1
|
Noor U, Mughal MF, Ahmed T, Farid MF, Ammar M, Kulsum U, Saleem A, Naeem M, Khan A, Sharif A, Waqar K. Synthesis and applications of MXene-based composites: a review. NANOTECHNOLOGY 2023; 34:262001. [PMID: 36972572 DOI: 10.1088/1361-6528/acc7a8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.
Collapse
Affiliation(s)
- Umar Noor
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Mughal
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University Islamabad, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan
| | - Umme Kulsum
- Department of Chemistry, Aligarh Muslim University, 202002, Aligarh, India
| | - Amna Saleem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Mahnoor Naeem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Aqsa Khan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
2
|
Kumar JA, Prakash P, Krithiga T, Amarnath DJ, Premkumar J, Rajamohan N, Vasseghian Y, Saravanan P, Rajasimman M. Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. CHEMOSPHERE 2022; 286:131607. [PMID: 34311398 DOI: 10.1016/j.chemosphere.2021.131607] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 05/02/2023]
Abstract
MXene, comprised of two-dimensional transition metal carbides/nitride, has emerged as a novel material suitable for environmental remediation of toxic compounds. Due to their inherent and superior physical and chemical properties, MXene is employed in separation techniques like photocatalysis, adsorption, and membrane separation. MXene is equipped with a highly hydrophilic surface, ion exchange property, and robust surface functional groups. In this review paper, a comprehensive discussion on the structural patterns, preparation, properties of MXene and its application for the removal of toxic pollutants like Radionuclide, Uranium, Thorium, and dyes is presented. The mechanism of removal of the pollutants by MXene is extensively reviewed. Synthesis of MXene based membranes, their properties, and application for water purification and properties were also discussed. This review will be highly helpful to understand critically the methods of synthesis and use of MXene material for priority environmental pollutants removal. In addition, the challenges behind the synthesis and use of MXene for decontamination of pollutants were reviewed and reported.
Collapse
Affiliation(s)
- Jagadeesan Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | - Pandurangan Prakash
- Department of Biotechnology, Sathyabama Institute of Science of Technology, Chennai, India
| | - Thangavelu Krithiga
- Department of Chemistry, Sathyabama Institute of Science of Technology, Sathyabama Institute of Science of Technology, Chennai, India
| | - Duvuru Joshua Amarnath
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | - Jayapal Premkumar
- Department of Biomedical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | | | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
3
|
Centi G, Perathoner S. Nanocarbon for Energy Material Applications: N 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007055. [PMID: 33682312 DOI: 10.1002/smll.202007055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nanocarbons are an important class of energy materials and one relevant application is for the nitrogen reduction reaction, i.e., the direct synthesis of NH3 from N2 and H2 O via photo- and electrocatalytic approaches. Ammonia is also a valuable energy or hydrogen vector. This perspective paper analyses developments in the field, limiting discussion to nanocarbon-based electrodes. These aspects are discussed: i) active sites related to charge density differences on C atoms associated to defects/strains, ii) doping with heteroatoms, iii) introduction of isolated metal ions, iv) creation and in situ dynamics of metal oxide(hydroxide)/nanocarbon boundaries, and v) nanocarbon characteristics to control the interface. Discussion is focused on the performances and mechanistic aspects. Aim is not a systematic state-of-the-art report but to highlight the need to use a different perspective in studying this challenging reaction by using selected papers. Notwithstanding the large differences in the proposed nature of the active sites, fall all within a restricted range of performances, far from the targets. A holistic approach is emphasized to make a breakthrough advance.
Collapse
Affiliation(s)
- Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Siglinda Perathoner
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
4
|
Bandosz TJ. Exploring the Silent Aspect of Carbon Nanopores. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:407. [PMID: 33562709 PMCID: PMC7915842 DOI: 10.3390/nano11020407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Recently, owing to the discovery of graphene, porous carbons experienced a revitalization in their explorations. However, nowadays, the focus is more on search for suitable energy advancing catalysts sensing, energy storage or thermal/light absorbing features than on separations. In many of these processes, adsorption, although not emphasized sufficiently, can be a significant step. It can just provide a surface accumulation of molecules used in other application-driving chemical or physical phenomena or can be even an additional mechanism adding to the efficiency of the overall performance. However, that aspect of confined molecules in pores and their involvement in the overall performance is often underrated. In many applications, nanopores might silently advance the target processes or might very directly affect or change the outcomes. Therefore, the objective of this communication is to bring awareness to the role of nanopores in carbon materials, and also in other solids, to scientists working on cutting-edge application of nonporous carbons, not necessary involving the adsorption process directly. It is not our intention to provide a clear explanation of the small pore effects, but we rather tend to indicate that such effects exist and that their full explanation is complex, as complex is the surface of nanoporous carbons.
Collapse
Affiliation(s)
- Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
5
|
Abstract
This study examines how the several major industries, associated with a carbon artifact production, essentially belong to one, closely knit family. The common parents are the geological fossils called petroleum and coal. The study also reviews the major developments in carbon nanotechnology and electrocatalysis over the last 30 years or so. In this context, the development of various carbon materials with size, dopants, shape, and structure designed to achieve high catalytic electroactivity is reported, and among them recent carbon electrodes with many important features are presented together with their relevant applications in chemical technology, neurochemical monitoring, electrode kinetics, direct carbon fuel cells, lithium ion batteries, electrochemical capacitors, and supercapattery.
Collapse
Affiliation(s)
- César A C Sequeira
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
6
|
Zieba W, Olejnik P, Koter S, Kowalczyk P, Plonska-Brzezinska ME, Terzyk AP. Opening the internal structure for transport of ions: improvement of the structural and chemical properties of single-walled carbon nanohorns for supercapacitor electrodes. RSC Adv 2020; 10:38357-38368. [PMID: 35517569 PMCID: PMC9057265 DOI: 10.1039/d0ra07748h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the electrochemical performance of single-walled carbon nanohorns (SWCNHs) for use as supercapacitor electrodes. For the first time, we used acid-treatment for oxidation of SWCNHs and hole creation in their structure. A detailed study was performed on the correlation between the oxidation of SWCNHs via acid treatment and variable acid treatment times, the structural properties of the oxidized carbon nanostructures, and the specific capacitance of the SWCNH electrodes. We showed that simple functionalization of carbon nanostructures under controlled conditions leads to an almost 3-fold increase in their specific capacitance (from 65 to 180 F g-1 in 0.1 M H2SO4). This phenomenon indicates higher accessibility of the surface area of the electrodes by electrolyte ions as a result of gradual opening of the SWCNH internal channels.
Collapse
Affiliation(s)
- Wojciech Zieba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| | - Piotr Olejnik
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| | - Stanislaw Koter
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| | - Piotr Kowalczyk
- College of Science, Health, Engineering and Education, Murdoch University WA, 6150 Australia
| | - Marta E Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| |
Collapse
|
7
|
Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2. Catalysts 2018. [DOI: 10.3390/catal8050198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Castelo-Quibén J, Abdelwahab A, Pérez-Cadenas M, Morales-Torres S, Maldonado-Hódar FJ, Carrasco-Marín F, Pérez-Cadenas AF. Carbon - iron electro-catalysts for CO2 reduction. The role of the iron particle size. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Lin Y, Sun X, Su DS, Centi G, Perathoner S. Catalysis by hybrid sp2/sp3nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev 2018; 47:8438-8473. [DOI: 10.1039/c8cs00684a] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid sp2/sp3nanocarbons, in particular sp3-hybridized ultra-dispersed nanodiamonds and derivative materials, such as the sp3/sp2-hybridized bucky nanodiamonds and sp2-hybridized onion-like carbons, represent a rather interesting class of catalysts still under consideration.
Collapse
Affiliation(s)
- Yangming Lin
- Max-Planck-Institut für Chemische Energiekonversion
- Mülheim an der Ruhr
- Germany
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
| | - Xiaoyan Sun
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Gabriele Centi
- University of Messina
- ERIC aisbl and CASPE/INSTM
- Dept.s MIFT – Industrial Chemistry
- 98166 Messina
- Italy
| | - Siglinda Perathoner
- University of Messina
- Dept.s ChiBioFarAm – Industrial Chemistry
- 98166 Messina
- Italy
| |
Collapse
|
10
|
Ma T, Fan Q, Tao H, Han Z, Jia M, Gao Y, Ma W, Sun Z. Heterogeneous electrochemical CO 2 reduction using nonmetallic carbon-based catalysts: current status and future challenges. NANOTECHNOLOGY 2017; 28:472001. [PMID: 28952465 DOI: 10.1088/1361-6528/aa8f6f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.
Collapse
Affiliation(s)
- Tao Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lei Y, Yang F, Li YT, Tang L, Chen K, Zhang GJ. Photocatalytic self-cleaning electrochemical sensor for honokiol based on a glassy carbon electrode modified with reduced graphene oxide and titanium dioxide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2239-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Cobalt-Doped Carbon Gels as Electro-Catalysts for the Reduction of CO2 to Hydrocarbons. Catalysts 2017. [DOI: 10.3390/catal7010025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Yang N, Waldvogel SR, Jiang X. Electrochemistry of Carbon Dioxide on Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28357-28371. [PMID: 26683764 DOI: 10.1021/acsami.5b09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon electrodes have the advantages of being chemically inert at negative potential ranges in all media and high offset potentials for hydrogen evolution in comparison to metal electrodes, and therefore are the most suitable electrodes for electrochemistry and electrochemical conversion of CO2 into valuable chemicals. Herein we summarize on carbon electrodes the voltammetry, electrochemical and electrocatalytic CO2 reduction, as well as electron synthesis using CO2 and carbon electrodes. The electrocatalytic CO2 reduction using carbocatalyts and the future activities about electrochemical CO2 conversion are highlighted.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Siegfried R Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , 55128 Mainz, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| |
Collapse
|
14
|
Ampelli C, Centi G, Passalacqua R, Perathoner S. Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Chen Y, Choi S, Thompson LT. Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System. ACS Catal 2015. [DOI: 10.1021/cs501656x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuan Chen
- Department of Chemical Engineering
and Hydrogen Energy Technology Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Saemin Choi
- Department of Chemical Engineering
and Hydrogen Energy Technology Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Levi T. Thompson
- Department of Chemical Engineering
and Hydrogen Energy Technology Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
17
|
Calleja G, Martos C, Orcajo G, Botas JA, Villajos JA. Transition metal inclusion in RhoZMOF materials. CrystEngComm 2015. [DOI: 10.1039/c4ce01401d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous RhoZMOF is a negatively charged zeolite-like MOF material susceptible to post-synthesis modification by an ion-exchange process replacing as-synthesized organic cations with transition metals.
Collapse
Affiliation(s)
- Guillermo Calleja
- Department of Chemical and Energy Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles, Spain
| | - Carmen Martos
- Department of Chemical and Energy Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles, Spain
| | - Gisela Orcajo
- Department of Chemical and Energy Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles, Spain
| | - Juan A. Botas
- Department of Chemical and Energy Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles, Spain
| | - José A. Villajos
- Department of Chemical and Energy Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles, Spain
| |
Collapse
|
18
|
Xiao J, Pan X, Guo S, Ren P, Bao X. Toward Fundamentals of Confined Catalysis in Carbon Nanotubes. J Am Chem Soc 2014; 137:477-82. [DOI: 10.1021/ja511498s] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jianping Xiao
- State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan
Road 457, Dalian 116023, P. R. China
| | - Xiulian Pan
- State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan
Road 457, Dalian 116023, P. R. China
| | - Shujing Guo
- State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan
Road 457, Dalian 116023, P. R. China
| | - Pengju Ren
- State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan
Road 457, Dalian 116023, P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan
Road 457, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Centi G, Perathoner S, Su DS. Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. CATALYSIS SURVEYS FROM ASIA 2014. [DOI: 10.1007/s10563-014-9172-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Carbon-based catalysts: Opening new scenario to develop next-generation nano-engineered catalytic materials. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60139-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Barbera K, Frusteri L, Italiano G, Spadaro L, Frusteri F, Perathoner S, Centi G. Low-temperature graphitization of amorphous carbon nanospheres. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60098-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
|
23
|
Natali Sora I, Fontana F, Passalacqua R, Ampelli C, Perathoner S, Centi G, Parrino F, Palmisano L. Photoelectrochemical properties of doped lanthanum orthoferrites. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Su DS, Perathoner S, Centi G. Nanocarbons for the Development of Advanced Catalysts. Chem Rev 2013; 113:5782-816. [DOI: 10.1021/cr300367d] [Citation(s) in RCA: 1036] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dang Sheng Su
- Shenyang National
Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110006,
China
- Department of Inorganic
Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Siglinda Perathoner
- Dipartimento di Ingegneria Elettronica,
Chimica ed Ingegneria Industriale, University of Messina and INSTM/CASPE (Laboratory of Catalysis for Sustainable Production and Energy), Viale Ferdinando Stagno, D’Alcontres
31, 98166 Messina, Italy
| | - Gabriele Centi
- Dipartimento di Ingegneria Elettronica,
Chimica ed Ingegneria Industriale, University of Messina and INSTM/CASPE (Laboratory of Catalysis for Sustainable Production and Energy), Viale Ferdinando Stagno, D’Alcontres
31, 98166 Messina, Italy
| |
Collapse
|
25
|
Yang N, Gao F, Nebel CE. Diamond Decorated with Copper Nanoparticles for Electrochemical Reduction of Carbon Dioxide. Anal Chem 2013; 85:5764-9. [DOI: 10.1021/ac400377y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nianjun Yang
- Fraunhofer
Institute for Applied Solid State Physics (IAF), Tullastrasse 72,
79108 Freiburg, Germany
| | - Fang Gao
- Fraunhofer
Institute for Applied Solid State Physics (IAF), Tullastrasse 72,
79108 Freiburg, Germany
| | - Christoph E. Nebel
- Fraunhofer
Institute for Applied Solid State Physics (IAF), Tullastrasse 72,
79108 Freiburg, Germany
| |
Collapse
|
26
|
Wang W, Savadogo O, Ma ZF. The oxygen reduction reaction on Pt/TiO x N y -based electrocatalyst for PEM fuel cell applications. J APPL ELECTROCHEM 2012. [DOI: 10.1007/s10800-012-0452-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
|
28
|
Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. CHEMSUSCHEM 2012; 5:500-521. [PMID: 22431486 DOI: 10.1002/cssc.201100661] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of an "artificial leaf" that collects energy in the same way as a natural one is one of the great challenges for the use of renewable energy and a sustainable development. To avoid the problem of intermittency in solar energy, it is necessary to design systems that directly capture CO(2) and convert it into liquid solar fuels that can be easily stored. However, to be advantageous over natural leaves, it is necessary that artificial leaves have a higher solar energy-to-chemical fuel conversion efficiency, directly provide fuels that can be used in power-generating devices, and finally be robust and of easy construction, for example, smart, cheap and robust. This review discusses the recent progress in this field, with particular attention to the design and development of 'artificial leaf' devices and some of their critical components. This is a very active research area with different concepts and ideas under investigation, although often the validity of the considered solutions it is still not proven or the many constrains are not fully taken into account, particularly from the perspective of system engineering, which considerably limits some of the investigated solutions. It is also shown how system design should be included, at least at a conceptual level, in the definition of the artificial leaf elements to be investigated (catalysts, electrodes, membranes, sensitizers) and that the main relevant aspects of the cell engineering (mass/charge transport, fluid dynamics, sealing, etc.) should be also considered already at the initial stage because they determine the design and the choice between different options. For this reason, attention has been given to the system-design ideas under development instead of the molecular aspects of the O(2) - or H(2) -evolution catalysts. However, some of the recent advances in these catalysts, and their use in advanced electrodes, are also reported to provide a more complete picture of the field.
Collapse
Affiliation(s)
- Samir Bensaid
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
29
|
Centi G, Perathoner S. Carbon nanotubes for sustainable energy applications. CHEMSUSCHEM 2011; 4:913-925. [PMID: 21671406 DOI: 10.1002/cssc.201100084] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 05/30/2023]
Abstract
The grand challenge of a sustainable production and use of energy has focused research on the nanostructure of materials. This aspect is considered of critical importance for improving the performance of advanced materials and electrodes to meet demanding expectations. Carbon nanotubes (CNTs) are the first and most-successful example of nanomaterials, and play a central role in the development of advanced solutions for sustainable energy applications. However, notwithstanding the rising scientific and technological interest in CNTs, their use is still largely based on phenomenological observations that miss the complexities of the nanostructure and characteristics of these materials. This Concept paper addresses the need for a rational design of CNTs for energy applications, based on an understanding of the key aspects to be considered for their optimization in different applications such as lithium ion batteries, supercapacitors, solar cells, and fuel cells.
Collapse
Affiliation(s)
- Gabriele Centi
- Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina and INSTM/CASPE, Messina, Italy.
| | | |
Collapse
|
30
|
|
31
|
Goyal A, Reddy ALM, Ajayan PM. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1709-1713. [PMID: 21574248 DOI: 10.1002/smll.201002051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/22/2011] [Indexed: 05/30/2023]
Abstract
This study demonstrates the formation of a flexible and free-standing carbon nanotube-copper oxide-poly(vinylidene fluoride) (CNT-Cu(2) O-PVDF) nanocomposite and its application as an electrode-separator material for Li-ion batteries. Binder-free hybrid electrodes are obtained by conformally coating CNTs with Cu(2) O via electrodeposition and then embedding the resulting architecture into a porous poly(vinylidene fluoride-hexafluoropropylene) PVDF-HFP-SiO(2) polymer electrolyte membrane. The synergistic presence of high-capacity transition metal oxides and conductive CNTs results in twice the reversible areal capacity of 2.3 mAh cm(-2) as compared to 1.2 mAh cm(-2) for pure CNTs.
Collapse
Affiliation(s)
- Anubha Goyal
- Department of Mechanical Engineering and Materials Science, Rice University, 6100, Main Street Houston, Texas 77005, USA
| | | | | |
Collapse
|
32
|
Li Y, Somorjai GA. Nanoscale advances in catalysis and energy applications. NANO LETTERS 2010; 10:2289-2295. [PMID: 20524636 DOI: 10.1021/nl101807g] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.
Collapse
Affiliation(s)
- Yimin Li
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | |
Collapse
|
33
|
Bitter JH. Nanostructured carbons in catalysis a Janus material—industrial applicability and fundamental insights. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00492h] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|