1
|
Müllerová M, Hovorková M, Závodná T, Červenková Št́astná L, Krupková A, Hamala V, Nováková K, Topinka J, Bojarová P, Strašák T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023; 24:4705-4717. [PMID: 37680126 PMCID: PMC10646984 DOI: 10.1021/acs.biomac.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.
Collapse
Affiliation(s)
- Monika Müllerová
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Michaela Hovorková
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Táňa Závodná
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Červenková Št́astná
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Alena Krupková
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Vojtěch Hamala
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Kateřina Nováková
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Topinka
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| |
Collapse
|
2
|
Liu Y, Qin Z, Wang C, Jiang Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr Polym 2023; 315:121019. [PMID: 37230627 DOI: 10.1016/j.carbpol.2023.121019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No.99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing 100083, People's Republic of China.
| |
Collapse
|
3
|
Slámová K, Červený J, Mészáros Z, Friede T, Vrbata D, Křen V, Bojarová P. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules 2023; 28:molecules28104039. [PMID: 37241779 DOI: 10.3390/molecules28104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, 160 00 Prague 6, Czech Republic
| | - Tereza Friede
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| |
Collapse
|
4
|
Hovorková M, Červený J, Bumba L, Pelantová H, Cvačka J, Křen V, Renaudet O, Goyard D, Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg Chem 2023; 131:106279. [PMID: 36446202 DOI: 10.1016/j.bioorg.2022.106279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.
Collapse
Affiliation(s)
- Michaela Hovorková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Prague 2, Czech Republic
| | - Jakub Červený
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám, 2, CZ-166 10 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olivier Renaudet
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France
| | - David Goyard
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France.
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic.
| |
Collapse
|
5
|
Nekvasilová P, Kulik N, Kotik M, Petrásková L, Slámová K, Křen V, Bojarová P. Mutation Hotspot for Changing the Substrate Specificity of β- N-Acetylhexosaminidase: A Library of GlcNAcases. Int J Mol Sci 2022; 23:12456. [PMID: 36293310 PMCID: PMC9604439 DOI: 10.3390/ijms232012456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 12/27/2023] Open
Abstract
β-N-Acetylhexosaminidase from Talaromyces flavus (TfHex; EC 3.2.1.52) is an exo-glycosidase with dual activity for cleaving N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) units from carbohydrates. By targeting a mutation hotspot of the active site residue Glu332, we prepared a library of ten mutant variants with their substrate specificity significantly shifted towards GlcNAcase activity. Suitable mutations were identified by in silico methods. We optimized a microtiter plate screening method in the yeast Pichia pastoris expression system, which is required for the correct folding of tetrameric fungal β-N-acetylhexosaminidases. While the wild-type TfHex is promiscuous with its GalNAcase/GlcNAcase activity ratio of 1.2, the best single mutant variant Glu332His featured an 8-fold increase in selectivity toward GlcNAc compared with the wild-type. Several prepared variants, in particular Glu332Thr TfHex, had significantly stronger transglycosylation capabilities than the wild-type, affording longer chitooligomers - they behaved like transglycosidases. This study demonstrates the potential of mutagenesis to alter the substrate specificity of glycosidases.
Collapse
Affiliation(s)
- Pavlína Nekvasilová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Praha 2, Czech Republic
| | - Natalia Kulik
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, CZ-37333 Nové Hrady, Czech Republic
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| |
Collapse
|
6
|
Cao R, Li JX, Chen H, Cao C, Zheng F, Huang K, Chen YR, Flitsch SL, Liu L, Voglmeir J. Complete shift in glycosyl donor specificity in mammalian, but not C. elegans β1,4‐GalT1 Y286L mutants, enables the synthesis of N,N‐diacetyllactosamine. ChemCatChem 2022. [DOI: 10.1002/cctc.202101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Jing-Xuan Li
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Huan Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Cui Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Feng Zheng
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Kun Huang
- Nanjing Agricultural University College of Food Science And Technology UNITED KINGDOM
| | - Ya-Ran Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | | | - Li Liu
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Josef Voglmeir
- Nanjing Agricultural University College of Food Science And Technology 1 Weigang 210095 Nanjing CHINA
| |
Collapse
|
7
|
Abstract
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in cell wall peptidoglycan synthesis, analogously, fungal β-N-acetylhexosaminidases act on cell wall chitin. The enzymes work via a distinct substrate-assisted mechanism that utilizes the 2-acetamido group as nucleophile. Curiously, the β-N-acetylhexosaminidases possess an inherent trans-glycosylation ability which is potentially useful for biocatalytic synthesis of functional carbohydrates, including biomimetic synthesis of human milk oligosaccharides and other glycan-functionalized compounds. In this review, we summarize the reaction engineering approaches (donor substrate activation, additives, and reaction conditions) that have proven useful for enhancing trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. We provide comprehensive overviews of reported synthesis reactions with GH20 enzymes, including tables that list the specific enzyme used, donor and acceptor substrates, reaction conditions, and details of the products and yields obtained. We also describe the active site traits and mutations that appear to favor trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. Finally, we discuss novel protein engineering strategies and suggest potential “hotspots” for mutations to promote trans-glycosylation activity in GH20 for efficient synthesis of specific functional carbohydrates and other glyco-engineered products.
Collapse
|
8
|
A novel enzymatic tool for transferring GalNAc moiety onto challenging acceptors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140319. [DOI: 10.1016/j.bbapap.2019.140319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022]
|
9
|
Tavares MR, Bláhová M, Sedláková L, Elling L, Pelantová H, Konefał R, Etrych T, Křen V, Bojarová P, Chytil P. High-Affinity N-(2-Hydroxypropyl)methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules 2020; 21:641-652. [PMID: 31904940 DOI: 10.1021/acs.biomac.9b01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acetyllactosamine (LacNAc; Galβ4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by β-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Markéta Bláhová
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Lieselotte Sedláková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering , Czech Technical University in Prague , Sítná sq. 3105 , CZ-272 01 Kladno , Czech Republic
| | - Lothar Elling
- Institute of Biotechnology and Helmholtz Institute for Biomedical Engineering , RWTH Aachen , Pauwelstr. 20 , D-52079 Aachen , Germany
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , CZ-142 20 Prague 4 , Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering , Czech Technical University in Prague , Sítná sq. 3105 , CZ-272 01 Kladno , Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského náměstí 2 , CZ-162 06 Prague 6 , Czech Republic
| |
Collapse
|
10
|
β-N-Acetylhexosaminidases-the wizards of glycosylation. Appl Microbiol Biotechnol 2019; 103:7869-7881. [PMID: 31401752 DOI: 10.1007/s00253-019-10065-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
β-N-Acetylhexosaminidases (EC 3.2.1.52) are a unique family of glycoside hydrolases with dual substrate specificity and a particular reaction mechanism. Though hydrolytic enzymes per se, their good stability, easy recombinant production, absolute stereoselectivity, and a broad substrate specificity predestine these enzymes for challenging applications in carbohydrate synthesis. This mini-review aims to demonstrate the catalytic potential of β-N-acetylhexosaminidases in a range of unusual reactions, processing of unnatural substrates, formation of unexpected products, and demanding reaction designs. The use of unconventional media can considerably alter the progress of transglycosylation reactions. By means of site-directed mutagenesis, novel catalytic machineries can be constructed. Glycosylation of difficult substrates such as sugar nucleotides was accomplished, and the range of afforded glycosidic bonds comprises unique non-reducing sugars. Specific functional groups may be tolerated in the substrate molecule, which makes β-N-acetylhexosaminidases invaluable allies in difficult synthetic problems.
Collapse
|
11
|
Bojarová P, Kulik N, Hovorková M, Slámová K, Pelantová H, Křen V. The β- N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules 2019; 24:molecules24030599. [PMID: 30743988 PMCID: PMC6384963 DOI: 10.3390/molecules24030599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by β-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. β-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of β-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the β-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcβ4GlcNAc disaccharide, a selective ligand of galectin-3.
Collapse
Affiliation(s)
- Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zámek 136, CZ-37333 Nové Hrady, Czech Republic.
| | - Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
12
|
Bojarová P, Kulik N, Slámová K, Hubálek M, Kotik M, Cvačka J, Pelantová H, Křen V. Selective β-N-acetylhexosaminidase from Aspergillus versicolor—a tool for producing bioactive carbohydrates. Appl Microbiol Biotechnol 2019; 103:1737-1753. [DOI: 10.1007/s00253-018-9534-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
|
13
|
Bojarová P, Tavares MR, Laaf D, Bumba L, Petrásková L, Konefał R, Bláhová M, Pelantová H, Elling L, Etrych T, Chytil P, Křen V. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J Nanobiotechnology 2018; 16:73. [PMID: 30236114 PMCID: PMC6146777 DOI: 10.1186/s12951-018-0399-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background Galectin-3 (Gal-3) is a promising target in cancer therapy with a high therapeutic potential due to its abundant localization within the tumor tissue and its involvement in tumor development and proliferation. Potential clinical application of Gal-3-targeted inhibitors is often complicated by their insufficient selectivity or low biocompatibility. Nanomaterials based on N-(2-hydroxypropyl)methacrylamide (HPMA) nanocarrier are attractive for in vivo application due to their good water solubility and lack of toxicity and immunogenicity. Their conjugation with tailored carbohydrate ligands can yield specific glyconanomaterials applicable for targeting biomedicinally relevant lectins like Gal-3. Results In the present study we describe the synthesis and the structure-affinity relationship study of novel Gal-3-targeted glyconanomaterials, based on hydrophilic HPMA nanocarriers. HPMA nanocarriers decorated with varying amounts of Gal-3 specific epitope GalNAcβ1,4GlcNAc (LacdiNAc) were analyzed in a competitive ELISA-type assay and their binding kinetics was described by surface plasmon resonance. We showed the impact of various linker types and epitope distribution on the binding affinity to Gal-3. The synthesis of specific functionalized LacdiNAc epitopes was accomplished under the catalysis by mutant β-N-acetylhexosaminidases. The glycans were conjugated to statistic HPMA copolymer precursors through diverse linkers in a defined pattern and density using Cu(I)-catalyzed azide–alkyne cycloaddition. The resulting water-soluble and structurally flexible synthetic glyconanomaterials exhibited affinity to Gal-3 in low μM range. Conclusions The results of this study reveal the relation between the linker structure, glycan distribution and the affinity of the glycopolymer nanomaterial to Gal-3. They pave the way to specific biomedicinal glyconanomaterials that target Gal-3 as a therapeutic goal in cancerogenesis and other disorders. Electronic supplementary material The online version of this article (10.1186/s12951-018-0399-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - M R Tavares
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - D Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - L Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Petrásková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - R Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - M Bláhová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - H Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - P Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic.
| | - V Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
14
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
16
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
17
|
Rozbeský D, Ivanova L, Hernychová L, Grobárová V, Novák P, Černý J. Nkrp1 family, from lectins to protein interacting molecules. Molecules 2015; 20:3463-78. [PMID: 25690298 PMCID: PMC6272133 DOI: 10.3390/molecules20023463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the “sweet story” was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Ljubina Ivanova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
| | - Lucie Hernychová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Petr Novák
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| |
Collapse
|
18
|
Liu WW, Li QX, Shi DH, Cao ZL, Cheng FC, Tao CZ, Yin L, Wang X. Synthesis, Characterization, and Biological Evaluation of Some Novel Glycosyl 1,3,4-Thiadiazole Derivatives as Acetylcholinesterase Inhibitors. HETEROCYCLES 2015. [DOI: 10.3987/com-14-13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Šimonová A, Kupper CE, Böcker S, Müller A, Hofbauerová K, Pelantová H, Elling L, Křen V, Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Rozbeský D, Krejzová J, Křenek K, Prchal J, Hrabal R, Kožíšek M, Weignerová L, Fiore M, Dumy P, Křen V, Renaudet O. Re-evaluation of binding properties of recombinant lymphocyte receptors NKR-P1A and CD69 to chemically synthesized glycans and peptides. Int J Mol Sci 2014; 15:1271-83. [PMID: 24445261 PMCID: PMC3907868 DOI: 10.3390/ijms15011271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/20/2023] Open
Abstract
The binding of monosaccharides and short peptides to lymphocyte receptors (human CD69 and rat NKR-P1A) was first reported in 1994 and then in a number of subsequent publications. Based on this observation, numerous potentially high-affinity saccharide ligands have been synthesized over the last two decades in order to utilize their potential in antitumor therapy. Due to significant inconsistencies in their reported binding properties, we decided to re-examine the interaction between multiple ligands and CD69 or NKR-P1A. Using NMR titration and isothermal titration calorimetry we were unable to detect the binding of the tested ligands such as N-acetyl-d-hexosamines and oligopeptides to both receptors, which contradicts the previous observations published in more than twenty papers over the last fifteen years.
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jana Krejzová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Karel Křenek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jan Prchal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Richard Hrabal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Milan Kožíšek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Lenka Weignerová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Michele Fiore
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Pascal Dumy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Olivier Renaudet
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic. ^
| |
Collapse
|
21
|
Yao W, Xia MJ, Meng XB, Li Q, Li ZJ. Adaptable synthesis of C-lactosyl glycoclusters and their binding properties with galectin-3. Org Biomol Chem 2014; 12:8180-95. [DOI: 10.1039/c4ob01374c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of mono- to tetravalent C-β-lactosyl glycoclusters has been achieved in good yield. The KD values of glycoclusters against galectin-3 were tested by SPR assay, and the structure–activity relationship has been summarized in detail.
Collapse
Affiliation(s)
- Wang Yao
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Science
- Peking University
- Beijing 100191, P R China
| | - Meng-jie Xia
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Science
- Peking University
- Beijing 100191, P R China
| | - Xiang-bao Meng
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Science
- Peking University
- Beijing 100191, P R China
| | - Qing Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Science
- Peking University
- Beijing 100191, P R China
| | - Zhong-jun Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Science
- Peking University
- Beijing 100191, P R China
| |
Collapse
|
22
|
Lepenies B, Lee J, Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev 2013; 65:1271-81. [PMID: 23727341 DOI: 10.1016/j.addr.2013.05.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 01/08/2023]
Abstract
C-type lectin receptors (CLRs) represent a large receptor family including collectins, selectins, lymphocyte lectins, and proteoglycans. CLRs share a structurally homologous carbohydrate-recognition domain (CRD) and often bind carbohydrates in a Ca²⁺-dependent manner. In innate immunity, CLRs serve as pattern recognition receptors (PRRs) and bind to the glycan structures of pathogens and also to self-antigens. In nature, the low affinity of CLR/carbohydrate interactions is overcome by multivalent ligand presentation at the surface of cells or pathogens. Thus, multivalency is a promising strategy for targeting CLR-expressing cells and, indeed, carbohydrate-based targeting approaches have been employed for a number of CLRs, including asialoglycoprotein receptor (ASGPR) in the liver, or DC-SIGN expressed by dendritic cells. Since CLR engagement not only mediates endocytosis but also influences intracellular signaling pathways, CLR targeting may allow for cell-specific drug delivery and also the modulation of cellular functions. Glyconanoparticles, glycodendrimers, and glycoliposomes were successfully used as tools for CLR-specific targeting. This review will discuss different approaches for multivalent CLR ligand presentation and aims to highlight how CLR targeting has been employed for cell specific drug delivery. Major emphasis is directed towards targeting of CLRs expressed by antigen-presenting cells to modulate immune responses.
Collapse
|
23
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Adamiak K, Anders T, Henze M, Keul H, Möller M, Elling L. Chemo-enzymatic synthesis of functionalized oligomers of N-acetyllactosamine glycan derivatives and their immobilization on biomaterial surfaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kupper CE, Rosencrantz RR, Henßen B, Pelantová H, Thönes S, Drozdová A, Křen V, Elling L. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem 2012; 8:712-25. [PMID: 23015818 PMCID: PMC3388858 DOI: 10.3762/bjoc.8.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
The importance of glycans in biological systems is highlighted by their various functions in physiological and pathological processes. Many glycan epitopes on glycoproteins and glycolipids are based on N-acetyllactosamine units (LacNAc; Galβ1,4GlcNAc) and often present on extended poly-LacNAc glycans ([Galβ1,4GlcNAc](n)). Poly-LacNAc itself has been identified as a binding motif of galectins, an important class of lectins with functions in immune response and tumorigenesis. Therefore, the synthesis of natural and modified poly-LacNAc glycans is of specific interest for binding studies with galectins as well as for studies of their possible therapeutic applications. We present the oxidation by galactose oxidase and subsequent chemical or enzymatic modification of terminal galactose and N-acetylgalactosamine residues of poly-N-acetyllactosamine (poly-LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) by galactose oxidase. Product formation starting from different poly-LacNAc oligomers was characterised and optimised regarding formation of the C6-aldo product. Further modification of the aldehyde containing glycans, either by chemical conversion or enzymatic elongation, was established. Base-catalysed β-elimination, coupling of biotin-hydrazide with subsequent reduction to the corresponding hydrazine linkage, and coupling by reductive amination to an amino-functionalised poly-LacNAc oligomer were performed and the products characterised by LC-MS and NMR analysis. Remarkably, elongation of terminally oxidised poly-LacNAc glycans by β3GlcNAc- and β4Gal-transferase was also successful. In this way, a set of novel, modified poly-LacNAc oligomers containing terminally and/or internally modified galactose residues were obtained, which can be used for binding studies and various other applications.
Collapse
Affiliation(s)
- Christiane E Kupper
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Birgit Henßen
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Stephan Thönes
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Anna Drozdová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Vladimir Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| |
Collapse
|