results reported Mw reductions that ranged between 8 and 96 % for all treatments. NMR results revealed that HHP and PEF treatment predominantly reduced the M/G ratio of alginate and the degree of deacetylation (DDA) of chitosan, whilst H2O2 promoted an increase in the M/G ratio in alginate and DDA of chitosan. Overall, the present investigation has demonstrated the feasibility of HHP and PEF for rapidly producing alginate and chitosan oligosaccharides.
Collapse
Affiliation(s)
- Pedro Rivero-Ramos
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Matthew G Unthank
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Teresa Sanz
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Dolores Rodrigo
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Benlloch-Tinoco
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| |
Collapse
|
7
|
Ali MS, Ho TC, Razack SA, Haq M, Roy VC, Park JS, Kang HW, Chun BS. Oligochitosan recovered from shrimp shells through subcritical water hydrolysis: Molecular size reduction and biological activities. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Blilid S, Boundor M, Katir N, El Achaby M, Lahcini M, Majoral JP, Bousmina M, El Kadib A. Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Mohamed Boundor
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Mounir El Achaby
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| |
Collapse
|
9
|
A New Mediterranean Flour Moth-Derived Chitosan: Characterization and Co-electrospun Hybrid Fabrication. Appl Biochem Biotechnol 2022; 195:3047-3066. [PMID: 36508074 DOI: 10.1007/s12010-022-04246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
In this study, the chitin of adult Mediterranean flour moth (Ephestia kuheniella) (Cht) was extracted and then converted to chitosan by deacetylation process to achieve the chitosan derived from E. kuheniella (Chsfm). The new chitosan-based scaffold was produced using the polyvinyl alcohol (PVA) co-electrospinning technique. The degree of deacetylation was obtained using the distillation-titration and Fourier transform infrared spectroscopy. The surface morphology and crystallinity index of Chsfm were observed using scanning electron microscopy and X-ray diffraction analysis, respectively, and compared with the commercial chitosan (Chsc). Thermogravimetric analysis was used to estimate two chitosans' water content and thermal stability. The average molecular mass analysis was performed using viscometry. Moreover, the minimum inhibitory concentration and DPPH assay were used to study the antimicrobial activity and antioxidant potential of the Chsfm, respectively. Accordingly, Chsfm was smoother with fewer pores and flakes than Chsc, and its crystallinity index was higher than Chsc. The water content and thermal stability were lower and similar for Chsfm compared to Chsc. The average molecular mass of Chsfm was ~ 5.8 kDa, making it classified as low molecular weight chitosan. The antimicrobial activity of Chsfm against a representative Gram-negative bacteria; E. coli resulted to be the same as Chsc. However, less effective than Chsc against a representative Gram-positive bacteria is S. aureus. The Chsfm/PVA ratio scaffold was optimized at 30:70 to fabricate a uniform nanofiber scaffold.
Collapse
|
10
|
Effects of reaction environments on the structure and physicochemical properties of chitosan and its derivatives. Carbohydr Polym 2022; 301:120357. [DOI: 10.1016/j.carbpol.2022.120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
11
|
Mechanical Amorphization of Chitosan with Different Molecular Weights. Polymers (Basel) 2022; 14:polym14204438. [PMID: 36298017 PMCID: PMC9606905 DOI: 10.3390/polym14204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical amorphization of three chitosan samples with high, medium, and low molecular weight was studied. It is shown that there are no significant differences between the course of amorphization process in a planetary ball mill of chitosan with different molecular weights, and the maximum degree of amorphization was achieved in 600 s of high intensity mechanical action. Specific energy consumption was 28 kJ/g, being comparable to power consumption for amorphization of cellulose determined previously (29 kJ/g) and 5–7-fold higher than that for amorphization of starch (4–6 kJ/g). Different techniques for determining the crystallinity index (CrI) of chitosan (analysis of the X-ray diffraction (XRD) data, the peak height method, the amorphous standard method, peak deconvolution, and full-profile Rietveld analysis) were compared. The peak height method is characterized by a broader working range but provides deviated CrI values. The peak deconvolution method (with the amorphous Voigt function) makes it possible to calculate the crystallinity index of chitosan with greater accuracy, but the analysis becomes more difficult with samples subjected to mechanical processing. In order to refine the structure and calculation of CrI by the Rietveld method, an attempt to optimize the structure file by the density functional theory (DFT) method was performed. The averaged profile of amorphous chitosan approximated by an eighth-order Fourier model improved the correctness of the description of the amorphous contribution for XRD data processing. The proposed equation may be used as a universal standard model of amorphous chitosan to determine the crystallinity index both for the amorphous standard method and for peak deconvolution of XRD patterns for arbitrary chitosan samples.
Collapse
|
12
|
Genedy HH, Delair T, Montembault A. Chitosan Based MicroRNA Nanocarriers. Pharmaceuticals (Basel) 2022; 15:ph15091036. [PMID: 36145257 PMCID: PMC9500875 DOI: 10.3390/ph15091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vectorization of microRNAs has shown to be a smart approach for their potential delivery to treat many diseases (i.e., cancer, osteopathy, vascular, and infectious diseases). However, there are barriers to genetic in vivo delivery regarding stability, targeting, specificity, and internalization. Polymeric nanoparticles can be very promising candidates to overcome these challenges. One of the most suitable polymers for this purpose is chitosan. Chitosan (CS), a biodegradable biocompatible natural polysaccharide, has always been of interest for drug and gene delivery. Being cationic, chitosan can easily form particles with anionic polymers to encapsulate microRNA or even complex readily forming polyplexes. However, fine tuning of chitosan characteristics is necessary for a successful formulation. In this review, we cover all chitosan miRNA formulations investigated in the last 10 years, to the best of our knowledge, so that we can distinguish their differences in terms of materials, formulation processes, and intended applications. The factors that make some optimized systems superior to their predecessors are also discussed to reach the highest potential of chitosan microRNA nanocarriers.
Collapse
|
13
|
Lyon DR, Smith BR, Abidi N, Shamshina JL. Deproteinization of Chitin Extracted with the Help of Ionic Liquids. Molecules 2022; 27:3983. [PMID: 35807226 PMCID: PMC9268416 DOI: 10.3390/molecules27133983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 to 1.9% of the total weight. These proteins were identified and include allergenic proteins such as tropomyosin. In order to avoid 'traditional' hydroxide-based deproteinization of chitin, which could reduce the molecular weight of the final product, alternative deproteinization strategies were attempted. Testing of the previously reported deproteinization method using aqueous K3PO4 resulted in protein reduction by factors varying from 2 to 10, but resulted in significant phosphate salt contamination of the final product. Contrarily, the incorporation of GRAS (Generally Recognized as Safe) compound Polysorbate 80 into the polymer washing step provided the polymer of comparable purity with no contaminants. This study presents new options for the deproteinization of chitin that can replace traditional approaches with methods that are environmentally friendly and can produce high purity polymer.
Collapse
Affiliation(s)
| | | | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
14
|
Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022; 27:molecules27092801. [PMID: 35566152 PMCID: PMC9101998 DOI: 10.3390/molecules27092801] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan is a biodegradable and biocompatible polysaccharide obtained by partial deacetylation of chitin. This polymer has been gaining increasing popularity due to its natural origin, favorable physicochemical properties, and multidirectional bioactivity. In agriculture, the greatest hopes are raised by the possibility of using chitosan as a biostimulant, a plant protection product, an elicitor, or an agent to increase the storage stability of plant raw materials. The most important properties of chitosan include induction of plant defense mechanisms and regulation of metabolic processes. Additionally, it has antifungal, antibacterial, antiviral, and antioxidant activity. The effectiveness of chitosan interactions is determined by its origin, deacetylation degree and acetylation pattern, molecular weight, type of chemical modifications, pH, concentration, and solubility. There is a need to conduct research on alternative sources of chitosan, extraction methods, optimization of physicochemical properties, and commercial implementation of scientific progress outcomes in this field. Moreover, studies are necessary to assess the bioactivity and toxicity of chitosan nanoparticles and chitosan conjugates with other substances and to evaluate the consequences of the large-scale use thereof. This review presents the unique properties of chitosan and its derivatives that have the greatest importance for plant production and yield quality as well as the benefits and limitations of their application.
Collapse
|
15
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|
16
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Chen D, Chen C, Zheng X, Chen J, He W, Lin C, Chen H, Chen Y, Xue T. Chitosan Oligosaccharide Production Potential of Mitsuaria sp. C4 and Its Whole-Genome Sequencing. Front Microbiol 2021; 12:695571. [PMID: 34421850 PMCID: PMC8374441 DOI: 10.3389/fmicb.2021.695571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/05/2022] Open
Abstract
Chitooligosaccharide is a kind of functional food, which is the degradation product of chitosan (COS) catalyzed by the endo-chitosanase (COSE) enzyme. A COSE with a molecular weight of 34 kDa was purified and characterized from a newly isolated Mitsuaria sp. C4 (C4), and a 38.46% recovery rate and 4.79-fold purification were achieved. The purified C4 COSE exhibited optimum activity at 40°C and pH 7.2 and was significantly inhibited in the presence of Cu2+ and Fe3+. The Km and Vmin of the COSE toward COS were 2.449 g/L and 0.042 g/min/L, respectively. The highest COSE activity reached 8.344 U/ml after optimizing, which represented a 1.34-fold of increase. Additionally, chitooligosaccharide obtained by COSE hydrolysis of COS was verified by using thin-layer chromatography and high-performance liquid chromatography analysis. Whole-genome sequencing demonstrated that the C4 strain contains 211 carbohydrate enzymes, our purified COSE belonging to GHs-46 involved in carbohydrate degradation. Phylogenetic analysis showed that the novel COSE obtained from the C4 strain was clustered into the degree of polymerization = two to three groups, which can perform catalysis in a similar manner to produce (GlcN)2 and (GlcN)3. This work indicates that the C4 strain could be a good resource for enhancing carbohydrate degradation and might represent a useful tool for chitooligosaccharide production in the functional food industry.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Congcong Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Huibin Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|