1
|
Zang J, Yan B, Liu Z, Tang D, Liu Y, Chen J, Yin Z. Current state, challenges and future orientations of the applications of lactic acid bacteria exopolysaccharide in foods. Food Microbiol 2025; 126:104678. [PMID: 39638447 DOI: 10.1016/j.fm.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food. Despite their promising prospects, these polysaccharides face various application challenges in the food industry. These include variability in EPS production among LAB strains, complexity in structure-function relationships, and limited understanding of their health benefits. In order to address these issues, the review identifies and suggests future research directions to optimize the production of LAB-EPS, elucidating their health benefit mechanisms, and expanding their application scope. In summary, this review aims to contribute to advance innovation and progress in the food industry by developing healthier food options and deepening the understanding of LAB-EPS in promoting human health.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bingxu Yan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou, 510610, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
Guo W, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Chen W, Cui S. Improvement of inflammatory bowel disease by lactic acid bacteria-derived metabolites: a review. Crit Rev Food Sci Nutr 2023; 65:1261-1278. [PMID: 38078699 DOI: 10.1080/10408398.2023.2291188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Le TH, Thi Tran TV, Tran VK, Vu Ho XA, Tran TM, Chau Nguyen DG, Chuong Nguyen TH, Varma RS, Trinh TK, Ho TT, Hac Nguyen TB, Ahamad T, Nguyen CC, Le QV. Structural Characterization of Mannoglucan Isolated from Ophiocordyceps sobolifera and Its Antioxidant Activities. ACS OMEGA 2022; 7:9397-9405. [PMID: 35350314 PMCID: PMC8945084 DOI: 10.1021/acsomega.1c06651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
A novel polysaccharide structure (PS-T80) was collected from Ophiocordyceps sobolifera biomass and characterized via a combination of chemical and spectral analyses. Employing high-performance gel permeation chromatography (HPGPC), the average molecular weight is proven to be 7.4 × 104 Da. Furthermore, a sugar composition analysis of the obtained polysaccharide suggests two main sugars, β-d-glucose and α-d-mannose, at a molar ratio of 2:1, respectively, in the backbone. The structure analysis unveils that PS-T80 is a mannoglucan, possessing the repeating unit of [→3)-β-d-Glcp-(1 → 3)-α-d-Manp-(1 → 3)-β-d-Glcp-(1→] n . Such a configuration could be considered a novel polysaccharide. Impressively, in vitro antioxidant tests revealed that PS-T80 has a promising antioxidant activity. These results demonstrate that the obtained PS is a potential bioactive material for biomedical applications.
Collapse
Affiliation(s)
- Trung Hieu Le
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Thi Van Thi Tran
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Van Khoa Tran
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Xuan Anh Vu Ho
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Thanh Minh Tran
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Dang Giang Chau Nguyen
- Faculty
of Chemistry, Hue University of Sciences,
Hue University, Thua Thien
Hue 530000, Vietnam
| | - Thi Hong Chuong Nguyen
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty
of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tam Kiet Trinh
- Institute
of Microbiology and Biotechnologv, Hanoi
National University, Hanoi 100000, Vietnam
| | - Thanh-Tam Ho
- Institute
for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Tansir Ahamad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Chinh Chien Nguyen
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty
of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Quyet Van Le
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
| |
Collapse
|
4
|
Exopolysaccharides produced by Pediococcus acidilactici MT41-11 isolated from camel milk: Structural characteristics and bioactive properties. Int J Biol Macromol 2021; 185:1036-1049. [PMID: 34175337 DOI: 10.1016/j.ijbiomac.2021.06.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
In this study, the chemical structure and bioactive properties of the EPS of Pediococcus acidilactici MT41-11 isolated from camel milk were investigated. Two polysaccharide fractions (EPS-1, EPS-2) with molecular weights about 69.0 kDa were obtained, which were purified using DEAE-Sepharose and Sephadex G-100 chromatography. Based on monosaccharide composition, FT-IR, and 1D, 2D NMR spectra, concluded that EPS-1 had a backbone composed of →2)-α-d-Manp-(1→, →3)-α-d-Manp-(1→ and with branches containing α-d-Manp-(1→, EPS-2 had a backbone composed of →6)-β-d-Glcp-(1→, and with branches containing →2)-α-l-Fucp-(1→, →3)-α-d-Glcp-(1→, →2)-α-d-Glcp-(1→, β-d-Glcp-(1→, and α-d-Glcp-(1→. Remarkably, in vitro assays showed that EPS possessed multiple bioactive properties, including stimulating Lactobacillus growth and a high DPPH free radical scavenging activity. Also, it has a good ability to anti-biofilms. Overall, the analysis of all data showed EPS from P. acidilactici MT41-11 can be used as anti-oxidant, anti-biofilm agent, and also as a potential candidate prebiotic for health food or medicine industry.
Collapse
|
5
|
Chemical structure of a novel heteroglycan polysaccharide isolated from the biomass of Ophiocordyceps Sobolifera. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Butorac K, Novak J, Bellich B, Terán LC, Banić M, Leboš Pavunc A, Zjalić S, Cescutti P, Šušković J, Kos B. Lyophilized alginate-based microspheres containing Lactobacillus fermentum D12, an exopolysaccharides producer, contribute to the strain's functionality in vitro. Microb Cell Fact 2021; 20:85. [PMID: 33865380 PMCID: PMC8052780 DOI: 10.1186/s12934-021-01575-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus (Limosilactobacillus) fermentum D12 is an exopolysaccharide (EPS) producing strain whose genome contains a putative eps operon. Whole-genome analysis of D12 was performed to disclose the essential genes correlated with activation of precursor molecules, elongation and export of the polysaccharide chain, and regulation of EPS synthesis. These included the genes required for EPS biosynthesis such as epsA, B, C, D and E, also gt, wzx, and wzy and those involved in the activation of the precursor molecules galE, galT and galU. Both the biosynthesis and export mechanism of EPS were proposed based on functional annotation. When grown on MRS broth with an additional 2% w/v glucose, L. fermentum D12 secreted up to 200 mg/L of a mixture of EPSs, whose porous structure was visualized by scanning electron microscopy (SEM). Structural information obtained by 1HNMR spectroscopy together with composition and linkage analyses, suggested the presence of at least two different EPSs, a branched heteropolysaccharide containing t-Glcp and 2,6-linked Galf, and glycogen. Since recent reports showed that polysaccharides facilitate the probiotic-host interactions, we at first sought to evaluate the functional potential of L. fermentum D12. Strain D12 survived simulated gastrointestinal tract (GIT) conditions, exhibited antibacterial activity against enteropathogenic bacteria, adhered to Caco-2 cells in vitro, and as such showed potential for in vivo functionality. The EPS crude extract positively influenced D12 strain capacity to survive during freeze-drying and to adhere to extracellular matrix (ECM) proteins but did not interfere Caco-2 and mucin adherence when added at concentrations of 0.2, 0.5, and 1.0 mg/mL. Since the viable bacterial count of free D12 cells was 3 logarithmic units lower after the exposure to simulated GIT conditions than the initial count, the bacterial cells had been loaded into alginate for viability improvement. Microspheres of D12 cells, which were previously analyzed at SEM, significantly influenced their survival during freeze-drying and in simulated GIT conditions. Furthermore, the addition of the prebiotic substrates mannitol and lactulose improved the viability of L. fermentum D12 in freeze-dried alginate microspheres during 1-year storage at 4 °C compared to the control.
Collapse
Affiliation(s)
- Katarina Butorac
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Jasna Novak
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia.
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Lucrecia C Terán
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Martina Banić
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Slaven Zjalić
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000, Zadar, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Jagoda Šušković
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Blaženka Kos
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| |
Collapse
|
7
|
Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265:118080. [PMID: 33966844 DOI: 10.1016/j.carbpol.2021.118080] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
A neutral water-soluble polysaccharide (RLP50-2) was extracted and purified from the fruits of Rosa laevigata. The absolute molecular weight was determined as 1.26 × 104 g/mol. Monosaccharide composition analysis showed that RLP50-2 mainly consisted of glucose, arabinose, and galactose. Structural analysis revealed that RLP50-2 consisted of →5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →4)-α-D-Galp-(1→, →6)-β-D-Galp-(1→, →2)-β-D-Xylp-(1→, terminal α-L-arabinose, and terminal β-D-mannose. Biological assays showed that RLP50-2 had immunomodulatory activities using cell and zebrafish models. Moreover, RLP50-2 showed significantly antitumor activities by inhibiting tumor cell proliferation and migration and blocking angiogenesis. These results suggested that RLP50-2 could be developed as a potential immunomodulatory agent or antitumor candidate drug in biomedicine field.
Collapse
|
8
|
Birch J, Khan S, Madsen M, Kjeldsen C, Møller MS, Stender EGP, Peters GJ, Duus JØ, Kragelund BB, Svensson B. Binding Sites for Oligosaccharide Repeats from Lactic Acid Bacteria Exopolysaccharides on Bovine β-Lactoglobulin Identified by NMR Spectroscopy. ACS OMEGA 2021; 6:9039-9052. [PMID: 33842774 PMCID: PMC8028130 DOI: 10.1021/acsomega.1c00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 05/26/2023]
Abstract
Lactic acid bacterial exopolysaccharides (EPS) are used in the food industry to improve the stability and rheological properties of fermented dairy products. β-Lactoglobulin (BLG), the dominant whey protein in bovine milk, is well known to bind small molecules such as fatty acids, vitamins, and flavors, and to interact with neutral and anionic polysaccharides used in food and pharmaceuticals. While sparse data are available on the affinity of EPS-milk protein interactions, structural information on BLG-EPS complexes, including the EPS binding sites, is completely lacking. Here, binding sites on BLG variant A (BLGA), for oligosaccharides prepared by mild acid hydrolysis of two EPS produced by Streptococcus thermophilus LY03 and Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187, respectively, are identified by NMR spectroscopy and supplemented by isothermal titration calorimetry (ITC) and molecular docking of complexes. Evidence of two binding sites (site 1 and site 2) on the surface of BLGA is achieved for both oligosaccharides (LY03-OS and 1187-OS) through NMR chemical shift perturbations, revealing multivalency of BLGA for EPS. The affinities of LY03-OS and 1187-OS for BLGA gave K D values in the mM range obtained by both NMR (pH 2.65) and ITC (pH 4.0). Molecular docking suggested that the BLGA and EPS complexes depend on hydrogen bonds and hydrophobic interactions. The findings provide insights into how BLGA engages structurally different EPS-derived oligosaccharides, which may facilitate the design of BLG-EPS complexation, of relevance for formulation of dairy products and improve understanding of BLGA coacervation.
Collapse
Affiliation(s)
- Johnny Birch
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Sanaullah Khan
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Madsen
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Kjeldsen
- NMR
Spectroscopy, Department of Chemistry, Technical
University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Emil G. P. Stender
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Günther
H. J. Peters
- Biophysical
and Biomedicinal Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet 206, DK-2800
Kgs. Lyngby, Denmark
| | - Jens Ø. Duus
- NMR
Spectroscopy, Department of Chemistry, Technical
University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Birthe B. Kragelund
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Lactobacillus fermentum: Could EPS production ability be responsible for functional properties? Food Microbiol 2020; 90:103465. [DOI: 10.1016/j.fm.2020.103465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/02/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
|
10
|
Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Do TBT, Tran TAL, Tran TVT, Le TH, Jayasena V, Nguyen THC, Nguyen CC, Kim SY, Le QV. Novel Exopolysaccharide Produced from Fermented Bamboo Shoot-Isolated Lactobacillus Fermentum. Polymers (Basel) 2020; 12:polym12071531. [PMID: 32664338 PMCID: PMC7407396 DOI: 10.3390/polym12071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed at providing a route towards the production of a novel exopolysaccharide (EPS) from fermented bamboo shoot-isolated Lactobacillus fermentum. A lactic acid bacteria strain, with high EPS production ability, was isolated from fermented bamboo shoots. This strain, R-49757, was identified in the BCCM/LMG Bacteria Collection, Ghent University, Belgium by the phenylalanyl-tRNA synthetase gene sequencing method, and it was named Lb. fermentum MC3. The molecular mass of the EPS measured via gel permeation chromatography was found to be 9.85 × 104 Da. Moreover, the monosaccharide composition in the EPS was analyzed by gas chromatography–mass spectrometry. Consequently, the EPS was discovered to be a heteropolysaccharide with the appearance of two main sugars—D-glucose and D-mannose—in the backbone. The results of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance spectroscopy analyses prove the repeating unit of this polysaccharide to be [→6)-β-D-Glcp-(1→3)-β-D-Manp-(1→6)-β-D-Glcp-(1→]n, which appears to be a new EPS. The obtained results open up an avenue for the production of novel EPSs for biomedical applications.
Collapse
Affiliation(s)
- Thi Bich Thuy Do
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | | | - Thi Van Thi Tran
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam; (T.V.T.T.); (T.H.L.)
| | - Trung Hieu Le
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam; (T.V.T.T.); (T.H.L.)
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, NSW 2751 Penrith, Australia;
| | - Thi Hong Chuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| |
Collapse
|
12
|
Liao N, Pang B, Jin H, Xu X, Yan L, Li H, Shao D, Shi J. Potential of lactic acid bacteria derived polysaccharides for the delivery and controlled release of oral probiotics. J Control Release 2020; 323:110-124. [DOI: 10.1016/j.jconrel.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
|
13
|
Mengi B, Ikeda S, Murayama D, Bochimoto H, Matsumoto S, Kitazawa H, Urashima T, Fukuda K. Factors affecting decreasing viscosity of the culture medium during the stationary growth phase of exopolysaccharide-producing Lactobacillus fermentum MTCC 25067. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:160-168. [PMID: 32775135 PMCID: PMC7392921 DOI: 10.12938/bmfh.2019-051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022]
Abstract
Lactobacillus fermentum MTCC 25067 produces a hetero-exopolysaccharide (HePS) when cultured which forms supramolecular networks in the culture medium, increasing
the viscosity. In the present study, the viscosity of the bacterial culture reached its maximum at 48 hr of cultivation and then decreased during a stationary growth phase lasting
for up to 144 hr. The monosaccharide composition did not change during the stationary growth phase, whereas degradation of HePS molecules was noticeable, leading to partial
disintegration of their supramolecular networks. The viscosity values of the HePS purified from the culture and dissolved in a fresh medium indicated little contribution of medium
components to the viscosity. Absence of the apparent network structure of the HePS in the surrounding area of bacterial cells was observed during the late growth phase, supporting
the idea that the decreases in culture viscosity during the prolonged period of cultivation were caused mainly by reduced interactions between bacterial cells and the intact
supramolecular networks as a consequence of decreasing bacterial cell wall integrity and partial degradation of HePS molecules.
Collapse
Affiliation(s)
- Bharat Mengi
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Shinya Ikeda
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Current address: Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Daiki Murayama
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Current address: Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Shinpei Matsumoto
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 984-0051, Japan
| | - Tadasu Urashima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kenji Fukuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
14
|
Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. A Glacier Bacterium Produces High Yield of Cryoprotective Exopolysaccharide. Front Microbiol 2020; 10:3096. [PMID: 32117080 PMCID: PMC7026135 DOI: 10.3389/fmicb.2019.03096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35°C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15°C, pH 6, NaCl (10 g L-1), glucose as carbon source (100 g L-1), yeast extract as nitrogen source (10 g L-1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L-1, which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Collapse
Affiliation(s)
- Pervaiz Ali
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Munich, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
15
|
Wei Y, Li F, Li L, Huang L, Li Q. Genetic and Biochemical Characterization of an Exopolysaccharide With in vitro Antitumoral Activity Produced by Lactobacillus fermentum YL-11. Front Microbiol 2019; 10:2898. [PMID: 31921073 PMCID: PMC6929415 DOI: 10.3389/fmicb.2019.02898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
In the present study, the whole genome sequence of Lactobacillus fermentum YL-11, a novel exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) strain isolated from fermented milk, was determined. Genetic information and the synthetic mechanism of the EPS in L. fermentum YL-11 were identified based on bioinformatic analysis of the complete genome. The purified EPS of YL-11 mainly comprised galactose (48.0%), glucose (30.3%), mannose (11.8%), and arabinose (6.0%). In vitro, the EPS from YL-11 exhibited inhibition activity against HT-29 and Caco-2 colon cancer cells, suggesting that EPS from strain YL-11 might be used as an antitumoral agent. EPS at 600 and 800 μg/mL achieved inhibition rates of 46.5 ± 3.5% and 45.6 ± 6.1% to HT-29 cells, respectively. The genomic information about L. fermentum YL-11 and the antitumoral activity of YL-11 EPS provide a theoretical foundation for the future application of EPS in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Le Li
- Department of Environmental and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| |
Collapse
|
16
|
Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Abstract
Production of exopolysaccharides by lactic acid bacteria is a common phenomenon. Structural information of these widely diverse biopolymers is rendered by the monosaccharide composition, the anomeric configurations, the type of glycosidic linkages, the presence of repeating units and noncarbohydrate substituents, and finally the presentation of a chemical molecular structure or composite model. The detailed structural analysis of polysaccharides is a time-consuming pursuit, including the use of different techniques, such as chemical degradation methods (e.g., hydrolysis), separation methods (e.g., SEC-chromatography and HPLC/HPAEC), and identification methods (e.g., GLC-EIMS and 1H/13C NMR spectroscopy). In this chapter, some analytical methods are described and demonstrated for two different exopolysaccharides from lactic acid bacteria.
Collapse
Affiliation(s)
- Gerrit J Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Ikeda S, Murayama D, Tsurumaki A, Sato S, Urashima T, Fukuda K. Rheological characteristics and supramolecular structure of the exopolysaccharide produced by Lactobacillus fermentum MTCC 25067. Carbohydr Polym 2019; 218:226-233. [PMID: 31221325 DOI: 10.1016/j.carbpol.2019.04.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Rheological properties and supramolecular structure of the exopolysaccharide (EPS) secreted by Lactobacillus fermentum MTCC 25067 were investigated. The critical concentration representing the lower-limit of the semi-dilute regime was estimated to be 0.71 g/L from the concentration dependence of zero-shear specific viscosity. The storage modulus (G') of a 20 g/L EPS solution was greater than the loss modulus (G″) at 0.1-25 Hz. Approximately linear increases in G' and G″ determined at a frequency of 1 Hz and a strain of 0.01 during cooling from 80 to 25 °C were an indication that the EPS did not undergo thermally-induced cooperative conformational transitions typical of gelling polysaccharides. Atomic force microscopy images revealed that EPS molecules were not completely dissociated into individual molecules in an aqueous solution but remained to form three-dimensional networks. The gel-like dynamic viscoelasticity of the 20 g/L EPS solution was thus attributed to the existence of supramolecular assemblies resulting from significant degrees of intermolecular association of the EPS in the solution.
Collapse
Affiliation(s)
- Shinya Ikeda
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Daiki Murayama
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Akane Tsurumaki
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Shoya Sato
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Tadasu Urashima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Kenji Fukuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
19
|
Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr Polym 2019; 207:317-332. [DOI: 10.1016/j.carbpol.2018.11.093] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|
20
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
22
|
DI W, ZHANG YC, YI HX, HAN X, WANG SM, ZHANG LW. Research Methods for Structural Analysis of Lactic Acid Bacteria Induced Exopolysaccharides. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Komba S, Tsuzuki W. Synthesis of the Branched Tetrasaccharide Repeating Unit ofLactobacillus fermentumTDS030603 and Its Regioisomer. ChemistrySelect 2017. [DOI: 10.1002/slct.201702028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shiro Komba
- Food Component Analysis Unit; Food Research Institute, NARO, 2-1-12, Kannondai; Tsukuba, Ibaraki 305-8642 Japan
| | - Wakako Tsuzuki
- Food Component Analysis Unit; Food Research Institute, NARO, 2-1-12, Kannondai; Tsukuba, Ibaraki 305-8642 Japan
| |
Collapse
|
24
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
25
|
Complete Genome Sequence of Lactobacillus fermentum MTCC 25067 (Formerly TDS030603), a Viscous Exopolysaccharide-Producing Strain Isolated from Indian Fermented Milk. GENOME ANNOUNCEMENTS 2017; 5:5/13/e00091-17. [PMID: 28360165 PMCID: PMC5374239 DOI: 10.1128/genomea.00091-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lactobacillus fermentum MTCC 25067 (formerly TDS030603) is capable of producing a highly viscous slime exopolysaccharide. We report here the complete genome sequence of the strain, which was deciphered by using PacBio single-molecule real-time sequencing technology.
Collapse
|