1
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Guo Q, Su J, Liao Y, Yu Y, Luo L, Weng X, Zhang W, Hu Z, Wang H, Beattie GA, Ma J. An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in Pseudomonas syringae pv. syringae B728a. Appl Environ Microbiol 2024; 90:e0225623. [PMID: 38415624 PMCID: PMC10952384 DOI: 10.1128/aem.02256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024] Open
Abstract
The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from β-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingtong Su
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yin Yu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lizhen Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoshan Weng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Kumar J, Ramlal A, Kumar K, Rani A, Mishra V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. Int J Mol Sci 2021; 22:ijms22169022. [PMID: 34445728 PMCID: PMC8396522 DOI: 10.3390/ijms22169022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.
Collapse
Affiliation(s)
- Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Ayyagari Ramlal
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi 110012, India;
| | - Kamal Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110066, India;
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
- Correspondence:
| |
Collapse
|
4
|
Buscaill P, van der Hoorn RAL. Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. THE PLANT CELL 2021; 33:2116-2130. [PMID: 33871653 PMCID: PMC8364246 DOI: 10.1093/plcell/koab109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/07/2021] [Indexed: 05/13/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by cell-surface receptors is pivotal in host-microbe interactions. Both pathogens and symbionts establish plant-microbe interactions using fascinating intricate extracellular strategies to avoid recognition. Here we distinguish nine different extracellular strategies to avoid recognition by the host, acting at three different levels. To avoid the accumulation of MAMP precursors (Level 1), microbes take advantage of polymorphisms in both MAMP proteins and glycans, or downregulate MAMP production. To reduce hydrolytic MAMP release (Level 2), microbes shield MAMP precursors with proteins or glycans and inhibit or degrade host-derived hydrolases. And to prevent MAMP perception directly (Level 3), microbes degrade or sequester MAMPs before they are perceived. We discuss examples of these nine strategies and envisage three additional extracellular strategies to avoid MAMP perception in plants.
Collapse
Affiliation(s)
- Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
5
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
6
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
7
|
Romero-Pérez A, Ameye M, Audenaert K, Van Damme EJM. Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:692606. [PMID: 34394146 PMCID: PMC8358183 DOI: 10.3389/fpls.2021.692606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a well-known pathogen and model organism used to study plant-pathogen interactions and subsequent plant immune responses. Numerous studies have demonstrated the effect of Pst DC3000 on Arabidopsis plants and how type III effectors are required to promote bacterial virulence and pathogenesis. F-Box Nictaba (encoded by At2g02360) is a stress-inducible lectin that is upregulated in Arabidopsis thaliana leaves after Pst DC3000 infection. In this study, a flood inoculation assay was optimized to check the performance of transgenic Arabidopsis seedlings with different expression levels of F-Box Nictaba after bacterial infection. Using a combination of multispectral and fluorescent imaging combined with molecular techniques, disease symptoms, transcript levels for F-Box Nictaba, and disease-related genes were studied in Arabidopsis leaves infected with two virulent strains: Pst DC3000 and its mutant strain, deficient in flagellin ΔfliC. Analyses of plants infected with fluorescently labeled Pst DC3000 allowed us to study the differences in bacterial colonization between plant lines. Overexpression plants showed a reduced bacterial content during the later stages of the infection. Our results show that overexpression of F-Box Nictaba resulted in reduced leaf damage after bacterial infections, whereas knockdown and knockout lines were not more susceptible to Pseudomonas infection than wild-type plants. In contrast to wild-type and knockout plants, overexpressing lines for F-Box Nictaba revealed a significant increase in anthocyanin content, better efficiency of photosystem II (Fv/Fm), and higher chlorophyll content after Pst DC3000 infection. Overexpression of F-Box Nictaba coincided with increased expression of salicylic acid (SA) related defense genes, confirming earlier data that showed that F-Box Nictaba is part of the SA-dependent defense against Pst DC3000 infection. Knockout lines yielded no discernible effects on plant symptoms after Pseudomonas infection suggesting possible gene redundancy between F-Box Nictaba genes.
Collapse
Affiliation(s)
- Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
- *Correspondence: Els J. M. Van Damme
| |
Collapse
|
8
|
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: Advancing on two frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:2-24. [PMID: 31846204 DOI: 10.1111/jipb.12898] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved multiple defense strategies to cope with pathogens, among which plant immune signaling that relies on cell-surface localized and intracellular receptors takes fundamental roles. Exciting breakthroughs were made recently on the signaling mechanisms of pattern recognition receptors (PRRs) and intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs). This review summarizes the current view of PRRs activation, emphasizing the most recent discoveries about PRRs' dynamic regulation and signaling mechanisms directly leading to downstream molecular events including mitogen-activated protein kinase (MAPK) activation and calcium (Ca2+ ) burst. Plants also have evolved intracellular NLRs to perceive the presence of specific pathogen effectors and trigger more robust immune responses. We also discuss the current understanding of the mechanisms of NLR activation, which has been greatly advanced by recent breakthroughs including structures of the first full-length plant NLR complex, findings of NLR sensor-helper pairs and novel biochemical activity of Toll/interleukin-1 receptor (TIR) domain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baomin Feng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Buscaill P, Chandrasekar B, Sanguankiattichai N, Kourelis J, Kaschani F, Thomas EL, Morimoto K, Kaiser M, Preston GM, Ichinose Y, van der Hoorn RAL. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 2019; 364:eaav0748. [PMID: 30975858 DOI: 10.1126/science.aav0748] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/12/2019] [Indexed: 11/02/2022]
Abstract
Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of Nicotiana benthamiana promotes hydrolytic elicitor release and acts in immunity against pathogenic Pseudomonas syringae strains only when they carry a terminal modified viosamine (mVio) in the flagellin O-glycan. In counter defense, P. syringae pathovars evade host immunity by using BGAL1-resistant O-glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.
Collapse
Affiliation(s)
- Pierre Buscaill
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Emma L Thomas
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Kyoko Morimoto
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Yuki Ichinose
- The Graduate School of Environmental and Life Science, Okayama University, Japan
| | | |
Collapse
|
10
|
Pseudomonas syringae pv. syringae B728a Regulates Multiple Stages of Plant Colonization via the Bacteriophytochrome BphP1. mBio 2017; 8:mBio.01178-17. [PMID: 29066541 PMCID: PMC5654926 DOI: 10.1128/mbio.01178-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Light may be an important environmental signal for plant-associated bacteria, particularly those that live on leaves. An integrated network of red/far-red- and blue-light-responsive photosensory proteins is known to inhibit swarming motility in the foliar plant pathogen Pseudomonas syringae pv. syringae B728a. Here we elucidated factors in the red/far-red-light-sensing bacteriophytochrome BphP1 signal transduction pathway and report evidence for a role of BphP1 in multiple stages of the P. syringae B728a life cycle. We report that BphP1 signaling involves the downstream regulator Bsi (bacteriophytochrome-regulated swarming inhibitor) and an acyl-homoserine lactone (AHL) signal. Loss of bphP1 or bsi resulted in the early initiation of swarm tendrils during swarming motility, a phenotype that was dependent on red/far-red light and reversed by exogenous AHL, illustrating that the BphP1-Bsi-AHL pathway inhibits the transition from a sessile state to a motile state. Loss of bphP1 or bsi resulted in larger water-soaked lesions induced on bean (Phaseolus vulgaris) pods and enhanced movement from soil and buried plant tissues to seeds, demonstrating that BphP1 and Bsi negatively regulate virulence and bacterial movement through soil to seeds. Moreover, BphP1, but not Bsi, contributed to leaf colonization; loss of bphP1 reduced survival on leaves immediately following inoculation but enhanced the size of the subsequently established populations. Neither Bsi nor Smp, a swarm motility-promoting regulator identified here, affected leaf colonization, indicating that BphP1-mediated contributions to leaf colonization are, at least in part, independent of swarming motility. These results demonstrate that P. syringae B728a red-light sensing involves a multicomponent, branched regulatory pathway that affects several stages of its life cycle. Microbes on plants are particularly well positioned to exploit light cues based on the importance of light to plant growth. Photosensory proteins enable organisms to sense light and respond to light, but their roles in the life cycles of plant microbes are poorly understood. This study investigated the cellular components and ecological roles of red/far-red-light sensing in the foliar bacterial pathogen Pseudomonas syringae. The study demonstrated that a bacteriophytochrome photosensory protein functions via a multicomponent, branched regulatory pathway that operates primarily through red/far-red-light-mediated inhibition. This pathway negatively regulates the transition from sessile to motile states under conditions conducive to swarming motility. It also negatively regulates virulence on bean pods, movement through soil to seeds, and survival following inoculation on leaves, but it positively contributes to the eventual establishment of leaf-borne populations. These results provide strong evidence that light sensing modulates behaviors at multiple stages in the life cycle of a nonphotosynthetic, plant microbe.
Collapse
|
11
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
12
|
De Maayer P, Cowan DA. Comparative genomic analysis of the flagellin glycosylation island of the Gram-positive thermophile Geobacillus. BMC Genomics 2016; 17:913. [PMID: 27842516 PMCID: PMC5109656 DOI: 10.1186/s12864-016-3273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/05/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Protein glycosylation involves the post-translational attachment of sugar chains to target proteins and has been observed in all three domains of life. Post-translational glycosylation of flagellin, the main structural protein of the flagellum, is a common characteristic among many Gram-negative bacteria and Archaea. Several distinct functions have been ascribed to flagellin glycosylation, including stabilisation and maintenance of the flagellar filament, motility, surface recognition, adhesion, and virulence. However, little is known about this trait among Gram-positive bacteria. RESULTS Using comparative genomic approaches the flagellin glycosylation loci of multiple strains of the Gram-positive thermophilic genus Geobacillus were identified and characterized. Eighteen of thirty-six compared strains of the genus carry these loci, which show evidence of horizontal acquisition. The Geobacillus flagellin glycosylation islands (FGIs) can be clustered into five distinct types, which are predicted to encode highly variable glycans decorated with distinct and heavily modified sugars. CONCLUSIONS Our comparative genomic analyses showed that, while not universal, flagellin glycosylation islands are relatively common among members of the genus Geobacillus and that the encoded flagellin glycans are highly variable. This suggests that flagellin glycosylation plays an important role in the lifestyles of members of this thermophilic genus.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|