1
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
2
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
3
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
4
|
Wang T, Zhang S, Ren S, Zhang X, Yang F, Chen Y, Wang B. Structural characterization and proliferation activity of chondroitin sulfate from the sturgeon, Acipenser schrenckii. Int J Biol Macromol 2020; 164:3005-3011. [PMID: 32810535 DOI: 10.1016/j.ijbiomac.2020.08.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
The cartilages of marine fish, such as sharks and sturgeon, are important resources of the bioactive chondroitin sulfate (CS). To explore glycosaminoglycans from marine fish, polysaccharides from the cartilage of the sturgeon, Acipenser schrenckii, were extracted. Using enzyme-assisted extraction and anion-exchange chromatography, an uronic acid-containing polysaccharide, YG-1, was isolated. YG-1 is composed of GlcN, GlcUA, GalN, and Gal, in the ratio of 1.4: 3.4: 3.7: 1.0, and its molecular weight was determined to be 3.0 × 105 Da. YG-1 was confirmed to be chondroitin 4-sulfate (CS) composed of →4GlcAβ1→3GalNAc4Sβ1→ and minor →4GlcAβ1→3GalNAcβ1→, which was confirmed using IR spectroscopy, disaccharide composition analysis, and NMR. Bioactivity studies, including MTT assay and scratch-wound assays revealed that CS from Acipenser schrenckii had significant proliferation activity. The proliferation activity of the polysaccharide, YG-1, was related to Fibroblast growth factor 2 (FGF2). GalNAc 4S of YG-1 could be the binding sites of FGF2 and FGFR.
Collapse
Affiliation(s)
- Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Najing Normal University, 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shouyan Ren
- Department of Otorhinolaryngology, Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Qingdao 216000, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Najing Normal University, 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Fan Yang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
5
|
Talmoudi N, Ghariani N, Sadok S. Glycosaminoglycans from Co-Products of « Scyliorhinus canicula»: Extraction and Purification in Reference to the European Pharmacopoeia Requirement. Biol Proced Online 2020; 22:1. [PMID: 31908599 PMCID: PMC6939328 DOI: 10.1186/s12575-019-0113-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Glycosaminoglycans (GAGs), including hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS) are essential components of the bone and cartilage tissues. CS isolated from the cartilage tissue of various animals has found application in pharmaceuticals, cosmetics and food industries. In the first part of the present work, three methods were used and compared to extract and purify glycosaminoglycans (GAGs) from the cartilage powder of a local cartilaginous marine species «Scyliorhinus canicula». One of these GAGs, chondroitin sulfate (CS), will be exploited for the development of an anti-osteoarthritis generic at the request of a collaborative pharmaceutical industry. Thus this active ingredient must meet the requirements and tests described by the European Pharmacopoeia (Ph. Eur.). These tests are treated in the second part of this work. Results Among the three methods that have been applied in the present work, in order to optimize the best process for GAGs preparation, enzymatic hydrolysis with papain followed by deproteinisation using trichloroacetic acid (TCA) was found the best one. The separation of the extracted GAGs using agarose gel electrophoresis, and the identification of bands by Fourier Transform Infrared (FT-IR) Spectroscopy, revealed that the cartilage GAGs of « Scyliorhinus canicula» are exclusively chondroitin sulfate (CS) and dermatane sulfate (DS), with proportions of 12.889 and 87.111% respectively, and that CS is of type C. The extraction technique with papain provides a product with GAGs content of around 90%. The TCA deproteinisation yielded the lowest level of protein (2.8%) in the extracted GAGs, less than 3%, which is the standard required by the European Pharmacopoeia (Ph. Eur.).Cetylpyridinium chloride (CPC) assay suggests that the titration technique, although is introduced by the Ph. Eur. for the determination of CS content, is not an accurate method, and that the values obtained by the optimized and validated HPLC method, described in this work, are more exact. Conclusion The extracted and purified active ingredient is perfectly conform to the tests described by the Ph. Eur. The results suggest that the co-product of Scyliorhinus canicula would be a perfect source of molecules of pharmacological interest, obtained by a simple and non-agressive process.
Collapse
Affiliation(s)
- Nawras Talmoudi
- 1Blue Biotechnology & Aquatic Bioproducts Laboratory (B3Aqua)-Institut National des Sciences et technologies de la Mer (INSTM), 28, street March 2, 1934 -Salammbô, 2035 Tunis, Tunisia.,2Faculty of Mathematical, Physical and Natural Sciences of Tunis-University of El Manar, Tunis, Tunisia.,TERIAK pharmaceutical companies, Industrial Zone Cheylus, 1111 JEBEL OUEST, Tunisia
| | - Noureddine Ghariani
- TERIAK pharmaceutical companies, Industrial Zone Cheylus, 1111 JEBEL OUEST, Tunisia
| | - Saloua Sadok
- 1Blue Biotechnology & Aquatic Bioproducts Laboratory (B3Aqua)-Institut National des Sciences et technologies de la Mer (INSTM), 28, street March 2, 1934 -Salammbô, 2035 Tunis, Tunisia.,2Faculty of Mathematical, Physical and Natural Sciences of Tunis-University of El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Palhares LC, Brito AS, de Lima MA, Nader HB, London JA, Barsukov IL, Andrade GP, Yates EA, Chavante SF. A further unique chondroitin sulfate from the shrimp Litopenaeus vannamei with antithrombin activity that modulates acute inflammation. Carbohydr Polym 2019; 222:115031. [DOI: 10.1016/j.carbpol.2019.115031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
7
|
Vessella G, Traboni S, Cimini D, Iadonisi A, Schiraldi C, Bedini E. Development of Semisynthetic, Regioselective Pathways for Accessing the Missing Sulfation Patterns of Chondroitin Sulfate. Biomacromolecules 2019; 20:3021-3030. [DOI: 10.1021/acs.biomac.9b00590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
8
|
Wang LC, Di LQ, Li JS, Hu LH, Cheng JM, Wu H. Elaboration in type, primary structure, and bioactivity of polysaccharides derived from mollusks. Crit Rev Food Sci Nutr 2017; 59:1091-1114. [DOI: 10.1080/10408398.2017.1392289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling Chong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| | - Liu Qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Jun Song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Li Hong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, P.R. China
| | - Jian Ming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| |
Collapse
|
9
|
Abstract
AbstractChondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix of animal tissues. CS chains are covalently bound to a core protein to form a proteoglycan, which is involved in various biological events including cell proliferation, migration, and invasion. Their functions are executed by regulating the activity of bioactive proteins, such as growth factors, morphogens, and cytokines. This review article focuses on the catabolism of CS. This catabolism predominantly occurs in lysosomes to control the activity of CS-proteoglycans. CS chains are fragmented by endo-type glycosidase(s), and the resulting oligosaccharides are then cleaved into monosaccharide moieties from the nonreducing end by exoglycosidases and sulfatases. However, the endo-type glycosidase responsible for the systemic catabolism of CS has not yet been identified. Based on recent advances in studies on hyaluronidases, which were previously considered to be hyaluronan-degrading enzymes, it appears that they recognize CS as their original substrate rather than hyaluronan and acquired hyaluronan-hydrolyzing activity at a relatively late stage of evolution.
Collapse
|
10
|
Laezza A, De Castro C, Parrilli M, Bedini E. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate. Carbohydr Polym 2014; 112:546-55. [DOI: 10.1016/j.carbpol.2014.05.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 01/28/2023]
|
11
|
Lang Y, Zhao X, Liu L, Yu G. Applications of mass spectrometry to structural analysis of marine oligosaccharides. Mar Drugs 2014; 12:4005-30. [PMID: 24983643 PMCID: PMC4113812 DOI: 10.3390/md12074005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lili Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
Lee SS, Park SH, Park JD, Konno K, Choi YJ. Functionalities of Squid Liver Hydrolysates. ACTA ACUST UNITED AC 2012. [DOI: 10.3746/jkfn.2012.41.12.1677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Synthetic and semi-synthetic chondroitin sulfate oligosaccharides, polysaccharides, and glycomimetics. Carbohydr Res 2012; 356:75-85. [PMID: 22410317 DOI: 10.1016/j.carres.2012.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 02/04/2023]
Abstract
Chondroitin sulfate (CS) is a sulfated polysaccharide involved in a myriad of biological processes. Due to the variable sulfation pattern of CS polymer chains, the need to study in detail structure-activity relationships regarding CS biomedical features has provoked much interest in obtaining synthetic CS species. This paper reviews two decades of synthetic and semi-synthetic CS oligosaccharides, polysaccharides, and glycomimetics obtained by chemical, chemoenzymatic, enzymatic, and microbiological-chemical strategies.
Collapse
|
14
|
Vijayabaskar P, Somasundaram ST. Studies on molluscan glycosaminoglycans (GAG) from backwater clam Donax cuneatus (Linnaeus). Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60265-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Bedini E, De Castro C, De Rosa M, Di Nola A, Restaino OF, Schiraldi C, Parrilli M. Semi-Synthesis of Unusual Chondroitin Sulfate Polysaccharides Containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) Units. Chemistry 2012; 18:2123-30. [DOI: 10.1002/chem.201102458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 11/12/2022]
|
16
|
Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: Comparative biochemical study. Commun Integr Biol 2011; 4:150-8. [PMID: 21655428 DOI: 10.4161/cib.4.2.14547] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans, a major component of the extracellular matrix molecules in animal tissues, play important roles in various physiological events. Glycosaminoglycans are found in not only vertebrates but also many invertebrates, implying a conserved function in the animal kingdom. Here, we discuss the analysis of glycosaminoglycans in 11 invertebrate phyla focusing on structure as well as physiological functions elucidated in model organisms. Various sulfated structures of heparan sulfate are widely distributed from very primitive organisms to humans, indicating an involvement in fundamental biological processes. By contrast, chondroitin/dermatan sulfate from lower organisms is limited in its structural complexity and often associated with a particular function. The presence of hyaluronic acid outside of vertebrates has been reported only in a mollusk.
Collapse
Affiliation(s)
- Shuhei Yamada
- Laboratory of Proteoglycan Signaling and Therapeutics; Faculty of Advanced Life Science; Graduate School of Life Science; Hokkaido University; Sapporo, Japan
| | | | | |
Collapse
|
17
|
Tetsukawa A, Nakamura J, Fujiwara S. Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:205-12. [PMID: 20601060 DOI: 10.1016/j.cbpb.2010.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 11/22/2022]
Abstract
Sulfated glycosaminoglycans are important components of connective tissues. The pattern of sulfation is important for their biological functions. Ascidians, the closest relatives of vertebrates, have a simple chordate body plan. In the present study, we identified an almost complete set of genes encoding proteins homologous to chondroitin/dermatan sulfotransferases in the genome of the ascidian Ciona intestinalis. We found eight genes encoding 4-O-sulfotransferases, eight genes encoding 6-O-sulfotransferases, and three genes encoding uronyl 2-O-sulfotransferases. The number of sulfotransferase genes was unexpectedly large, considering that ascidians do not have a well-developed endoskeleton. In addition, most of the genes within each sub-family seemed to have arisen by gene duplication events that occurred in the ascidian lineage after divergence from the main chordate lineage. This suggests that a unique pattern of sulfation independently developed during ascidian evolution. Some of the genes identified in the present study showed tissue-specific expression in the epidermis, notochord, muscle, and central nervous system. Region-specific expression in the epidermis was also observed. The present study provides useful information for further comparative and functional analyses of sulfotransferases and proteoglycans in chordate embryos.
Collapse
Affiliation(s)
- Akira Tetsukawa
- Department of Applied Science, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | | | | |
Collapse
|