1
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
2
|
Li K, Barrett K, Agger JW, Zeuner B, Meyer AS. Bioinformatics-based identification of GH12 endoxyloglucanases in citrus-pathogenic Penicillium spp. Enzyme Microb Technol 2024; 178:110441. [PMID: 38574421 DOI: 10.1016/j.enzmictec.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.
Collapse
Affiliation(s)
- Kai Li
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
3
|
Martínez Gascueña A, Wu H, Wang R, Owen CD, Hernando PJ, Monaco S, Penner M, Xing K, Le Gall G, Gardner R, Ndeh D, Urbanowicz PA, Spencer DIR, Walsh M, Angulo J, Juge N. Exploring the sequence-function space of microbial fucosidases. Commun Chem 2024; 7:137. [PMID: 38890439 PMCID: PMC11189522 DOI: 10.1038/s42004-024-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Microbial α-L-fucosidases catalyse the hydrolysis of terminal α-L-fucosidic linkages and can perform transglycosylation reactions. Based on sequence identity, α-L-fucosidases are classified in glycoside hydrolases (GHs) families of the carbohydrate-active enzyme database. Here we explored the sequence-function space of GH29 fucosidases. Based on sequence similarity network (SSN) analyses, 15 GH29 α-L-fucosidases were selected for functional characterisation. HPAEC-PAD and LC-FD-MS/MS analyses revealed substrate and linkage specificities for α1,2, α1,3, α1,4 and α1,6 linked fucosylated oligosaccharides and glycoconjugates, consistent with their SSN clustering. The structural basis for the substrate specificity of GH29 fucosidase from Bifidobacterium asteroides towards α1,6 linkages and FA2G2 N-glycan was determined by X-ray crystallography and STD NMR. The capacity of GH29 fucosidases to carry out transfucosylation reactions with GlcNAc and 3FN as acceptors was evaluated by TLC combined with ESI-MS and NMR. These experimental data supported the use of SSN to further explore the GH29 sequence-function space through machine-learning models. Our lightweight protein language models could accurately allocate test sequences in their respective SSN clusters and assign 34,258 non-redundant GH29 sequences into SSN clusters. It is expected that the combination of these computational approaches will be used in the future for the identification of novel GHs with desired specificities.
Collapse
Affiliation(s)
- Ana Martínez Gascueña
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Haiyang Wu
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- GuangDong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Wang
- Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
- Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - C David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Pedro J Hernando
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Iceni Glycoscience Ltd., Norwich Research Park, Norwich, NR4 7JG, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew Penner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Ke Xing
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Gwenaelle Le Gall
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Didier Ndeh
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- University of Dundee, School of Life Sciences, Dundee, DD1 5EH, Scotland, UK
| | | | | | - Martin Walsh
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Departamento de Química Orgánica, Universidad de Sevilla, 41012, Sevilla, Spain
- Instituto de Investigaciones Químicas (CSIC-US), 41092, Sevilla, Spain
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
4
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Bioinformatics and functional selection of GH77 4-α-glucanotransferases for potato starch modification. N Biotechnol 2024; 79:39-49. [PMID: 38097138 DOI: 10.1016/j.nbt.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; KMC, Brande, Denmark
| | - Michael Schmidt Madsen
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Signe Schram Zinck
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; KMC, Brande, Denmark
| | | | | | - Birte Svensson
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Tran VHN, Mikkelsen MD, Truong HB, Vo HNM, Pham TD, Cao HTT, Nguyen TT, Meyer AS, Thanh TTT, Van TTT. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva papenfussii. Mar Drugs 2023; 21:556. [PMID: 37999380 PMCID: PMC10672449 DOI: 10.3390/md21110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Ulvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed Ulva papenfussii. U. papenfussii is an unexplored Ulva species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (w/w) and the ulvan had a sulfate content of 13.4 wt%. The compositional constitution encompassed L-Rhamnose (Rhap), D-Xylose (Xylp), D-Glucuronic acid (GlcAp), L-Iduronic acid (IdoAp), D-Galactose (Galp), and D-Glucose (Glcp) with a molar ratio of 1:0.19:0.35:0.52:0.05:0.11, respectively. The structure of ulvan was determined using High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear Magnetic Resonance spectroscopy (NMR) methods. The results showed that the extracted ulvan comprised a mixture of two different structural forms, namely ("A3s") with the repeating disaccharide [→4)-β-D-GlcAp-(1→4)-α-L-Rhap 3S-(1→]n, and ("B3s") with the repeating disaccharide [→4)-α-L-IdoAp-(1→4)-α-L-Rhap 3S(1→]n. The relative abundance of A3s, and B3s was 1:1.5, respectively. The potential anticarcinogenic attributes of ulvan were evaluated against a trilogy of human cancer cell lineages. Concomitantly, Quantitative Structure-Activity Relationship (QSAR) modeling was also conducted to predict potential adverse reactions stemming from pharmacological interactions. The ulvan showed significant antitumor growth activity against hepatocellular carcinoma (IC50 ≈ 90 µg/mL), human breast cancer cells (IC50 ≈ 85 µg/mL), and cervical cancer cells (IC50 ≈ 67 µg/mL). The QSAR models demonstrated acceptable predictive power, and seven toxicity indications confirmed the safety of ulvan, warranting its candidacy for further in vivo testing and applications as a biologically active pharmaceutical source for human disease treatment.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Hieu Nhu Mai Vo
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thinh Duc Pham
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thuan Thi Nguyen
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Thuy Thu Thi Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 10000, Vietnam;
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| |
Collapse
|
6
|
Schönknecht YB, Moreno Tovar MV, Jensen SR, Parschat K. Clinical Studies on the Supplementation of Manufactured Human Milk Oligosaccharides: A Systematic Review. Nutrients 2023; 15:3622. [PMID: 37630811 PMCID: PMC10458772 DOI: 10.3390/nu15163622] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Collapse
|
7
|
Shi R, Yang SQ, Wang NN, Yan QJ, Yan XM, Jiang ZQ. Synthesis of 2'-fucosyllactose from apple pomace-derived xyloglucan oligosaccharides by an α-L-fucosidase from Pedobacter sp. CAU209. Appl Microbiol Biotechnol 2023; 107:3579-3591. [PMID: 37115252 DOI: 10.1007/s00253-023-12533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.
Collapse
Affiliation(s)
- Ran Shi
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, 100083, Beijing, People's Republic of China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shao-Qing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, 100083, Beijing, People's Republic of China
| | - Nan-Nan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, 100083, Beijing, People's Republic of China
| | - Qiao-Juan Yan
- College of Engineering, China Agricultural University, Haidian District, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Xie-Min Yan
- College of Engineering, China Agricultural University, Haidian District, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, People's Republic of China
| | - Zheng-Qiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, 100083, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Zinck SS, Christensen SJ, Sørensen OB, Svensson B, Meyer AS. Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent. Molecules 2023; 28:molecules28072947. [PMID: 37049710 PMCID: PMC10095898 DOI: 10.3390/molecules28072947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42–816% relative to controls that had not been subjected to extreme pH. “Inactivation” by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.
Collapse
|
9
|
Lin S, Xu X, Holck J, Wittrup Agger J, Wilkens C, Xie Z, Khakimov B, Nielsen DS, Meyer AS. Soluble, Diferuloylated Corn Bran Glucuronoarabinoxylans Modulate the Human Gut Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3885-3897. [PMID: 36787634 DOI: 10.1021/acs.jafc.2c08338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Corn bran is exceptionally rich in substituted glucuronoarabinoxylan polysaccharides, which are monoferuloylated and cross-linked by diferulic acid moieties. Here, we assessed the potential prebiotic activity of three enzymatically solubilized corn bran glucuronoarabinoxylans: medium feruloylated (FGAX-M), laccase cross-linked FGAX-M (FGAX-H), and alkali-treated FGAX-M devoid of feruloyl substitutions (FGAX-B). We examined the influence of these soluble FGAX samples on the gut microbiome composition and functionality during in vitro simulated colon fermentations, determined by 16S rRNA gene amplicon sequencing and assessment of short-chain fatty acid (SCFAs) production. All FGAX samples induced changes in the relative composition of the microbiota and the SCFA levels after 24 h of in vitro fermentation. The changes induced by FGAX-M and FGAX-H tended to be more profound and more similar to the changes induced by inulin than changes conferred by FGAX-B. The microbiota changes induced by FGAX-M and FGAX-H correlated with an increase in the relative abundance of Anaerostipes and with increased butyric acid production, while the changes induced by the FGAX-B sample were less compelling. The results imply that solubilized, substituted diferuloylated corn bran glucuronoarabinoxylans may be potential prebiotic candidates and that both single feruloylations and diferuloyl cross-links influence the prebiotic potential of these arabinoxylan compounds.
Collapse
Affiliation(s)
- Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Xinming Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Zhuqing Xie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Zuurveld M, Ayechu-Muruzabal V, Folkerts G, Garssen J, van‘t Land B, Willemsen LEM. Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules 2023; 13:biom13020263. [PMID: 36830632 PMCID: PMC9953370 DOI: 10.3390/biom13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2'FL, 3FL, 3'SL, 6'SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2'FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2'FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFβ nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2'FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| | - Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Belinda van‘t Land
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| |
Collapse
|
11
|
Alexandri M, Kachrimanidou V, Papapostolou H, Papadaki A, Kopsahelis N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022; 11:foods11182796. [PMID: 36140924 PMCID: PMC9498094 DOI: 10.3390/foods11182796] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The addition of natural components with functional properties in novel food formulations confers one of the main challenges that the modern food industry is called to face. New EU directives and the global turn to circular economy models are also pressing the agro-industrial sector to adopt cradle-to-cradle approaches for their by-products and waste streams. This review aims to present the concept of “sustainable functional compounds”, emphasizing on some main bioactive compounds that could be recovered or biotechnologically produced from renewable resources. Herein, and in view of their efficient and “greener” production and extraction, emerging technologies, together with their possible advantages or drawbacks, are presented and discussed. Μodern examples of novel, clean label food products that are composed of sustainable functional compounds are summarized. Finally, some action plans towards the establishment of sustainable food systems are suggested.
Collapse
Affiliation(s)
- Maria Alexandri
- Correspondence: (M.A.); or (N.K.); Tel.: +30-26710-26505 (N.K.)
| | | | | | | | | |
Collapse
|