1
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Bohlender LL, Parsons J, Hoernstein SNW, Rempfer C, Ruiz-Molina N, Lorenz T, Rodríguez Jahnke F, Figl R, Fode B, Altmann F, Reski R, Decker EL. Stable Protein Sialylation in Physcomitrella. FRONTIERS IN PLANT SCIENCE 2020; 11:610032. [PMID: 33391325 PMCID: PMC7775405 DOI: 10.3389/fpls.2020.610032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 05/07/2023]
Abstract
Recombinantly produced proteins are indispensable tools for medical applications. Since the majority of them are glycoproteins, their N-glycosylation profiles are major determinants for their activity, structural properties and safety. For therapeutical applications, a glycosylation pattern adapted to product and treatment requirements is advantageous. Physcomitrium patens (Physcomitrella, moss) is able to perform highly homogeneous complex-type N-glycosylation. Additionally, it has been glyco-engineered to eliminate plant-specific sugar residues by knock-out of the β1,2-xylosyltransferase and α1,3-fucosyltransferase genes (Δxt/ft). Furthermore, Physcomitrella meets wide-ranging biopharmaceutical requirements such as GMP compliance, product safety, scalability and outstanding possibilities for precise genome engineering. However, all plants, in contrast to mammals, lack the capability to perform N-glycan sialylation. Since sialic acids are a common terminal modification on human N-glycans, the property to perform N-glycan sialylation is highly desired within the plant-based biopharmaceutical sector. In this study, we present the successful achievement of protein N-glycan sialylation in stably transformed Physcomitrella. The sialylation ability was achieved in a Δxt/ft moss line by stable expression of seven mammalian coding sequences combined with targeted organelle-specific localization of the encoded enzymes responsible for the generation of β1,4-galactosylated acceptor N-glycans as well as the synthesis, activation, transport and transfer of sialic acid. Production of free (Neu5Ac) and activated (CMP-Neu5Ac) sialic acid was proven. The glycosidic anchor for the attachment of terminal sialic acid was generated by the introduction of a chimeric human β1,4-galactosyltransferase gene under the simultaneous knock-out of the gene encoding the endogenous β1,3-galactosyltransferase. Functional complex-type N-glycan sialylation was confirmed via mass spectrometric analysis of a stably co-expressed recombinant human protein.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Rudolf Figl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
3
|
Di Dato V, Di Costanzo F, Barbarinaldi R, Perna A, Ianora A, Romano G. Unveiling the presence of biosynthetic pathways for bioactive compounds in the Thalassiosira rotula transcriptome. Sci Rep 2019; 9:9893. [PMID: 31289324 PMCID: PMC6616357 DOI: 10.1038/s41598-019-46276-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/26/2019] [Indexed: 12/02/2022] Open
Abstract
Diatoms are phytoplankton eukaryotic microalgae that are widely distributed in the world’s oceans and are responsible for 20–25% of total carbon fixation on the planet. Using transcriptome sequencing here we show for the first time that the ubiquitous diatom Thalassiosira rotula expresses biosynthetic pathways that potentially lead to the synthesis of interesting secondary metabolites with pharmaceutical applications such as polyketides, prostaglandins and secologanin. We also show that these pathways are differentially expressed in conditions of silica depletion in comparison with standard growth conditions.
Collapse
Affiliation(s)
- Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy.
| | - Federica Di Costanzo
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Roberta Barbarinaldi
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Anna Perna
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
4
|
Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat Struct Mol Biol 2019; 26:415-423. [PMID: 31133698 DOI: 10.1038/s41594-019-0225-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.
Collapse
|
5
|
Glyco-Engineering of Plant-Based Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:137-166. [PMID: 30069741 DOI: 10.1007/10_2018_76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.
Collapse
|
6
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
7
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
8
|
Abedi T, Khalil MFM, Asai T, Ishihara N, Kitamura K, Ishida N, Tanaka N. UDP-galactose transporter gene hUGT1 expression in tobacco plants leads to hyper-galactosylated cell wall components. J Biosci Bioeng 2016; 121:573-83. [PMID: 26507776 DOI: 10.1016/j.jbiosc.2015.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants.
Collapse
Affiliation(s)
- Tayebeh Abedi
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | - Toshihiko Asai
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nami Ishihara
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nobuhiro Ishida
- Department of Environmental Security Systems, Faculty of Risk and Crisis Management, Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Nobukazu Tanaka
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|
9
|
Global Transcriptome Profiles of 'Meyer' Zoysiagrass in Response to Cold Stress. PLoS One 2015; 10:e0131153. [PMID: 26115186 PMCID: PMC4482698 DOI: 10.1371/journal.pone.0131153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/31/2015] [Indexed: 01/10/2023] Open
Abstract
A long green period is essential for a turfgrass species with high ornamental value and a wide area of use. Zoysiagrasses (Zoysia spp. Willd.) are perennial turfgrass species popular in tropical, subtropical and temperate zones, possessing many properties necessary to be economically useful turfgrass. They do not have a long green period because of cold sensitivity. A main focus in zoysiagrass research is to develop cold tolerant cultivars. Understanding the cold response in zoysiagrass is a fundamental area of research. In the present study, ‘Meyer’ zoysiagrass (Zoysia japonica), a widely cultivated variety in the genus, is used. We employed RNA-Seq to investigate genome-wide gene expression profiles in leaves under cold stress (4°C). Using the Illumina sequencing platform, we obtained approximately 206 million high-quality paired-end reads from three libraries (0 h, 2 h, and 72 h cold treatment at 4°C). After de novo assembly and quantitative assessment, 46,412 unigenes were generated with an average length of 998 bp and an N50 of 1,522 bp. A total of 25,644 (55.2%) unigenes were annotated by alignment with public protein databases including NR, SwissProt, KEGG and KOG. Differentially expressed genes (DEGs) were investigated using the RPKM method. A total of 756 DEGs were identified between 0h and 2h-cold treatment, with 522 up-regulated and 234 down-regulated; and 5327 DEGs were identified between 0h and 72h-cold treatment, with 2453 up-regulated and 2874 down-regulated. The expression profile of 15 DEGs selected randomly was confirmed with qRT-PCR. The results suggest that cold stress can induce desiccation and oxidative stress, inhibit photosynthesis and substance transport. In response to the stress, genes involved in proline synthesis, in starch hydrolysis, in methionine and ascorbic acid metabolism, in SOD activity, and in DREBs response pathway were up-regulated. GA metabolism, ABA and JA stimulus response were affected under cold exposure. This is the first transcriptome sequencing of Z. japonica, providing a large set of sequence data as well as gene expression profiles under cold stress. It will improve our current understanding of the cold response of zoysiagrass and be beneficial in breeding research.
Collapse
|
10
|
Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, Smith-Moritz AM, Herter T, Chan LJG, Adams PD, Petzold CJ, Pauly M, Willats WGT, Heazlewood JL, Scheller HV. Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. THE PLANT CELL 2015; 27:1218-27. [PMID: 25804536 PMCID: PMC4558686 DOI: 10.1105/tpc.114.133827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/05/2015] [Indexed: 05/02/2023]
Abstract
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.
Collapse
Affiliation(s)
- Berit Ebert
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Carsten Rautengarten
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Guangyan Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andreia M Smith-Moritz
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Thomas Herter
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Leanne Jade G Chan
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
11
|
Abstract
Plants are being developed as a cost-effective production system for biopharmaceuticals in large quantities. Although plants properly fold and assemble complex proteins from human origin, one issue that needs to be addressed is their glycan structure. In the past years we have been witnessing outstanding results in targeted manipulation of the plant N-glycosylation pathway allowing recombinant proteins to be produced with human-type oligosaccharides at large homogeneity. This opens new possibility in manufacturing next-generation biopharmaceuticals.This review presents a variety of technologies and strategies that are being employed to engineer the plant N-glycosylation, thus pointing to the enormous potential of plants being used as a novel production system with unique features and possibilities.
Collapse
|
12
|
Niemann MCE, Werner T. Endoplasmic reticulum: Where nucleotide sugar transport meets cytokinin control mechanisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e1072668. [PMID: 26418963 PMCID: PMC4883893 DOI: 10.1080/15592324.2015.1072668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional eukaryotic organelle where the vast majority of secretory proteins are folded and assembled to achieve their correct tertiary structures. The lumen of the ER and Golgi apparatus also provides an environment for numerous glycosylation reactions essential for modifications of proteins and lipids, and for cell wall biosynthesis. These glycosylation reactions require a constant supply of cytosolically synthesized substrate precursors, nucleotide sugars, which are transported by a group of dedicated nucleotide sugar transporters (NST). Recently, we have reported on the identification of a novel ER-localized NST protein, ROCK1, which mediates the transport of UDP-linked acetylated hexosamines across the ER membrane in Arabidopsis. Interestingly, it has been demonstrated that the activity of ROCK1 is important for the regulation of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKX), in the ER and, thus, for cytokinin responses. In this addendum we will address the biochemical and cellular activity of the ROCK1 transporter and its phylogenetic relation to other NST proteins.
Collapse
Affiliation(s)
- Michael CE Niemann
- Institute of Biology/Applied Genetics; Dahlem Center of Plant Sciences (DCPS); Freie Universität Berlin; Berlin, Germany
| | - Tomáš Werner
- Institute of Biology/Applied Genetics; Dahlem Center of Plant Sciences (DCPS); Freie Universität Berlin; Berlin, Germany
- Correspondence to: Tomáš Werner;
| |
Collapse
|
13
|
Riemersma M, Sandrock J, Boltje TJ, Büll C, Heise T, Ashikov A, Adema GJ, van Bokhoven H, Lefeber DJ. Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum Mol Genet 2014; 24:2241-6. [PMID: 25552652 DOI: 10.1093/hmg/ddu742] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of cellular α-dystroglycan (α-DG) to its extracellular matrix ligands is fully dependent on a unique O-mannose-linked glycan. Disrupted O-mannosylation is the hallmark of the muscular dystrophy-dystroglycanopathy (MDDG) syndromes. SLC35A1, encoding the transporter of cytidine 5'-monophosphate-sialic acid, was recently identified as MDDG candidate gene. This is surprising, since sialic acid itself is dispensable for α-DG-ligand binding. In a novel SLC35A1-deficient cell model, we demonstrated a lack of α-DG O-mannosylation, ligand binding and incorporation of sialic acids. Removal of sialic acids from HAP1 wild-type cells after incorporation or preventing sialylation during synthesis did not affect α-DG O-mannosylation or ligand binding but did affect sialylation. Lentiviral-mediated complementation with the only known disease mutation p.Q101H failed to restore deficient O-mannosylation in SLC35A1 knockout cells and partly restored sialylation. These data indicate a role for SLC35A1 in α-DG O-mannosylation that is distinct from sialic acid metabolism. In addition, human SLC35A1 deficiency can be considered as a combined disorder of α-DG O-mannosylation and sialylation, a novel variant of the MDDG syndromes.
Collapse
Affiliation(s)
- Moniek Riemersma
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Julia Sandrock
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands and
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands and
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine,
| |
Collapse
|
14
|
Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci U S A 2014; 112:291-6. [PMID: 25535363 DOI: 10.1073/pnas.1419050112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.
Collapse
|
15
|
Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. ANNALS OF BOTANY 2014; 114:1177-88. [PMID: 24825296 PMCID: PMC4195553 DOI: 10.1093/aob/mcu093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Sophie Bouton
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Marie Christine Kiefer-Meyer
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Aline Voxeur
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France Institut Jean-Pierre Bourgin UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France
| | - Jérôme Pelloux
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
16
|
The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:11563-8. [PMID: 25053812 DOI: 10.1073/pnas.1406073111] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.
Collapse
|
17
|
Smyth KM, Marchant A. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. Carbohydr Res 2013; 380:70-5. [DOI: 10.1016/j.carres.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023]
|
18
|
Molecular cloning, phylogenetic analysis, and expression profiling of a grape CMP-sialic acid transporter-like gene induced by phytohormone and abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Castilho A, Steinkellner H. Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 2012; 7:1088-98. [PMID: 22890723 DOI: 10.1002/biot.201200032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/20/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023]
Abstract
It is now possible to produce complex human proteins, largely correctly folded and N-glycosylated, in plants. Much effort has been invested in engineering expression technologies to develop products with superior characteristics. The results have begun to show success in controlling important posttranslational modifications such as N-glycosylation. With the emerging data increasingly indicating the significance of proper N-glycosylation for the efficacy of a drug, glyco-engineering has become an important issue not only for academia but also for the biopharmaceutical industry. Plants have demonstrated a high degree of tolerance to changes in the N-glycosylation pathway, allowing recombinant proteins to be modified into human-like structures in a specific and controlled manner. Frequently the results are a largely homogeneously glycosylated product, currently unrivalled by that of any other expression platforms. This review provides a comprehensive analysis of recent advances in plant N-glyco-engineering in the context of the expression of therapeutically relevant proteins, highlighting both the challenges and successes in the application of such powerful technologies.
Collapse
Affiliation(s)
- Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
20
|
Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, Coerper D, Urbanczyk-Wochniak E, Bench BJ, Sumner LW, Swanson R, Preuss D. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. PLANT PHYSIOLOGY 2011; 157:947-70. [PMID: 21849515 PMCID: PMC3192556 DOI: 10.1104/pp.111.179523] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/15/2011] [Indexed: 05/17/2023]
Abstract
Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Exine is made of sporopollenin, a material remarkable for its strength, elasticity, and chemical durability. The chemical nature of sporopollenin, as well as the developmental mechanisms that govern its assembly into diverse patterns in different species, are poorly understood. Here, we describe a simple yet effective genetic screen in Arabidopsis (Arabidopsis thaliana) that was undertaken to advance our understanding of sporopollenin synthesis and exine assembly. This screen led to the recovery of mutants with a variety of defects in exine structure, including multiple mutants with novel phenotypes. Fifty-six mutants were selected for further characterization and are reported here. In 14 cases, we have mapped defects to specific genes, including four with previously demonstrated or suggested roles in exine development (MALE STERILITY2, CYP703A2, ANTHER-SPECIFIC PROTEIN6, TETRAKETIDE α-PYRONE REDUCTASE/DIHYDROFLAVONOL-4-REDUCTASE-LIKE1), and a number of genes that have not been implicated in exine production prior to this screen (among them, fatty acid ω-hydroxylase CYP704B1, putative glycosyl transferases At1g27600 and At1g33430, 4-coumarate-coenzyme A ligase 4CL3, polygalacturonase QUARTET3, novel gene At5g58100, and nucleotide-sugar transporter At5g65000). Our study illustrates that morphological screens of pollen can be extremely fruitful in identifying previously unknown exine genes and lays the foundation for biochemical, developmental, and evolutionary studies of exine production.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kajiura H, Misaki R, Fujiyama K, Seki T. Stable coexpression of two human sialylation enzymes in plant suspension-cultured tobacco cells. J Biosci Bioeng 2011; 111:471-7. [PMID: 21220208 DOI: 10.1016/j.jbiosc.2010.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/12/2010] [Accepted: 11/22/2010] [Indexed: 01/21/2023]
Abstract
Human CMP-N-acetylneuraminic acid (NeuAc) synthase (hCSS) and α2,6-sialyltransferase (hST) participate in the sialylation of N-linked glycans in mammalian cells. hCSS synthesizes CMP-NeuAc, which hST uses as a donor substrate to transfer NeuAc to the terminal position of N-linked glycans. In plant cells, the presence of NeuAc has not yet been substantiated and the identification of the genes involved in the sialylation of N-glycan has not been carried out. In this study, we introduced hCSS and hST genes into suspension-cultured tobacco BY2 cells to provide the machinery for the sialylation pathway in plants. hCSS and hST stably expressed in the plant cells showed activity. In addition, CMP-NeuAc produced by hCSS in the transformed plant cells functioned as a donor substrate to hST. An in vitro coupled hCSS and hST reaction resulted in the production of mammalian-type sialoglycoproteins bearing terminal NeuAc residues. Furthermore, the results of the purification of the coupled-reaction products by Sambucus sieboldian lectin column chromatography and digestion with linkage-specific neuraminidase revealed that the modified terminal residue was α2,6-linked NeuAc. Here, we demonstrate that the in vitro sialylation of N-linked glycans on mammalian proteins can be achieved using plant cell extracts stably expressing hCSS and hST, providing proof-of-principle that a sialylated human therapeutic protein can be produced in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
22
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
23
|
Deng Y, Wang W, Li WQ, Xia C, Liao HZ, Zhang XQ, Ye D. MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:829-43. [PMID: 20738727 DOI: 10.1111/j.1744-7909.2010.00963.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sialyltransferases (SiaTs) exist widely in vertebrates and play important roles in a variety of biological processes. In plants, several genes have also been identified to encode the proteins that share homology with the vertebrate SiaTs. However, very little is known about their functions in plants. Here we report the identification and characterization of a novel Arabidopsis gene, MALE GAMETOPHYTE DEFECTIVE 2 (MGP2) that encodes a sialyltransferase-like protein. MGP2 was expressed in all tissues including pollen grains and pollen tubes. The MGP2 protein was targeted to Golgi apparatus. Knockout of MGP2 significantly inhibited the pollen germination and retarded pollen tube growth in vitro and in vivo, but did not affect female gametophytic functions. These results suggest that the sialyltransferase-like protein MGP2 is important for normal pollen germination and pollen tube growth, giving a novel insight into the biological roles of the sialyltransferase-like proteins in plants.
Collapse
Affiliation(s)
- Yi Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H. In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 2010; 285:15923-30. [PMID: 20305285 PMCID: PMC2871460 DOI: 10.1074/jbc.m109.088401] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/03/2010] [Indexed: 12/29/2022] Open
Abstract
Many therapeutic proteins are glycosylated and require terminal sialylation to attain full biological activity. Current manufacturing methods based on mammalian cell culture allow only limited control of this important posttranslational modification, which may lead to the generation of products with low efficacy. Here we report in vivo protein sialylation in plants, which have been shown to be well suited for the efficient generation of complex mammalian glycoproteins. This was achieved by the introduction of an entire mammalian biosynthetic pathway in Nicotiana benthamiana, comprising the coordinated expression of the genes for (i) biosynthesis, (ii) activation, (iii) transport, and (iv) transfer of Neu5Ac to terminal galactose. We show the transient overexpression and functional integrity of six mammalian proteins that act at various stages of the biosynthetic pathway and demonstrate their correct subcellular localization. Co-expression of these genes with a therapeutic glycoprotein, a human monoclonal antibody, resulted in quantitative sialylation of the Fc domain. Sialylation was at great uniformity when glycosylation mutants that lack plant-specific N-glycan residues were used as expression hosts. Finally, we demonstrate efficient neutralization activity of the sialylated monoclonal antibody, indicating full functional integrity of the reporter protein. We report for the first time the incorporation of the entire biosynthetic pathway for protein sialylation in a multicellular organism naturally lacking sialylated glycoconjugates. Besides the biotechnological impact of the achievement, this work may serve as a general model for the manipulation of complex traits into plants.
Collapse
Affiliation(s)
| | | | | | | | - Jakub Jez
- From the Department of Applied Genetics and Cell Biology
| | - Pia Gattinger
- From the Department of Applied Genetics and Cell Biology
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna and
| | | | | | | | | | | |
Collapse
|
25
|
Cloning and characterization of cytidine monophosphate-3-deoxy-d-manno-octulosonate synthetase from Arabidopsis thaliana. J Biosci Bioeng 2010; 108:527-9. [PMID: 19914588 DOI: 10.1016/j.jbiosc.2009.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
The function and metabolic pathway of 3-deoxy-d-manno-octulosonate (KDO) are unclear in plants although it is an essential component in plant cell wall. Here we cloned and characterized a putative Arabidopsis thaliana cytidine monophosphate-KDO synthetase to understand synthetic pathways of KDO. It showed a ubiquitous expression, the activity at an optimal pH of 8.0, and a requirement of Mg2+.
Collapse
|
26
|
Seino J, Ishii K, Nakano T, Ishida N, Tsujimoto M, Hashimoto Y, Takashima S. Characterization of rice nucleotide sugar transporters capable of transporting UDP-galactose and UDP-glucose. J Biochem 2010; 148:35-46. [PMID: 20305274 DOI: 10.1093/jb/mvq031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the basic local alignment search tool (BLAST) algorithm to search the Oryza sativa (Japanese rice) nucleotide sequence databases with the Arabidopsis thaliana UDP-galactose transporter sequences as queries, we found a number of sequences encoding putative O. sativa UDP-galactose transporters. From these, we cloned four putative UDP-galactose transporters, designated OsUGT1, 2, 3 and 4, which exhibited high sequence similarity with Arabidopsis thaliana UDP-galactose transporters. OsUGT1, 2, 3 and 4 consisted of 350, 337, 345 and 358 amino acids, respectively, and all of these proteins were predicted to have multiple transmembrane domains. To examine the UDP-galactose transporter activity of the OsUGTs, we introduced the OsUGTs' expression vectors into UDP-galactose transporter activity-deficient Lec8 cells. Our results showed that transfection with OsUGT1, 2 and 3 resulted in recovery of the deficit phenotype of Lec8 cells, but transfection with OsUGT4 did not. The results of an in vitro nucleotide sugar transport assay of OsUGTs, carried out with a yeast expression system, suggested that OsUGT4 is a UDP-glucose transporter rather than a UDP-galactose transporter. Although plants have multiple UDP-galactose transporter genes, phylogenic analysis indicates that plant UDP-galactose transporter genes are not necessarily evolutionary related to each other.
Collapse
Affiliation(s)
- Junichi Seino
- Glyco-chain Functions Laboratory, RIKEN-FRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Khalil MFM, Kajiura H, Fujiyama K, Koike K, Ishida N, Tanaka N. The impact of the overexpression of human UDP-galactose transporter gene hUGT1 in tobacco plants. J Biosci Bioeng 2010; 109:159-69. [PMID: 20129101 DOI: 10.1016/j.jbiosc.2009.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022]
Abstract
When the human UDP-galactose transporter 1 gene (hUGT1) was introduced into tobacco plants, the plants displayed enhanced growth during cultivation, and axillary shoots had an altered determinate growth habit, elongating beyond the primary shoots and having a sympodial growth pattern similar to that observed in tomatoes at a late cultivation stage. The architecture and properties of tissues in hUGT1-transgenic plants were also altered. The leaves had an increase in thickness, due to an increased amount of spongy tissue, and a higher content of chlorophyll a and b; the stems had an increased number of xylem vessels and accumulated lignin and arabinogalactan proteins (AGPs). Some of these characteristics resembled a gibberellin (GA)-responsive phenotype, suggesting involvement of GA. RT-PCR-based analysis of genes involved in GA biosynthesis suggested that the GA biosynthetic pathway was not activated. However, an increase in the proportion of galactose in polysaccharide side chains of AGPs was detected. These results suggested that because of higher UDP-galactose transport from the cytosol to the Golgi apparatus, galactose incorporation into polysaccharide side chains of AGP is involved in the gibberellin response, resulting in morphological and architectural changes.
Collapse
|
28
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
29
|
Takashima S, Seino J, Nakano T, Fujiyama K, Tsujimoto M, Ishida N, Hashimoto Y. Analysis of CMP-sialic acid transporter-like proteins in plants. PHYTOCHEMISTRY 2009; 70:1973-1981. [PMID: 19822337 DOI: 10.1016/j.phytochem.2009.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 08/31/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
It is commonly accepted that sialic acids do not exist in plants. However, putative gene homologs of animal sialyltransferases and CMP-sialic acid transporters have been detected in the genomes of some plants. To elucidate the physiological functions of these genes, we cloned 2 cDNAs from Oryza sativa (Japanese rice), each of which encodes a CMP-sialic acid transporter-like protein designated as OsCSTLP1 and OsCSTLP2. To examine the CMP-sialic acid transporter activity of OsCSTLP1 and OsCSTLP2, we introduced their expression vectors into CMP-sialic acid transporter activity-deficient Lec2 cells. Transfection with OsCSTLP1 resulted in recovery of the deficit phenotype of Lec2 cells, but transfection with OsCSTLP2 did not. We also performed an in vitro nucleotide sugar transport assay using a yeast expression system. Among the nucleotide sugars examined, the OsCSTLP1-containing yeast microsomal membrane vesicles specifically incorporated CMP-sialic acid, indicating that OsCSTLP1 has CMP-sialic acid transporter activity. On the other hand, OsCSTLP2 did not exhibit any nucleotide sugar transporter activity. T-DNA insertion lines of Arabidopsis thaliana targeting the homologs of the OsCSTLP1 and OsCSTLP2 genes exhibited a lethal phenotype, suggesting that these proteins play important roles in plant development and may transport important nucleotide sugars such as CMP-Kdo in physiological conditions.
Collapse
Affiliation(s)
- Shou Takashima
- Glyco-chain Functions Laboratory, RIKEN-FRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry. Glycoconj J 2008; 26:313-24. [PMID: 18568399 DOI: 10.1007/s10719-008-9154-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 12/20/2022]
Abstract
Numerous studies have revealed important functions for sialylation in both prokaryotes and higher animals. However, the genetic and biochemical potential for sialylation in Drosophila has only been confirmed recently. Recent studies suggest significant similarities between the sialylation pathways of vertebrates and insects and provide evidence for their common evolutionary origin. These new data support the hypothesis that sialylation in insects is a specialized and developmentally regulated process which likely plays a prominent role in the nervous system. Yet several key issues remain to be addressed in Drosophila, including the initiation of sialic acid de novo biosynthesis and understanding the structure and function of sialylated glycoconjugates. This review discusses our current knowledge of the Drosophila sialylation pathway, as compared to the pathway in bacteria and vertebrates. We arrive at the conclusion that Drosophila is emerging as a useful model organism that is poised to shed new light on the function of sialylation not only in protostomes, but also in a larger evolutionary context.
Collapse
|