1
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
2
|
Lin J, Sun B, Zhang H, Yang X, Qu X, Zhang L, Chen C, Sun D. The biosynthesis of amidated bacterial cellulose derivatives via in-situ strategy. Int J Biol Macromol 2023:124831. [PMID: 37245762 DOI: 10.1016/j.ijbiomac.2023.124831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Bacterial cellulose, as a kind of natural biopolymer produced by bacterial fermentation, has attracted wide attention owing its unique physical and chemical properties. Nevertheless, the single functional group on the surface of BC greatly hinders its wider application. The functionalization of BC is of great significance to broaden the application of BC. In this work, N-acetylated bacterial cellulose (ABC) was successfully prepared using K. nataicola RZS01-based direct synthetic method. FT-IR, NMR and XPS confirmed the in-situ modification of BC by acetylation. The SEM and XRD results demonstrated that ABC has a lower crystallinity and higher fiber width compare with pristine 88 BCE % cell viability on NIH-3 T3 cell and near zero hemolysis ratio indicate its good biocompatibility. In addition, the as-prepared acetyl amine modified BC was further treated by nitrifying bacteria to enrich its functionalized diversity. This study provides a mild in-situ pathway to construct BC derivatives in an environmentally friendly way during its metabolism.
Collapse
Affiliation(s)
- Jianbin Lin
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xiao Qu
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
3
|
Engineering Bifidobacterium longum Endo-α-N-acetylgalactosaminidase for Neu5Acα2-3Galβ1-3GalNAc reactivity on Fetuin. Arch Biochem Biophys 2022; 725:109280. [DOI: 10.1016/j.abb.2022.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
4
|
Hansen AL, Koivisto JM, Simonsen S, Dong Z, Crehuet R, Hansen DK, Willemoës M. Identification of a Catalytic Nucleophile-Activating Network in the endo -α -N-Acetylgalactosaminidase of Family GH101. Biochemistry 2021; 60:3398-3407. [PMID: 34694774 DOI: 10.1021/acs.biochem.1c00596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bifidobacterium longum endo-α-N-acetylgalactosaminidase (GH101), EngBF, is highly specific toward the mucin Core 1 glycan, Galβ1-3GalNAc. Apart from the side chains involved in the retaining mechanism of EngBF, Asp-682 is important for the activity. In the crystal structures of both EngBF and EngSP (from Streptococcus pneumoniae), we identified a conserved water molecule in proximity to Asp-682 and the homologue residue in EngSP. The water molecule also coordinates the catalytic nucleophile and three other residues conserved in GH101 enzymes; in EngBF, these residues are His-685, His-718, and Asn-720. With casein-glycomacropeptide as the substrate, the importance of Asp-682 was confirmed by the lack of a detectable activity for the D682N enzyme. The enzyme variants, H685A, H718A, H685Q, and H718Q, all displayed only a modestly reduction in kcat of up to 15 fold for the H718A variant. However, the double-substituted variants, H685A/H718A and H685Q/H718Q, had a greatly reduced kcat value by about 200 fold compared to that of wild-type EngBF. With the synthetic substrate, Galβ(1-3)GalNAcα1-para-nitrophenol, kcat of the double-substituted variants was only up to 30-fold reduced and was found to increase with pH. Compared to the pre-steady-state kinetics of wild-type EngBF, a burst of about the size of the enzyme concentration was absent with the double-substituted EngBF variants, indicating that the nucleophilic attack had become at least as slow as the hydrolysis of the enzyme intermediate. Together, the results indicate that not only Asp-682 but also the entire conserved network of His-685, His-718, and what we suggest is a catalytic water molecule is important in the activation of the catalytic nucleophile.
Collapse
Affiliation(s)
- Anders Lønstrup Hansen
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Johanna M Koivisto
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Signe Simonsen
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Zehui Dong
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Dennis K Hansen
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Martin Willemoës
- Linderstrøm-Lang Centre, Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández Á. Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 2021; 30:1277-1291. [PMID: 34721924 DOI: 10.1007/s10068-021-00957-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bifidobacterial proteins have been widely studied to elucidate the metabolic mechanisms of diet adaptation and survival of Bifidobacteria, among others. The use of heterologous expression systems to obtain proteins in sufficient quantities to be characterized has been essential in these studies. L. lactis and the same Bifidobacterium as expression systems highlight ways to corroborate some of the functions attributed to these proteins. The most studied proteins are enzymes related to carbohydrate metabolism, particularly glycosidases, due to their potential application in the synthesis of neoglycoconjugates, prebiotic neooligosaccharides, and active metabolites as well as their high specificity and efficiency in processing glycoconjugates. In this review, we classified the recombinant bifidobacterial proteins reported to date whose characterization has demonstrated their usefulness or their ability to produce a product of commercial interest for the food industry, biomedicine, process innovation and glycobiology. Future directions for their study are also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00957-1.
Collapse
Affiliation(s)
- José A Morales-Contreras
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Jessica E Rodríguez-Pérez
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Isela E Juárez-Rojop
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico.,Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| |
Collapse
|
6
|
Wardman JF, Rahfeld P, Liu F, Morgan-Lang C, Sim L, Hallam SJ, Withers SG. Discovery and Development of Promiscuous O-Glycan Hydrolases for Removal of Intact Sialyl T-Antigen. ACS Chem Biol 2021; 16:2004-2015. [PMID: 34309358 DOI: 10.1021/acschembio.1c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mucin-type O-glycosylation (O-glycosylation) is a common post-translational modification that confers distinct biophysical properties to proteins and plays crucial roles in intercellular signaling. Yet, despite the importance of O-glycans, relatively few tools exist for their analysis and modification. In particular, there is a need for enzymes that can cleave the wide range of O-glycan structures found on protein surfaces, to facilitate glycan profiling and editing. Through functional metagenomic screening of the human gut microbiome, we discovered endo-O-glycan hydrolases from CAZy family GH101 that are capable of slowly cleaving the intact sialyl T-antigen trisaccharide (a ubiquitous O-glycan structure in humans) in addition to their primary activity against the T-antigen disaccharide. We then further explored this sequence space through phylogenetic profiling and analysis of representative enzymes, revealing large differences in the levels of this promiscuous activity between enzymes within the family. Through structural and sequence analysis, we identified active site residues that modulate specificity. Through subsequent rational protein engineering, we improved the activity of an enzyme identified by phylogenetic profiling sufficiently that substantial removal of the intact sialyl T-antigen from proteins could be readily achieved. Our best sialyl T-antigen hydrolase mutant, SpGH101 Q868G, is further shown to function on a number of proteins, tissues, and cells. Access to this enzyme opens up improved methodologies for unraveling the glycan code.
Collapse
Affiliation(s)
- Jacob F. Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Feng Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lyann Sim
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephen G. Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Kulinich A, Wang Q, Duan XC, Lyu YM, Zhang XY, Awad FN, Liu L, Voglmeir J. Biochemical characterization of the endo-α-N-acetylgalactosaminidase pool of the human gut symbiont Tyzzerella nexilis. Carbohydr Res 2020; 490:107962. [PMID: 32169671 DOI: 10.1016/j.carres.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
Abstract
Three large (2084-, 984-, and 2104-amino acids) endo-α-N-acetylgalactosaminidase candidate genes from the commensal human gut bacterium Tyzzerella nexilis were successfully cloned and subsequently expressed in Escherichia coli. Activity tests of the purified proteins revealed that two of the candidate genes (Tn0153 and Tn2105) were able to hydrolyze the disaccharide unit from Galβ1-3GalNAc-α-pNP. The biochemical characterization revealed optimum pH conditions of 4.0 for both enzymes and temperature optima of 50 °C. The addition of 2-mercaptoethanol, Triton X-100 and urea had only minor effects on the activity of the enzymes, and the addition of imidazole and sodium dodecyl sulfate led to a significant reduction of the enzymes' activities. A mutational study identified and confirmed the role of the catalytically significant amino acids. The present study describes the first functional characterization of members of the GH101 family from this human gut symbiont.
Collapse
Affiliation(s)
- Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qian Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xu-Chu Duan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiao-Yang Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Faisal Nureldin Awad
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|