1
|
de Paiva RE, Johnson WE, Gorle AK, Berners-Price SJ, Farrell NP. Metalloglycomics of tris(2,2′-bipyridyl) cobalt and ruthenium compounds. J Inorg Biochem 2022; 229:111731. [DOI: 10.1016/j.jinorgbio.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
2
|
Litov L, Petkov P, Rangelov M, Ilieva N, Lilkova E, Todorova N, Krachmarova E, Malinova K, Gospodinov A, Hristova R, Ivanov I, Nacheva G. Molecular Mechanism of the Anti-Inflammatory Action of Heparin. Int J Mol Sci 2021; 22:10730. [PMID: 34639073 PMCID: PMC8509397 DOI: 10.3390/ijms221910730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Our objective is to reveal the molecular mechanism of the anti-inflammatory action of low-molecular-weight heparin (LMWH) based on its influence on the activity of two key cytokines, IFNγ and IL-6. The mechanism of heparin binding to IFNγ and IL-6 and the resulting inhibition of their activity were studied by means of extensive molecular-dynamics simulations. The effect of LMWH on IFNγ signalling inside stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. We found that LMWH binds with high affinity to IFNγ and is able to fully inhibit the interaction with its cellular receptor. It also influences the biological activity of IL-6 by binding to either IL-6 or IL-6/IL-6Rα, thus preventing the formation of the IL-6/IL-6Rα/gp130 signalling complex. These findings shed light on the molecular mechanism of the anti-inflammatory action of LMWH and underpin its ability to influence favourably conditions characterised by overexpression of these two cytokines. Such conditions are not only associated with autoimmune diseases, but also with inflammatory processes, in particular with COVID-19. Our results put forward heparin as a promising means for the prevention and suppression of severe CRS and encourage further investigations on its applicability as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Leandar Litov
- Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5, James Bourchier Blvd, 1164 Sofia, Bulgaria;
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5, James Bourchier Blvd, 1164 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofi, Bulgaria; (N.I.); (E.L.)
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofi, Bulgaria; (N.I.); (E.L.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Gagarin Street, 1113 Sofia, Bulgaria;
| | - Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Kristina Malinova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Anastas Gospodinov
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Rossitsa Hristova
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Ivan Ivanov
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| | - Genoveva Nacheva
- Institute of Molecular Biology “Roumen Tsanev”,Bulgarian Academy of Sciences, 21, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.K.); (K.M.); (A.G.); (R.H.); (I.I.); (G.N.)
| |
Collapse
|
3
|
Green AR, Li K, Lockard B, Young RP, Mueller LJ, Larive CK. Investigation of the Amide Proton Solvent Exchange Properties of Glycosaminoglycan Oligosaccharides. J Phys Chem B 2019; 123:4653-4662. [PMID: 31067054 DOI: 10.1021/acs.jpcb.9b01794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One-dimensional 1H NMR experiments were conducted for aqueous solutions of glycosaminoglycan oligosaccharides to measure the amide proton temperature coefficients and activation energy barriers for solvent exchange and evaluate the effect of pH on the solvent exchange properties. A library of mono- and oligosaccharides was prepared by enzymatic depolymerization of amide-containing polysaccharides and by chemical modification of heparin and heparan sulfate saccharides including members that contain a 3- O-sulfated glucosamine residue. The systematic evaluation of this saccharide library facilitated assessment of the effects of structural characteristics, such as size, sulfation number and site, and glycosidic linkage, on amide proton solvent exchange rates. Charge repulsion by neighboring negatively charged sulfate and carboxylate groups was found to have a significant impact on the catalysis of amide proton solvent exchange by hydroxide. This observation leads to the conclusion that solvent exchange rates must be interpreted within the context of a given chemical environment. On their own, slow exchange rates do not conclusively establish the involvement of a labile proton in a hydrogen bond, and additional supporting experimental evidence such as reduced temperature coefficients is required.
Collapse
Affiliation(s)
- Andrew R Green
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Kecheng Li
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology , Chinese Academy of Sciences , Qingdao 266071 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Blake Lockard
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Robert P Young
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Leonard J Mueller
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Cynthia K Larive
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| |
Collapse
|
4
|
Highly selective simultaneous trace determination of Cd2+ and Pb2+ using porous graphene/carboxymethyl cellulose/fondaparinux nanocomposite modified electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Gao Q, Yang JY, Moremen KW, Flanagan JG, Prestegard JH. Structural Characterization of a Heparan Sulfate Pentamer Interacting with LAR-Ig1-2. Biochemistry 2018; 57:2189-2199. [PMID: 29570275 DOI: 10.1021/acs.biochem.8b00241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukocyte common antigen-related (LAR) protein is one of the type IIa receptor protein tyrosine phosphatases (RPTPs) that are important for signal transduction in biological processes, including axon growth and regeneration. Glycosaminoglycan chains, including heparan sulfate (HS) and chondroitin sulfate (CS), act as ligands that regulate LAR signaling. Here, we report the structural characterization of the first two immunoglobulin domains (Ig1-2) of LAR interacting with an HS pentasaccharide (GlcNS6S-GlcA-GlcNS3,6S-IdoA2S-GlcNS6S-OME, fondaparinux) using multiple solution-based NMR methods. In the course of the study, we extended an assignment strategy useful for sparsely labeled proteins expressed in mammalian cell culture supplemented with a single type of isotopically enriched amino acid ([15N]-Lys in this case) by including paramagnetic perturbations to NMR resonances. The folded two-domain structure for LAR-Ig1-2 seen in previous crystal structures has been validated in solution using residual dipolar coupling data, and a combination of chemical shift perturbation on titration of LAR-Ig1-2 with fondaparinux, saturation transfer difference (STD) spectra, and transferred nuclear Overhauser effects (trNOEs) have been employed in the docking program HADDOCK to generate models for the LAR-fondaparinux complex. These models are further analyzed by postprocessing energetic analysis to identify key binding interactions. In addition to providing insight into the ligand interaction mechanisms of type IIa RPTPs and the origin of opposing effects of CS and HS ligands, these results may assist in future design of therapeutic compounds for nervous system repair.
Collapse
Affiliation(s)
- Qi Gao
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - James H Prestegard
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
6
|
Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, Linhardt RJ, Liu J, Morris T, Mulloy B, Nasr M, Shriver Z, Torralba P, Viskov C, Williams R, Woodcock J, Workman W, Al-Hakim A. The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol 2017; 34:625-30. [PMID: 27281424 DOI: 10.1038/nbt.3606] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The contamination of the widely used lifesaving anticoagulant drug heparin in 2007 has drawn renewed attention to the challenges that are associated with the characterization, quality control and standardization of complex biological medicines from natural sources. Heparin is a linear, highly sulfated polysaccharide consisting of alternating glucosamine and uronic acid monosaccharide residues. Heparin has been used successfully as an injectable antithrombotic medicine since the 1930s, and its isolation from animal sources (primarily porcine intestine) as well as its manufacturing processes have not changed substantially since its introduction. The 2007 heparin contamination crisis resulted in several deaths in the United States and hundreds of adverse reactions worldwide, revealing the vulnerability of a complex global supply chain to sophisticated adulteration. This Perspective discusses how the US Food and Drug Administration (FDA), the United States Pharmacopeial Convention (USP) and international stakeholders collaborated to redefine quality expectations for heparin, thus making an important natural product better controlled and less susceptible to economically motivated adulteration.
Collapse
Affiliation(s)
- Anita Y Szajek
- Biologics and Biotechnology Department, US Pharmacopeia, Rockville, Maryland, USA
| | - Edward Chess
- Structure Elucidation/Technology Resources, Baxter Healthcare Corporation, Round Lake, Illinois, USA
| | | | - Gyöngyi Gratzl
- Boehringer Ingelheim, Ben Venue Laboratories, Inc., Bedford, Ohio, USA
| | - Elaine Gray
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | - David Keire
- US Food and Drug Administration/Division of Pharmaceutical Analysis, St. Louis, Missouri, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tina Morris
- Biologics and Biotechnology Department, US Pharmacopeia, Rockville, Maryland, USA
| | - Barbara Mulloy
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK.,Institute of Pharmaceutical Science King's College London, Franklin Wilkins Building, Waterloo Campus, London, UK
| | - Moheb Nasr
- R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Zachary Shriver
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences &Technology, Koch institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pearle Torralba
- Product Development - Analytical Innovation and Development, Fresenius Kabi USA, Skokie, Illinois, USA
| | | | | | - Janet Woodcock
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wesley Workman
- Pfizer Quality Operations Biotech, Chesterfield, Missouri, USA
| | - Ali Al-Hakim
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Ustyuzhanina NE, Dmitrenok AS, Bilan MI, Shashkov AS, Gerbst AG, Usov AI, Nifantiev NE. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates. Carbohydr Res 2016; 423:82-5. [DOI: 10.1016/j.carres.2016.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/19/2016] [Accepted: 01/30/2016] [Indexed: 01/15/2023]
|
8
|
Hricovíni M, Driguez PA, Malkina OL. NMR and DFT analysis of trisaccharide from heparin repeating sequence. J Phys Chem B 2014; 118:11931-42. [PMID: 25254635 DOI: 10.1021/jp508045n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
NMR and density functional theory (DFT) have afforded detailed information on the molecular geometry and spin-spin coupling constants of a trisaccharide from the heparin repeating-sequence. The fully optimized molecular structures of two trisaccharide conformations (differing from each other in the form of the central iduronic acid residue) were obtained using the B3LYP/6-311+G(d,p) level of theory in the presence of solvent, the latter included as either explicit water molecules or via a continuum solvent model. NMR spin-spin coupling constants were also computed using various basis sets and functionals and then compared with measured experimental values. Optimized structures for both conformers showed differences in geometry at the glycosidic linkages and in the formation of intramolecular hydrogen bonds. Three-bond proton-proton coupling constants ((3)JH-C-C-H), based on fully optimized geometry computed using the B3LYP/6-311+G(d,p)/UFF level of theory and hydrated with 57 water molecules, showed that the best agreement with experiment was obtained with the 6-311+G(d,p) basis set and a weighted average of 55:45 ((1)C4:(2)S0) of the IdoA2S forms. Other basis sets, DGDZVP and TZVP, also gave acceptable data for most coupling constants, with DGDZVP outperforming the TZVP. Detailed analysis of Fermi-contact contributions to (3)JH-C-C-H showed that important contributions arise from oxygen at both glycosidic linkages, as well as from oxygen atoms on the neighboring monosaccharide units. Their contribution to the Fermi term cannot be neglected and must be taken into account for a correct description of coupling constants. The analysis also showed that the magnitude of paramagnetic (PSO) and diamagnetic (DSO) spin-orbit contributions is comparable to the magnitude of the Fermi-contact contribution in some coupling constants in the IdoA2S residue. Calculations of the localized molecular orbital contributions to the DSO terms from separate conformational residues showed that the contribution from adjacent residues is not negligible and can be important for the spin-spin coupling constants between protons located close to the geometrical center of the molecule. These contributions should be taken into account when interpreting DSO terms in spin-spin coupling constants especially in large molecules.
Collapse
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences , 845 38 Bratislava, Slovakia
| | | | | |
Collapse
|
9
|
Fu L, Zhang F, Li G, Onishi A, Bhaskar U, Sun P, Linhardt RJ. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration. J Pharm Sci 2014; 103:1375-83. [PMID: 24634007 PMCID: PMC3998821 DOI: 10.1002/jps.23939] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/09/2022]
Abstract
The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity.
Collapse
Affiliation(s)
- Li Fu
- Department of Biotechnology, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China; Department of Chemistry and Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | | | | | | | | | | | | |
Collapse
|