1
|
Pulido-Díaz IT, Martínez D, Salas-Martin KP, Portales-Martínez B, Agustin D, Reina A, Guerrero-Ríos I. Biomass-derived substrate hydrogenation over rhodium nanoparticles supported on functionalized mesoporous silica. NANOSCALE 2024; 16:22216-22229. [PMID: 39555900 DOI: 10.1039/d4nr02579b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The use of supported rhodium nanoparticles (RhNPs) is gaining attention due to the drive for better catalyst performance and sustainability. Silica-based supports are promising for RhNP immobilization because of their thermal and chemical stability. Functionalizing silica allows for the design of catalysts with improved activity for biomass transformations. In this study, we synthesized rhodium nanoparticles (RhNPs) supported on N-functionalized silica-based materials, utilizing SBA-15 as the support and functionalizing it with either nicotinamide or an imidazolium-based ionic liquid. Solid-state 29Si and 13C NMR experiments confirmed successful ligand anchoring onto the silica surface. RhNPs@SBA-15-Imz[NTf2] and RhNPs@SBA-15-NIC were efficiently prepared and extensively characterized, revealing small, spherical, and well-dispersed fcc Rh nanoparticles on the support surface, confirmed by XPS analyses detecting metallic rhodium, Rh(I), and Rh(III) species. The catalytic performance of these materials is assessed in the hydrogenation of biomass-derived substrates, including furfural, levulinic acid, terpenes, vanillin, and eugenol, among others, underscoring their potential in sustainable chemical transformations. The nanocatalysts demonstrated excellent recyclability and resistance to metal leaching over multiple cycles. The study shows that neutral and ionic silica grafting fragments differently stabilize RhNPs, affecting their morphology, size, and interaction with silanol groups, which impacts their catalytic activity.
Collapse
Affiliation(s)
- Israel T Pulido-Díaz
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
| | - Draco Martínez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Karla P Salas-Martin
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Benjamín Portales-Martínez
- CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio Nacional de Conversión y Almacenamiento de Energía, Instituto Politécnico Nacional, Calzada Legaría 694, Col. Irrigación, Ciudad de México, 11500, Mexico
| | - Dominique Agustin
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, IUT P. Sabatier, Département de Chimie, Av. G. Pompidou, BP 20258, 81104 Castres CEDEX, France
| | - Antonio Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Itzel Guerrero-Ríos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
2
|
Zhao Z, Gao G, Xi Y, Wang J, Sun P, Liu Q, Li C, Huang Z, Li F. Inverse ceria-nickel catalyst for enhanced C-O bond hydrogenolysis of biomass and polyether. Nat Commun 2024; 15:8444. [PMID: 39349445 PMCID: PMC11443077 DOI: 10.1038/s41467-024-52704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Regulating interfacial electronic structure of oxide-metal composite catalyst for the selective transformation of biomass or plastic waste into high-value chemicals through specific C-O bond scission is still challenging due to the presence of multiple reducible bonds and low catalytic activity. Herein, we find that the inverse catalyst of 4CeOx/Ni can efficiently transform various lignocellulose derivatives and polyether into the corresponding value-added hydroxyl-containing chemicals with activity enhancement (up to 36.5-fold increase in rate) compared to the conventional metal/oxide supported catalyst. In situ experiments and theoretical calculations reveal the electron-rich interfacial Ce and Ni species are responsible for the selective adsorption of C-O bond and efficient generation of Hδ- species, respectively, which synergistic facilitate cleavage of C-O bond and subsequent hydrogenation. This work advances the fundamental understanding of interfacial electronic interaction over inverse catalyst and provides a promising catalyst design strategy for efficient transformation of C-O bond.
Collapse
Affiliation(s)
- Zelun Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guang Gao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yongjie Xi
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Wang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Sun
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qi Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chengyang Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiwei Huang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Fuwei Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Guidotti G, Palumbo A, Soccio M, Gazzano M, Salatelli E, Siracusa VM, Lotti N. Fully Bio-Based Blends of Poly (Pentamethylene Furanoate) and Poly (Hexamethylene Furanoate) for Sustainable and Flexible Packaging. Polymers (Basel) 2024; 16:2342. [PMID: 39204562 PMCID: PMC11360354 DOI: 10.3390/polym16162342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In the present study, bio-based polymeric blends have been prepared for applications in the field of sustainable food packaging, starting from two furan-based homopolymers, poly(hexamethylene 2,5-furanoate) (PHF) and poly(pentamethylene 2,5-furanoate) (PPeF). PHF and PPeF were synthesized by two-step melt polycondensation-a solvent-free synthetic strategy-and then binary physical mixtures, PHF/PPeF, with different weight compositions were prepared by dissolution in a common solvent. The blends were processed into compression-moulded films, and molecular, morphological, structural, thermal, and mechanical characterizations were subsequently carried out. Blending did not negatively affect the thermal stability of the parent homopolymers, and good compatibility between them was observed. This strategy also allowed for the modulation of the chain rigidity as well as of the crystallinity, simply by acting on the relative weight amount of the homopolymers. From a mechanical point of view, the presence of PPeF led to a reduction in stiffness and an increase in the elongation at break, obtaining materials with an elastomeric behaviour. Evaluation of the gas barrier properties confirmed that the good barrier properties of PHF were preserved by blending. Finally, lab-scale composting tests confirmed a greater weight loss of the mixtures with respect to the PHF homopolymer.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Arianna Palumbo
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy;
| | - Elisabetta Salatelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Valentina M. Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
- Interdepartmental Center for Industrial Agro-Food Research, CIRI-AGRO, Via Q. Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
4
|
Hua W, Liang B, Zhou S, Zhang Q, Xu S, Chen K, Wang X. An integrated cofactor and co-substrate recycling pathway for the biosynthesis of 1,5-pentanediol. Microb Cell Fact 2024; 23:132. [PMID: 38711050 DOI: 10.1186/s12934-024-02408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.
Collapse
Affiliation(s)
| | - Bo Liang
- Nanjing Tech University, Nanjing, China
| | | | | | - Shuang Xu
- Nanjing Tech University, Nanjing, China
| | | | - Xin Wang
- Nanjing Tech University, Nanjing, China.
| |
Collapse
|
5
|
Liu H, Hong X, Chen J, Lin X, Wang B, Xiong Y. Electrochemical oxidation of tetrahydrofurfuryl acohol on boron-doped diamond anode: Influence of current density and electrolyte solution. CHEMOSPHERE 2023; 345:140396. [PMID: 37820875 DOI: 10.1016/j.chemosphere.2023.140396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Tetrahydrofurfuryl alcohol (THFA), a widely applied raw materials, intermediate and solvent in the fields of agricultural, industry (especially in nuclear industry), is a potentially hazardous and non-biodegradable pollutant in wastewater. In this study, the electrochemical degradation pathways of THFA by a boron-doped diamond (BDD) anode with different current density (jappl = 20, 40 and 60 mA cm-2) and electrolyte solution (KNO3, KCl and K2SO4) was carefully investigated. The results exhibit that high chemical oxygen demand (COD) removal and mineralization rates were achieved by rapid non-selective oxidation in electrolyte solutions mediated by hydroxyl radicals (∙OH) and active chlorine (sulfate) under constant current electrolysis. In-depth data analysis using the high performance liquid chromatography and liquid chromatography/mass spectroscopy, the underlying removal pathways of THFA in KNO3, KCl and K2SO4 electrolyte solutions are proposed according to the effect of different mineralization mechanisms.
Collapse
Affiliation(s)
- Huiqiang Liu
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science & Technology, Mianyang, 621010, PR China; School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China
| | - Xiaofan Hong
- School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China
| | - Jingshuang Chen
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science & Technology, Mianyang, 621010, PR China; School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China
| | - Xu Lin
- School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China
| | - Bing Wang
- School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China.
| | - Ying Xiong
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science & Technology, Mianyang, 621010, PR China; School of Materials & Chemistry, Southwest University of Science & Technology, Mianyang, 621010, PR China.
| |
Collapse
|
6
|
Recent Advances in Lignocellulose-Based Monomers and Their Polymerization. Polymers (Basel) 2023; 15:polym15040829. [PMID: 36850113 PMCID: PMC9964446 DOI: 10.3390/polym15040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Replacing fossil-based polymers with renewable bio-based polymers is one of the most promising ways to solve the environmental issues and climate change we human beings are facing. The production of new lignocellulose-based polymers involves five steps, including (1) fractionation of lignocellulose into cellulose, hemicellulose, and lignin; (2) depolymerization of the fractionated cellulose, hemicellulose, and lignin into carbohydrates and aromatic compounds; (3) catalytic or thermal conversion of the depolymerized carbohydrates and aromatic compounds to platform chemicals; (4) further conversion of the platform chemicals to the desired bio-based monomers; (5) polymerization of the above monomers to bio-based polymers by suitable polymerization methods. This review article will focus on the progress of bio-based monomers derived from lignocellulose, in particular the preparation of bio-based monomers from 5-hydroxymethylfurfural (5-HMF) and vanillin, and their polymerization methods. The latest research progress and application scenarios of related bio-based polymeric materials will be also discussed, as well as future trends in bio-based polymers.
Collapse
|
7
|
Cen X, Dong Y, Liu D, Chen Z. New pathways and metabolic engineering strategies for microbial synthesis of diols. Curr Opin Biotechnol 2022; 78:102845. [PMID: 36403537 DOI: 10.1016/j.copbio.2022.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
Collapse
Affiliation(s)
- Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Dong
- College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, USA
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Cen X, Liu Y, Zhu F, Liu D, Chen Z. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metab Eng 2022; 74:168-177. [DOI: 10.1016/j.ymben.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
9
|
Gupta NK, Reif P, Palenicek P, Rose M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Reif
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Palenicek
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Marcus Rose
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
de Abreu CRA, Simon P, Wojcieszak R, de Souza PM, Toniolo FS. Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid. Top Catal 2022. [DOI: 10.1007/s11244-022-01605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over PrOx promoted Ni catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Lv X, Luo X, Cheng X, Liu J, Li C, Shuai L. Production of Hydroxymethylfurfural Derivatives From Furfural Derivatives via Hydroxymethylation. Front Bioeng Biotechnol 2022; 10:851668. [PMID: 35242752 PMCID: PMC8886139 DOI: 10.3389/fbioe.2022.851668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxymethylfurfural (HMF) derivatives such as 2,5-bis(hydroxymethyl)furan (BHMF) and furandicarboxylic acid (FDCA) are promising alternative of fossil-based diols and dicarboxylic acids for synthesis of polyesters such as polyethylene terephthalate (PET). However, high cost for preparing HMF from biomass discourages the commercialization of HMF-derived polyesters. Since producing furfural (FUR) from five-carbon sugars (e.g., xylose) via dehydration is an inexpensive and commercialized process, we herein reported a method to synthesize BHMF derivatives (5-(ethoxymethyl)furan-2-methanol (EMFM), 2,5-bis(hydroxymethyl)furan monoacetate (BHMFM) and 2,5-bis(hydroxymethyl)furan diacetate (BHMFD) from furfural derivatives, i.e., (2-(ethoxymethyl)furan (EMF) and furfuryl acetate (FA)). To avoid strong acid-induced side reactions (e.g., furan ring opening, condensation and carbonization), two reaction systems, i.e., a low-concentration HCl aqueous solution combined with formaldehyde and anhydrous acetic acid combined with paraformaldehyde, were found to be suitable for such a hydroxymethylation reaction and could lead to decent product yields. In order to improve the carbon utilization, condensed furanic byproducts were further converted into hydrocarbon fuels via a reported two-step hydrodeoxygenation (HDO) process. This study not only validates the possibility of synthesizing functional HMF derivatives (EMFM, BHMFM, and BHMFD) from commercially-available FUR derivatives (EMF and FA), but also provide a new way to transform condensed furanics to value-added hydrocarbon fuels.
Collapse
Affiliation(s)
- Xianqing Lv
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolin Luo
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Cheng
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Changzhi Li, ; Li Shuai,
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Changzhi Li, ; Li Shuai,
| |
Collapse
|
13
|
In Situ Ruthenium Catalyst Modification for the Conversion of Furfural to 1,2-Pentanediol. NANOMATERIALS 2022; 12:nano12030328. [PMID: 35159673 PMCID: PMC8840484 DOI: 10.3390/nano12030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Exploiting biomass to synthesise compounds that may replace fossil-based ones is of high interest in order to reduce dependence on non-renewable resources. 1,2-pentanediol and 1,5-pentanediol can be produced from furfural, furfuryl alcohol or tetrahydrofurfuryl alcohol following a metal catalysed hydrogenation/C-O cleavage procedure. Colloidal ruthenium nanoparticles stabilized with polyvinylpyrrolidone in situ modified with different organic compounds are able to produce 1,2-pentanediol directly from furfural in a 36% of selectivity at 125 °C under 20 bar of H2 pressure.
Collapse
|
14
|
Wang Y, Liu S, Guo Q, Zhang Y. Ni@C@CNT catalyst derived from CNT doped Ni‐MOF for furfural hydrogenation to tetrahydrofurfuryl alcohol. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Wang
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Shanshan Liu
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Qirui Guo
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Yidong Zhang
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng China
| |
Collapse
|
15
|
Zhao Z, Gao G, Xi Y, Wang J, Sun P, Liu Q, Yan W, Cui Y, Jiang Z, Li F. Selective and stable upgrading of biomass-derived furans into plastic monomers by coupling homogeneous and heterogeneous catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Dai D, Feng C, Wang M, Du Q, Liu D, Pan Y, Liu Y. Ring-opening of furfuryl alcohol to pentanediol with extremely high selectivity over Cu/MFI catalysts with balanced Cu 0–Cu + and Brønsted acid sites. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctional Cu/MFI catalysts with balanced Cu0–Cu+ and Brønsted acid sites for robust selective ring-opening of furfuryl alcohol to pentanediol.
Collapse
Affiliation(s)
- Dengfeng Dai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingzhou Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Dandan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China,
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
17
|
Tong Z, Gao R, Li X, Guo L, Wang J, Zeng Z, Deng Q, Deng S. Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La
2
B
2
O
7
(B=Ti, Zr, Ce). ChemCatChem 2021. [DOI: 10.1002/cctc.202101063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhikun Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Rui Gao
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Lingyun Guo
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Shuguang Deng
- School for Engineering of Matter Transport and Energy Arizona State University 551 E. Tyler Mall Tempe AZ 85287 USA
| |
Collapse
|
18
|
Li X, Pang J, Luo W, Zhao Y, Pan X, Zheng M. Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catal Letters 2021. [DOI: 10.1007/s10562-020-03500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Jeong Y, Park CW, Park YK, Ha JM, Jeong Y, Lee KY, Jae J. Investigation of the activity and selectivity of supported rhenium catalysts for the hydrodeoxygenation of 2-methoxyphenol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Zhu J, Yin G. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinlian Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
22
|
Tong Z, Li X, Dong J, Gao R, Deng Q, Wang J, Zeng Z, Zou JJ, Deng S. Adsorption Configuration-Determined Selective Hydrogenative Ring Opening and Ring Rearrangement of Furfural over Metal Phosphate. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05497] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhikun Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Jingyu Dong
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Rui Gao
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, No. 92 Weijin Road, Tianjin 300072, PR China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols. Catalysts 2021. [DOI: 10.3390/catal11040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Catalytic conversion of biomass-derived feedstock to high-value chemicals is of remarkable significance for alleviating dependence on fossil energy resources. MgAl spinel-supported Pt catalysts were prepared and used in furfuryl alcohol conversion. The approaches to tune the reaction selectivity toward pentanediols (PeDs) were investigated and the catalytic performance was correlated to the catalysts’ physicochemical properties based on comprehensive characterizations. It was found that 1–8 wt% Pt was highly dispersed on the MgAl2O4 support as nanoparticles with small sizes of 1–3 nm. The reaction selectivity did not show dependence on the size of Pt nanoparticles. Introducing LiOH onto the support effectively steered the reaction products toward the PeDs at the expense of tetrahydrofurfuryl alcohol (THFA) selectivity. Meanwhile, the major product in PeDs was shifted from 1,5-PeD to 1,2-PeD. The reasons for the PeDs selectivity enhancement were attributed to the generation of a large number of medium-strong base sites on the Li-modified Pt catalyst. The reaction temperature is another effective factor to tune the reaction selectivity. At 230 °C, PeDs selectivity was enhanced to 77.4% with a 1,2-PeD to 1,5-PeD ratio of 3.7 over 4Pt/10Li/MgAl2O4. The Pt/Li/MgAl2O4 catalyst was robust to be reused five times without deactivation.
Collapse
|
24
|
Chai Z. Light-Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chem Asian J 2021; 16:460-473. [PMID: 33448692 PMCID: PMC7986840 DOI: 10.1002/asia.202001312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Indexed: 11/19/2022]
Abstract
Splitting of alcohols into hydrogen and corresponding carbonyl compounds, also called acceptorless alcohol dehydrogenation, is of great significance for both synthetic chemistry and hydrogen production. Light-Driven Alcohol Splitting (LDAS) by heterogeneous photocatalysis is a promising route to achieve such transformations, and it possesses advantages including high selectivity of the carbonyl compounds, extremely mild reaction conditions (room temperature and irradiation of visible light) and easy separation of the photocatalysts from the reaction mixtures. Because a variety of alcohols can be derived from biomass, LDAS can also be regarded as one of the most sustainable approaches for hydrogen production. In this Review, recent advances in the LDAS catalyzed by the heterogeneous photocatalysts are summarized, focusing on the mechanistic insights for the LDAS and aspects that influence the performance of the photocatalysts from viewpoints of metallic co-catalysts, semiconductors, and metal/semiconductor interfaces. In addition, challenges and prospects have been discussed in order to present a complete picture of this field.
Collapse
Affiliation(s)
- Zhigang Chai
- Department of Chemistry – Ångström LaboratoryUppsala University75121UppsalaSweden
| |
Collapse
|
25
|
Lignocellulose Biomass as a Multifunctional Tool for Sustainable Catalysis and Chemicals: An Overview. Catalysts 2021. [DOI: 10.3390/catal11010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Today, the theme of environmental preservation plays an important role within the activities of the scientific community and influences the choices of politics and the common population. In this context, the use of non-fossil substances should be promoted for different reasons: to avoid the depletion and damage of the areas involved in the fossil fuel extraction, decrease the impact of emissions/by-products related to the industrial transformation of fossil-based products and possibly exploit residual biomasses as sources of carbon. This latter aspect also can be viewed as a way to revalorize lignocellulose waste, generally destined to dump as putrescible matter or to be incinerated. In this review, we are aiming to present a concise overview of the multiple functions of lignocellulose biomass in the broad field of catalysis for a sustainable development. The originality of the approach is considering the lignocellulose-derived matter in three different aspects: (i) as a precursor to convert into platform molecules, (ii) as an active material (i.e., humic-like substances as photosensitizers) and (iii) as a green support for catalytic applications. We find that this perspective can widen the awareness level of scientists involved in the catalysis field for the exploitation of residual biomass as a valuable and complementary resource.
Collapse
|
26
|
Cen X, Liu Y, Chen B, Liu D, Chen Z. Metabolic Engineering of Escherichia coli for De Novo Production of 1,5-Pentanediol from Glucose. ACS Synth Biol 2021; 10:192-203. [PMID: 33301309 DOI: 10.1021/acssynbio.0c00567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1,5-Pentanediol (1,5-PDO) is an important C5 building block for the synthesis of different value-added polyurethanes and polyesters. However, no natural metabolic pathway exists for the biosynthesis of 1,5-PDO. Herein we designed and constructed a promising nonnatural pathway for de novo production of 1,5-PDO from cheap carbohydrates. This biosynthesis route expands natural lysine pathways and employs two artificial metabolic modules to sequentially convert lysine into 5-hydroxyvalerate (5-HV) and 1,5-PDO via 5-hydroxyvaleryl-CoA. Theoretically, the 5-hydroxyvaleryl-CoA-based pathway is more energy-efficient than a recently published carboxylic acid reductase-based pathway for 1,5-PDO production. By combining strategies of systematic enzyme screening, pathway balancing, and transporter engineering, we successfully constructed a minimally engineered Escherichia coli strain capable of producing 3.19 g/L of 5-HV and 0.35 g/L of 1,5-PDO in a medium containing 20 g/L of glucose and 5 g/L lysine. Introducing the synthetic modules into a lysine producer and enhancing NADPH supply enabled the strain to accumulate 1.04 g/L of 5-HV and 0.12 g/L of 1,5-PDO using glucose as the main carbon source. This work lays the basis for the development of a biological route for 1,5-PDO production from renewable bioresources.
Collapse
Affiliation(s)
- Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Chen
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing 102209, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc Natl Acad Sci U S A 2020; 117:19159-19167. [PMID: 32719126 DOI: 10.1073/pnas.2003032117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l-1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Collapse
|
28
|
Tomishige K, Nakagawa Y, Tamura M. Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Enjamuri N, Darbha S. Solid catalysts for conversion of furfural and its derivatives to alkanediols. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1744327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nagasuresh Enjamuri
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
30
|
Mishra DK, Lee HJ, Truong CC, Kim J, Suh YW, Baek J, Kim YJ. Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl)furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Kühlborn J, Groß J, Opatz T. Making natural products from renewable feedstocks: back to the roots? Nat Prod Rep 2020; 37:380-424. [DOI: 10.1039/c9np00040b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products.
Collapse
Affiliation(s)
- Jonas Kühlborn
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jonathan Groß
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
32
|
Roldugina EA, Shayakhmetov NN, Maksimov AL, Karakhanov EA. Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219090167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Pisal D, Yadav GD. Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS-2 Catalyst. ACS OMEGA 2019; 4:1201-1214. [PMID: 31459394 PMCID: PMC6648438 DOI: 10.1021/acsomega.8b01595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 06/10/2023]
Abstract
Hydrogenolysis of biomass-derived furfural (FFA) to 1,2-pentanediol (1,2-PeD) was investigated using a bifunctional catalyst with basic and metallic sites, which was synthesized by the hydrothermal method. The synthesized catalyst consisting of rhodium (Rh) supported on an octahedral molecular sieve (OMS-2) of different loadings, such as 0.5, 1, and 1.5% w/w, was studied, and 1% (w/w) loading gave the best results. This 1% w/w Rh/OMS-2 catalyst showed excellent catalytic activity and selectivity for the hydrogenolysis reaction because of better dispersion of rhodium, later revealed by characterization. Furthermore, 1% Rh/OMS-2 catalyst was well characterized in virgin and reused states using various techniques such as Fourier-transform infrared spectroscopy, NH3-temperature-programmed desorption (TPD), CO2-TPD, temperature-programmed reduction, H2 pulse chemisorption, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area, X-ray photoelectron spectroscopy, Raman spectroscopy, and differential scanning calorimetry-thermogravimetry analysis. The catalyst showed a higher surface area of 72 m2/g and the average size of the highly dispersed Rh metal of ∼2 nm. The studies were performed in a batch reactor; the catalyst offered almost 100% conversion of FFA with 87% selectivity to 1,2-PeD at 160 °C and 30 atm hydrogen pressure in 8 h. The reaction mechanism and kinetic model have been developed using a dual-site Langmuir-Hinshelwood-Hougen-Watson mechanism. The activation energies were 12.3 and 27.6 kcal/mol, correspondingly. The catalyst was found to be active, selective, and reusable.
Collapse
Affiliation(s)
| | - Ganapati D. Yadav
- E-mail: , . Tel: +91-22-3361-1001. Fax: +91-22-3361-1020, +91-22-3361-1002
| |
Collapse
|
35
|
Tomishige K, Tamura M, Nakagawa Y. CO
2
Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO
2
Catalyst in the Presence and Absence of 2‐Cyanopyridine. CHEM REC 2018; 19:1354-1379. [DOI: 10.1002/tcr.201800117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| |
Collapse
|
36
|
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem Rev 2018; 118:11023-11117. [PMID: 30362725 DOI: 10.1021/acs.chemrev.8b00134] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Furfural and 5-hydroxymethylfurfural stand out as bridges connecting biomass raw materials to the biorefinery industry. Their reductive transformations by hydroconversion are key routes toward a wide variety of chemicals and biofuels, and heterogeneous catalysis plays a central role in these reactions. The catalyst efficiency highly depends on the nature of metals, supports, and additives, on the catalyst preparation procedure, and obviously on reaction conditions to which catalyst and reactants are exposed: solvent, pressure, and temperature. The present review focuses on the roles played by the catalyst at the molecular level in the hydroconversion of furfural and 5-hydroxymethylfurfural in the gas or liquid phases, including catalytic hydrogen transfer routes and electro/photoreduction, into oxygenates or hydrocarbons (e.g., furfuryl alcohol, 2,5-bis(hydroxymethyl)furan, cyclopentanone, 1,5-pentanediol, 2-methylfuran, 2,5-dimethylfuran, furan, furfuryl ethers, etc.). The mechanism of adsorption of the reactant and the mechanism of the reaction of hydroconversion are correlated to the specificities of each active metal, both noble (Pt, Pd, Ru, Au, Rh, and Ir) and non-noble (Ni, Cu, Co, Mo, and Fe), with an emphasis on the role of the support and of additives on catalytic performances (conversion, yield, and stability). The reusability of catalytic systems (deactivation mechanism, protection, and regeneration methods) is also discussed.
Collapse
Affiliation(s)
- Shuo Chen
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois , UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille , France
| | - Robert Wojcieszak
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois , UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille , France
| | - Franck Dumeignil
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois , UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille , France
| | - Eric Marceau
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois , UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille , France
| | - Sébastien Royer
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois , UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille , France
| |
Collapse
|
37
|
Soghrati E, Kok Poh C, Du Y, Gao F, Kawi S, Borgna A. C−O Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol Over Bi-functional Nickel-Tungsten Catalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201800783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elmira Soghrati
- Institute of Chemical and Engineering Sciences (ICES); Agency for Science, Technology and Research (A*STAR); 1 Pesek Road Jurong Island 627833 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chee Kok Poh
- Institute of Chemical and Engineering Sciences (ICES); Agency for Science, Technology and Research (A*STAR); 1 Pesek Road Jurong Island 627833 Singapore
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences (ICES); Agency for Science, Technology and Research (A*STAR); 1 Pesek Road Jurong Island 627833 Singapore
| | - Feng Gao
- Institute of Chemical and Engineering Sciences (ICES); Agency for Science, Technology and Research (A*STAR); 1 Pesek Road Jurong Island 627833 Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Armando Borgna
- Institute of Chemical and Engineering Sciences (ICES); Agency for Science, Technology and Research (A*STAR); 1 Pesek Road Jurong Island 627833 Singapore
| |
Collapse
|
38
|
Mizugaki T, Kaneda K. Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C-O and C-C Bonds of Biomass-Derived Oxygenates. CHEM REC 2018; 19:1179-1198. [PMID: 30230196 DOI: 10.1002/tcr.201800075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
The environmental impact of CO2 emissions via the use of fossil resources as chemical feedstock and fuels has stimulated research to utilize renewable biomass feedstock. The biogenic compounds such as polyols are highly oxygenated and their valorization requires the new methods to control the oxygen to carbon ratio of the chemicals. The catalytic cleavage of C-O bonds and C-C bonds is promising methods, but the conventional catalyst systems encounter the difficulty to obtain the high yields of the desired products. This review describes our recent development of the high performance heterogeneous catalysts for the valorization of the biogenic chemicals such as glycerol, furfural, and levulinic acid via selective cleavage of C-O bonds and C-C bonds in the liquid-phase. Selective C-O bond cleavage by hydrogenolysis enables production of various diols useful as engineering plastics, antifreeze, and cosmetics in high yields. The success of the selective C-C bond scission of levulinic acid can be applied to a wide range of the biogenic oxygenates such as carboxylic acids, esters, lactones, and primary alcohols, in which the selective C-C bond scission at adjacent to the oxygen functional groups are achieved. Furthermore, valorization of glycerol by selective acetylation and acetalization, and of levulinic acid by hydrogenation is described. Our catalysts show excellent performance compared to the reported catalysts in the aforementioned valorization.
Collapse
Affiliation(s)
- Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kiyotomi Kaneda
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
39
|
Witzke ME, Almithn A, Conrad CL, Hibbitts DD, Flaherty DW. Mechanisms and Active Sites for C–O Bond Rupture within 2-Methyltetrahydrofuran over Ni, Ni12P5, and Ni2P Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Megan E. Witzke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Abdulrahman Almithn
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Christian L. Conrad
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David D. Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
|
41
|
Krishna SH, Huang K, Barnett KJ, He J, Maravelias CT, Dumesic JA, Huber GW, De bruyn M, Weckhuysen BM. Oxygenated commodity chemicals from chemo‐catalytic conversion of biomass derived heterocycles. AIChE J 2018. [DOI: 10.1002/aic.16172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siddarth H. Krishna
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Kefeng Huang
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Kevin J. Barnett
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Jiayue He
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Christos T. Maravelias
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - James A. Dumesic
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - George W. Huber
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Mario De bruyn
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
- Faculty of Science, Debye Institute for Nanomaterials ScienceUtrecht University, Universiteitsweg 99CG Utrecht 3584 The Netherlands
| | - Bert M. Weckhuysen
- Faculty of Science, Debye Institute for Nanomaterials ScienceUtrecht University, Universiteitsweg 99CG Utrecht 3584 The Netherlands
| |
Collapse
|
42
|
Feng S, Nagao A, Aihara T, Miura H, Shishido T. Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3 loading amount on activity. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Synthesis of Tetrahydropyran from Tetrahydrofurfuryl Alcohol over Cu–Zno/Al2O3 under a Gaseous-Phase Condition. Catalysts 2018. [DOI: 10.3390/catal8030105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Zhang K, Li XL, Chen SY, Xu HJ, Deng J, Fu Y. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf) 3 Cocatalytic System. CHEMSUSCHEM 2018; 11:726-734. [PMID: 29372624 DOI: 10.1002/cssc.201702073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Indexed: 05/16/2023]
Abstract
It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H2 , 30 min) was achieved by using Pd/C and Sc(OTf)3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf)3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield.
Collapse
Affiliation(s)
- Kun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xing-Long Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shi-Yan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Hua-Jian Xu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
45
|
Wang C, Lee JD, Ji Y, Onn TM, Luo J, Murray CB, Gorte RJ. A Study of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol Over Pt–WOx/C. Catal Letters 2018. [DOI: 10.1007/s10562-018-2323-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Jackson MA, White MG, Haasch RT, Peterson SC, Blackburn JA. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in a vapor phase packed bed reactor. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Tong T, Xia Q, Liu X, Wang Y. Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
48
|
Sohrabi Mahboub M, Farrokhpour H. Modeling the p – v – T behavior of furfural compounds using perturbed linear Yukawa isotherm regularity. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Banerjee A, Mushrif SH. Reaction Pathways for the Deoxygenation of Biomass-Pyrolysis-Derived Bio-oil on Ru: A DFT Study using Furfural as a Model Compound. ChemCatChem 2017. [DOI: 10.1002/cctc.201700036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arghya Banerjee
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Samir H. Mushrif
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
50
|
Taylor MJ, Jiang L, Reichert J, Papageorgiou AC, Beaumont SK, Wilson K, Lee AF, Barth JV, Kyriakou G. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:8490-8497. [PMID: 29225721 PMCID: PMC5719468 DOI: 10.1021/acs.jpcc.7b01744] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.
Collapse
Affiliation(s)
- Martin J. Taylor
- European
Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United
Kingdom
- Chemical
Engineering and Applied Chemistry, Aston
University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Li Jiang
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| | - Joachim Reichert
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| | | | - Simon K. Beaumont
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Karen Wilson
- European
Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United
Kingdom
| | - Adam F. Lee
- European
Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United
Kingdom
| | - Johannes V. Barth
- Physik-Department
E20, Technische Universität München, D-85748 Garching, Germany
| | - Georgios Kyriakou
- European
Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United
Kingdom
- Chemical
Engineering and Applied Chemistry, Aston
University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|