1
|
Zhang H, Cao Y, Wang S, Tang Y, Tian L, Cai W, Wei Z, Wu Z, Zhu Y, Guo Q. Photocatalytic removal of ammonia nitrogen from water: investigations and challenges for enhanced activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41824-41843. [PMID: 38862798 DOI: 10.1007/s11356-024-33891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Ammonia nitrogen (NH3-N/NH4+-N) serves as a crucial chemical in biochemistry and fertilizer synthesis. However, it is also a toxic compound, posing risks from eutrophication to direct threats to human health. Ammonia nitrogen pollution pervades water sources, presenting a significant challenge. While several water treatment technologies exist, biological treatment, though widely used, has its limitations. Hence, green and efficient photocatalytic technology emerges as a promising solution. However, current monolithic semiconductor photocatalysts prove inadequate in controlling ammonia nitrogen pollution. Therefore, this review focuses on enhancing semiconductor photocatalysts' efficiency through modification, discussing four mechanisms: (1) mono-ionic modification; (2) metallic and non-metallic modification; (3) construct heterojunctions; and (4) enhancement of synergistic effects of multiple technologies. The influencing factors of photocatalytic ammonia nitrogen removal efficiency are also explored. Moreover, the review outlines the limitations of current photocatalytic pollution treatment and discusses future development trends and research challenges. Currently, the main products of ammonia nitrogen removal include NO3-, NO2-, and N2. To mitigate secondary pollution, the green process of converting ammonia nitrogen to N2 using photocatalysis emerges as a fundamental approach for future treatment. Overall, this review aims to deepen understanding of photocatalysis in ammonia nitrogen treatment and guide researchers toward widespread implementation of this endeavor.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China.
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China.
| | - Yang Cao
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Shaofeng Wang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Yuling Tang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Lihong Tian
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Wenrui Cai
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiqiang Wei
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiguo Wu
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Qi Guo
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| |
Collapse
|
2
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
3
|
Jaswal V, J RB, N YK. Synergistic effect of TiO 2 nanostructured cathode in microbial fuel cell for bioelectricity enhancement. CHEMOSPHERE 2023; 330:138556. [PMID: 37003439 DOI: 10.1016/j.chemosphere.2023.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Nano-bedecking of electrode with nanoparticles is an effective method to improve power generation of microbial fuel cells (MFCs). In this study, different concentrations (0.25 mg cm-2, 0.50 mg cm-2, 0.75 mg cm-2 and 1.0 mg cm-2) of TiO2 nanoparticles of size 10-25 nm were overlaid on the carbon cloth (CC) using spray pyrolysis technique and used as catalytic cathode in a dual-chambered microbial fuel cell treating distillery wastewater. Results evidenced that TiO2 nanoparticles modified cathode increased the power generation and recorded a highest power and current density of 162.5 ± 2 mW m-2 and 1.4 ± 0.005 A m-2, respectively. Carbon cloth coated with 0.50 mg cm-2 TiO2 nanoparticles showed 2.8 and 7.3 times higher current and power density as compared to uncoated cathode. MFC operated at a hydraulic retention time (HRT) and organic loading rate (OLR) of 72 h and 59.2 g COD L-1 d-1 showed a maximum chemical oxygen demand (COD) removal of 72.3% which was 15.3% higher than the control MFC. Likewise, the coulombic efficiency of control and modified MFC was 33% and 44%, respectively. The maximum NO3-- N, NO2-- N and NH4+- N removal efficiency of 77.3%, 49.9% and 59.4% were observed for TiO2 nanoparticles modified electrode which was 19.3%, 11.4% and 10.5% higher than control. TiO2 modified cathode was effective in enhancing the bioelectricity generation in MFCs.
Collapse
Affiliation(s)
- Vijay Jaswal
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Tiruvarur, 610005, Tamil Nadu, India
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
4
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. Effective removal of ammonia from aqueous solution through struvite synthesis and breakpoint chlorination: Insights into the synergistic effects of the hybrid system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117506. [PMID: 36801679 DOI: 10.1016/j.jenvman.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 μg/L to 4 μg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
5
|
Cui M, Li Q, Bao R, Xia J, Li H. 2D and 3D Nanomaterials for Photoelectrocatalytic Removal of Organic Pollutants from Water. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengmeng Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Qianxi Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Ruiyu Bao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Jianxin Xia
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Hua Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| |
Collapse
|
6
|
Caballero LC, Thornburg NE, Nigra MM. Catalytic ammonia reforming: alternative routes to net-zero-carbon hydrogen and fuel. Chem Sci 2022; 13:12945-12956. [PMID: 36425514 PMCID: PMC9667930 DOI: 10.1039/d2sc04672e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/15/2022] [Indexed: 03/07/2024] Open
Abstract
Ammonia is an energy-dense liquid hydrogen carrier and fuel whose accessible dissociation chemistries offer promising alternatives to hydrogen electrolysis, compression and dispensing at scale. Catalytic ammonia reforming has thus emerged as an area of renewed focus within the ammonia and hydrogen energy research & development communities. However, a majority of studies emphasize the discovery of new catalytic materials and their evaluation under idealized laboratory conditions. This Perspective highlights recent advances in ammonia reforming catalysts and their demonstrations in realistic application scenarios. Key knowledge gaps and technical needs for real reformer devices are emphasized and presented alongside enabling catalyst and reaction engineering fundamentals to spur future investigations into catalytic ammonia reforming.
Collapse
Affiliation(s)
- Luis C Caballero
- Department of Chemical Engineering, University of Utah Salt Lake City UT USA
| | - Nicholas E Thornburg
- Center for Integrated Mobility Sciences, National Renewable Energy Laboratory Golden CO USA
| | - Michael M Nigra
- Department of Chemical Engineering, University of Utah Salt Lake City UT USA
| |
Collapse
|
7
|
Zhu J, Liu Z, Yang F, Long D, Jian Y, Pu S. The Preparation of {001}TiO 2/TiOF 2 via a One-Step Hydrothermal Method and Its Degradation Mechanism of Ammonia Nitrogen. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186465. [PMID: 36143777 PMCID: PMC9505796 DOI: 10.3390/ma15186465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
{001}TiO2/TiOF2 photocatalytic composites with a high activity {001} crystal plane were prepared by one-step hydrothermal methods using butyl titanate as a titanium source and hydrofluoric acid as a fluorine source. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), raman spectroscopy, N2 adsorption-desorption curve (BET), UV-Vis diffuse absorption spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy (PL) were used to evaluate the structure, morphology, specific surface area, optical properties, and photocarrier separation ability of {001}TiO2/TiOF2. Ammonia nitrogen was taken as the target pollutant, and the degradation performance of the catalyst was investigated. The results show that hydrofluoric acid improves the content of {001} crystal plane of TiO2 with high activity; it also improves the specific surface area and dispersion of the composite material and adjusts the ratio of {001}TiO2 to TiOF2 in the composite material to enhance the absorption capacity of the composite material and reduce the band gap width of the composite material. The degradation rate of ammonia nitrogen by 100 mg F15 is 93.19% when the initial concentration of ammonia nitrogen is 100 mg/L and pH is 10. Throughout the reaction process, the {001}TiO2/TiOF2 composite produces superoxide anion radical (·O2-) and hydroxyl radical (·OH) to oxidize NH3·H2O and generate N2 accompanied by a small amount of NO3- and NO2-.
Collapse
Affiliation(s)
- Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (D.L.); (S.P.)
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (D.L.); (S.P.)
| |
Collapse
|
8
|
Revisiting the mechanisms of nitrite ions and ammonia removal from aqueous solutions: photolysis versus photocatalysis. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1833-1843. [PMID: 35947301 DOI: 10.1007/s43630-022-00260-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/22/2022] [Indexed: 10/15/2022]
Abstract
Nitrite ions and ammonia are widespread forms of inorganic water pollutants. Nevertheless, the mechanisms of their photolytic and photocatalytic reactions under UV-A irradiation are still fully undisclosed, particularly, at different pH values under aerobic and inert atmospheres. Herein, we have studied the photolytic decomposition of nitrite ions under different conditions using 365 nm UV-A LED as a light source instead of mercury lamps that emit photons in the UV-B region and generate a lot of heat. The results indicated that the rate of nitrite disproportionation in the dark at pH ≤ 3.0 is remarkably high relative to the rate of the photolytic decomposition. At pH ˃ 3, the photolytic reaction is negligible and nitrite ions showed considerable stability. In contrast, the photocatalytic oxidation of nitrite ions over TiO2 photocatalysts, namely, TiO2P25, TiO2UV100, and TiO2 anatase/brookite mixture proceeds at pH ˃ 3.0. TiO2 P25 exhibited the highest photocatalytic activity at pH 5. Interestingly, the photolytic simultaneous removal of nitrite ions and ammonia was possible at pH 9.0 in the absence of oxygen (Ar atmosphere). A 42.69 ± 0.66%, 27.75 ± 1.7%, and 32.74 ± 0.59% of nitrogen calculated based on nitrite, ammonia, and both of them, respectively, can be removed after 6 h of UV-A irradiation. The selectivity of N2 evolution was 77.6%. The nitrogen removal rate was significantly reduced in the presence of TiO2 photocatalyst evincing that TiO2 photocatalysis is applicable for nitrite ions oxidation, whereas the photolytic process is better suited for the simultaneous removal of nitrite ions and ammonia.
Collapse
|
9
|
From Photocatalysis to Photo-Electrocatalysis: An Innovative Water Remediation System for Sustainable Fish Farming. SUSTAINABILITY 2022. [DOI: 10.3390/su14159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, the effects of photo-electrocatalysis (PEC) were evaluated as an innovative application of conventional photocatalysis (PC) to remediate water in a recirculating system for rainbow trout (Oncorhynchus mykiss) culture, in relation to fish welfare and health, with a multidisciplinary approach. Three tanks were employed, equipped with conventional biological filters as a control system, and three tanks equipped with the PEC purification system. The concentrations of ammonia, nitrite and nitrate ions in water were monitored, and the fish’s oxidative damage and stress response were evaluated in parallel. The water of the PEC-treated experimental group showed lower ammonia (TAN) and nitrite concentrations and higher nitrate concentration, possibly deriving from TAN oxidation through PEC, also leading to gaseous N2. Histological analysis did not reveal any pathological alteration in the gills and liver of both groups. The superoxide dismutase (sod1), glutathione reductase (GR), glutathione peroxidase (GPx1), and Tumor necrosis factor (TNFα) gene expressions were significantly higher in the control group than in the PEC-treated group, while the Heat shock protein 70 (Hsp70) expression did not show any difference in the two groups. These results indicate that the use of PEC filters has a positive effect on water quality, compared to the use of conventional biological filters, inducing a high level of welfare in O. mykiss.
Collapse
|
10
|
Feng J, Zhang X, Zhang G, Li J, Song W, Xu Z. Improved photocatalytic conversion of high-concentration ammonia in water by low-cost Cu/TiO 2 and its mechanism study. CHEMOSPHERE 2021; 274:129689. [PMID: 33529954 DOI: 10.1016/j.chemosphere.2021.129689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Platinized TiO2 (Pt/TiO2) as a benchmark photocatalyst shows superior photocatalytic performance in environmental remediation. In order to reduce the cost of photocatalyst for practical use, a series of cooper loaded TiO2 (Cu/TiO2) photocatalysts were prepared by photoreduction method and compared with pure TiO2 and Pt/TiO2 in terms of overall ammonia conversion efficiency and selective oxidation. The as-prepared Cu/TiO2 samples were characterized and analyzed by physicochemical instrumental measurements. The results show that about 60% Cu2+ ions in suspension can be photodeposited onto the surface of TiO2 under UV light irradiation, and is mainly composed by a mixture of Cu/Cu+. The Cu/P25 (0.3 wt% Cu) sample was screened out as the optimal photocatalyst, via photoilluminance spectra analysis and photocatalytic oxidation of ammonia. It shows even better performance compared to Pt/TiO2 in the oxidation of high concentration of ammonia, due to the strong coordination effect by Cu(NH3)n complex formation. Through Electron Spin Resonance (EPR) analysis, and free radical suppression experiments, the active oxidative species account for ammonia oxidation and selective product generation were analyzed, and the possible reaction mechanisms involving photocatalytic ammonia conversion were proposed. ●OH has been identified as the main oxidant that affects the removal efficiency of ammonia nitrogen, whereas O2●- mainly affects the production of N2 and h+ is mainly responsible for the production of NO3-. These results indicate that Cu/TiO2 could be used as a low-cost and efficient photocatalyst in pretreatment process for conversion of high concentration of ammonia in wastewater.
Collapse
Affiliation(s)
- Jianpei Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xiaolei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ji Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Wei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Zhiliang Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
11
|
Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts 2021. [DOI: 10.3390/catal11020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photocatalysis has been used for the oxidation of ammonia/ammonium in water. A semibatch photoreactor was developed for this purpose, and nanostructured TiO2-based materials, either commercial P25 or prepared by flame spray pyrolysis (FSP), were used as catalysts. In the present work, we investigated the effect of (i) metal co-catalysts, (ii) pH, and (iii) ammonia concentration on the efficiency of oxidation and on the selectivity to the undesired overoxidation byproduct, i.e., nitrites and nitrates. Several metals were added to both titania samples, and the physicochemical properties of every sample were studied by XRD, BET, and UV-Vis spectroscopy. The pH, which was investigated in the range of 2.5–11.5, was the most important parameter. The optimum pH values, resulted as 11.5 and 4.8 for P25 and FSP respectively, matching the best compromise between an acceptable conversion and a limited selectivity toward nitrite and nitrate formation. For both titania samples (P25 and FSP), ammonia conversion vs. nitrite and nitrate formation were highly dependent on the pH. At pH ≥ 9, the initial rate of photooxidation was high, with selective formation of overoxidized byproducts, whereas, at a more acidic pH, the conversion was lower, but the selectivity toward nitrogen formation was higher. P25 samples added with noble metal co-catalysts (0.1 mol% Ag, Au, Pd, Pt) at pH = 11.5 remarkably increased the selectivity to nitrite and nitrate, while, in the case of FSP samples (pH = 4.8), the co-catalysts increased the selectivity toward N2 with respect to the unpromoted catalyst and also the conversion in the case of Au and Pt. Reactivity was discussed, leading to the proposing of a mechanism that correlates the activity with either surface adsorption (depending of the surface charge of the catalyst and on pH) or the homogeneous reactivity of oxidizing species.
Collapse
|
12
|
Yao F, Fu W, Ge X, Wang L, Wang J, Zhong W. Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H 3PW 12O 40/TiO 2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138425. [PMID: 32330709 DOI: 10.1016/j.scitotenv.2020.138425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Currently, the majority of wastewater with a high concentration of ammonia nitrogen (NH4+/NH3) is treated using biological methods, which have poor biodegradability and low removal efficiency. In this paper, a composite photocatalyst of copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) was prepared by sol-gel hydrothermal synthesis, and the composite catalyst was characterized by X-ray diffraction (XRD), UV-vis-diffuse reflectance spectroscopy (UV-VIS-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS)、scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The photocatalytic oxidation of a high-concentration NH4+/NH3 solution was carried out under ultraviolet (UV) light to explore the effects of different influencing factors on the photocatalytic effect and to optimize the reaction conditions. The prepared composite catalyst exhibited higher photocatalytic activity than that of TiO2. When the initial concentration of the solution was 300 mg·L-1, the initial pH was 11, the catalyst concentration was 1.5 g·L-1, the loading level of Cu-H3PW12O40 was 40%, and the aeration rate was 1.5 L·min-1, the removal rate of NH4+/NH3 by the composite photocatalyst could reach >80%. Very little NO2- and NO3- were produced, and N2 was the main product.
Collapse
Affiliation(s)
- Fanfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China.
| | - Xiaohong Ge
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China.
| | - Wanzhen Zhong
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| |
Collapse
|
13
|
Vikrant K, Kim KH, Dong F, Giannakoudakis DA. Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
14
|
Bahmani M, Dashtian K, Mowla D, Esmaeilzadeh F, Ghaedi M. UiO-66(Ti)-Fe 3O 4-WO 3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122360. [PMID: 32114134 DOI: 10.1016/j.jhazmat.2020.122360] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This work presents the characterization of novel synthesized UiO-66(Ti)-Fe3O4-WO3 magnetic photocatalyst and investigates their photocatalytic activity for the photodegradation of ammonia in a designed continuous flow-loop thin-film slurry flat-plate photoreactor (TFSR). Excellent ammonia degradation efficiency was achieved in the presence of the synthesized catalyst at ambient conditions using no more reactive oxidant species. Several independent variables involving catalyst mass, flowrate, pH, irradiation time and initial ammonia concentration as well as corresponding experiments were analyzed and design using the central composite design (CCD). The influence and significance of each parameter and their binary interactions were then evaluated by applying the analysis of variance. The ammonia degradation efficiency of 91.80 % with the desirability of 0.903 were obtained at optimum values of operational parameters including 550 mL/min,10, 0.125 g/L, 60 min and 30 mg/L for solution flowrate, pH, catalyst mass, irradiation time and initial ammonia concentration, respectively. Furthermore, the liquid phase products of ammonia degradation such as nitrate and nitrite ions were completely removed, and purified water was produced using the combination of reverse osmosis process and mixed resins beds. The photocatalyst mechanism study revealed that [Formula: see text] was the predominant reactive oxygen species in the ammonia photodegradation.
Collapse
Affiliation(s)
- M Bahmani
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Environmental Research Center in Petroleum and Petrochemical Industries, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - K Dashtian
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - D Mowla
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Environmental Research Center in Petroleum and Petrochemical Industries, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71348-51154, Iran.
| | - F Esmaeilzadeh
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Environmental Research Center in Petroleum and Petrochemical Industries, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71348-51154, Iran
| | - M Ghaedi
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran.
| |
Collapse
|
15
|
Enhanced Visible Light Photocatalytic Activity of N and Ag Doped and Co-Doped TiO2 Synthesized by Using an In-Situ Solvothermal Method for Gas Phase Ammonia Removal. Catalysts 2020. [DOI: 10.3390/catal10020251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Single doping and co-doping of N and Ag on TiO2 were successfully prepared by using an in-situ solvothermal method and their structural properties and chemical compositions were characterized. The results indicated that all photocatalysts displayed in TiO2 anatase crystal phase, and a small mesoporous structure was observed in the doped materials. The main roles of N and Ag on the property and photocatalytic activity of TiO2 were different. The N doping has significantly enhanced homogenous surface morphology and specific surface area of the photocatalyst. While Ag doping was narrowing the band gap energy, extending light absorption toward a visible region by surface plasmon resonance as well as delaying the recombination rate of electron and hole of TiO2. The existence of N in TiO2 lattice was observed in two structural linkages such as substitutional nitrogen (Ti-O-N) and interstitial nitrogen (O-Ti-N). Silver species could be in the form of Ag0 and Ag2O. The photocatalytic performance of the photocatalysts coated on stainless steel mesh was investigated by the degradation of aqueous MB and gas phase NH3 under visible LED light illumination for three recycling runs. The highest photocatalytic activity and recyclability were reached in 5% N/Ag-TiO2 showing the efficiency of 98.82% for methylene blue (MB) dye degradation and 37.5% for NH3 removal in 6 h, which was 2.7 and 4.3 times, respectively. This is greater than that of pure TiO2. This was due to the synergistic effect of N and Ag doping.
Collapse
|
16
|
Evaluation of the Photocatalytic Activity of a Cordierite-Honeycomb-Supported TiO 2 Film with a Liquid-Solid Photoreactor. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24244499. [PMID: 31818013 PMCID: PMC6943636 DOI: 10.3390/molecules24244499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Anatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g., sulfates) that can reduce the performance of the photocatalyst. The present work describes the development of a cordierite-honeycomb-supported TiO2 film to eliminate the problems of catalyst recovery. The catalyst was then tested against phenol in the presence of increasing concentrations of sulfates in a specially developed recirculating modular photoreactor, able to accommodate the supported catalyst and scalable for application at industrial level. The effect of SO42- was evaluated at different concentrations, showing a slight deactivation only at very high sulfate concentration (≥3 g L-1). Lastly, in the framework of the EU project Project Ô, the catalyst was tested in the treatment of real wastewater from a textile company containing a relevant concentration of sulfates, highlighting the stability of the photocatalyst.
Collapse
|
17
|
Sun H, Wang W, Wang K, Zhang L. Modified carbon nitride as an efficient adsorbent for ammonia nitrogen with low concentration. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Sun
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of the Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal University Shanghai P. R. China
- State Key Laboratory of High‐Performance Ceramics and Super Fine MicrostructureShanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai P. R. China
| | - Wenzhong Wang
- State Key Laboratory of High‐Performance Ceramics and Super Fine MicrostructureShanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing P. R. China
| | - Kefu Wang
- State Key Laboratory of High‐Performance Ceramics and Super Fine MicrostructureShanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing P. R. China
| | - Ling Zhang
- State Key Laboratory of High‐Performance Ceramics and Super Fine MicrostructureShanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
18
|
Treatment of Aquaculture Wastewater through Chitin/ZnO Composite Photocatalyst. WATER 2019. [DOI: 10.3390/w11020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposed a newly explored composite photocatalyst, Chitin/ZnO, prepared via the sol-gel method for exploring its photocatalytic activity in the simulated aquaculture wastewater under UV irradiation. The study mainly involves the application of Chitin/ZnO from three aspects: the structure, the principle and the degradation efficiency. The effects of purification operation factors including mass ratio rate, dosage, calcination temperature, initial NH4+–N concentration and illumination conditions on the NH4+–N removal effectiveness were investigated. Optimum conditions were explored through orthogonal experiments, which revealed that 88.73% NH4+–N removal from 60 mg/L synthetic wastewater was achieved by direct illumination for 120 min. Additionally, Chitin/ZnO photocatalysts (mass ratio of 2:3) at a calcination temperature of 500 °C were favorable for Chitin loaded over a ZnO lattice. The obtained nanoparticles of Chitin/ZnO were characterized using SEM and X-ray diffraction. The purpose of this paper is to grope for an economical and easy method of Chitin/ZnO powder preparation and to provide a practical approach for future research on the photocatalytic purification of aquaculture wastewater.
Collapse
|
19
|
Randazzo B, Chemello G, Tortarolo I, Chiarello GL, Zalas M, Santini A, Liberatore M, Liberatore M, Selli E, Olivotto I. A Novel Photocatalytic Purification System for Fish Culture. Zebrafish 2017; 14:411-421. [DOI: 10.1089/zeb.2017.1448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Chemello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | - Gian Luca Chiarello
- Dipartimento di Chimica, SmartMatLab Centre, Università degli Studi di Milano, Milano, Italy
| | - Maciej Zalas
- Dipartimento di Chimica, SmartMatLab Centre, Università degli Studi di Milano, Milano, Italy
- Faculty of Chemistry, Adama Mickiewicz University in Poznań, Poznań, Poland
| | - Alessandra Santini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | | | - Elena Selli
- Dipartimento di Chimica, SmartMatLab Centre, Università degli Studi di Milano, Milano, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
20
|
Dozzi MV, Brocato S, Marra G, Tozzola G, Meda L, Selli E. Aqueous ammonia abatement on Pt- and Ru-modified TiO 2 : Selectivity effects of the metal nanoparticles deposition method. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Meryem SS, Nasreen S, Siddique M, Khan R. An overview of the reaction conditions for an efficient photoconversion of CO2. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon dioxide (CO2) emission is one of the well-known causes of global warming. Photoconversion of CO2 to useful chemical compounds using solar energy is an attractive approach as it reduces the major greenhouse gas and promises a sustainable energy source. This method involves radical-chain reactions that form cation and anion radicals generated as a result of the reaction with photogenerated electrons (e−) and holes (h+) between metal oxide photocatalyst and the reactants. Therefore, the product distribution of a modified photocatalyst even under specific reaction conditions is difficult to predict. The CO2 photocatalytic reduction process is controlled by several conditions such as reactor configuration, photocatalyst type, and nature of the reducing agents. Here, we review the parameters such as temperature, pH, CO2 pressure, type of reductant, role of co-catalysts, dopants, and type of photocatalysts that influence the end products of the photocatalytic reduction of CO2. In this review, the different modifications recommended for the photocatalysts to improve CO2 reduction and receive maximum valuable end product (methane, ethanol, methanol, hydrogen, and carbon monoxide) have been listed. The discussion also includes specific behaviors of photocatalysts which lead to different product distribution. It has been noted that different metal and nonmetal dopants improve the activity of a photocatalyst and influence the end product distribution by altering the active species. Similarly, the key factors, i.e. size, morphology and doping, which have been ruling the photocatalytic activity of CO2 reduction under UV or visible light irradiation have been identified.
Collapse
Affiliation(s)
- Syeda Shaima Meryem
- Department of Environmental Sciences , COMSATS Institute of Information Technology , Abbottabad , KPK 22060, Pakistan
| | - Sadia Nasreen
- Department of Environmental Engineering , University of Engineering and Technology , Taxila , Pakistan
| | - Maria Siddique
- Department of Environmental Sciences , COMSATS Institute of Information Technology , Abbottabad , KPK 22060, Pakistan
| | - Romana Khan
- Department of Environmental Sciences , COMSATS Institute of Information Technology , Abbottabad , KPK 22060, Pakistan
| |
Collapse
|
22
|
Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chem Rev 2017; 117:1445-1514. [DOI: 10.1021/acs.chemrev.6b00396] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Rajender S. Varma
- Regional
Center of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
23
|
Zou CY, Liu SQ, Shen Z, Zhang Y, Jiang NS, Ji WC. Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62752-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Jovanović B, Bezirci G, Çağan AS, Coppens J, Levi EE, Oluz Z, Tuncel E, Duran H, Beklioğlu M. Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment. Nanotoxicology 2016; 10:902-12. [DOI: 10.3109/17435390.2016.1140242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Boris Jovanović
- Faculty of Veterinary Medicine, Chair for Fish Diseases and Fisheries Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany,
- Center for Nanoscience (CeNS), LMU, Munich, Germany,
| | - Gizem Bezirci
- Department of Biology, Middle East Technical University, Ankara, Turkey,
| | - Ali Serhan Çağan
- Department of Biology, Middle East Technical University, Ankara, Turkey,
| | - Jan Coppens
- Department of Biology, Middle East Technical University, Ankara, Turkey,
| | - Eti E. Levi
- Department of Biology, Middle East Technical University, Ankara, Turkey,
| | - Zehra Oluz
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey, and
| | - Eylül Tuncel
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey, and
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey, and
| | - Meryem Beklioğlu
- Department of Biology, Middle East Technical University, Ankara, Turkey,
- Kemal Kurdaş Ecological Research and Training Stations, Lake Eymir, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
25
|
Characterization of La/Fe/TiO₂ and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:14626-39. [PMID: 26593929 PMCID: PMC4661671 DOI: 10.3390/ijerph121114626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 12/02/2022]
Abstract
La/Fe/TiO2 composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO2 was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO2: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO2 had higher catalytic activity to ammonia nitrogen waste water compared pure TiO2 and the other single metal-doped TiO2. pH 10 and 2 mmol/L H2O2 were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO2. However, the common inorganic ions of Cl−, NO3−, SO42−, HCO3−/CO32−, Na+, K+, Ca2+ and Mg2+ in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N2 during the 64.6% removal efficiency of ammonia nitrogen.
Collapse
|
26
|
Gurylev V, Su CY, Perng TP. Surface reconstruction, oxygen vacancy distribution and photocatalytic activity of hydrogenated titanium oxide thin film. J Catal 2015. [DOI: 10.1016/j.jcat.2015.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Altomare M, Dozzi MV, Chiarello GL, Di Paola A, Palmisano L, Selli E. High activity of brookite TiO2 nanoparticles in the photocatalytic abatement of ammonia in water. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Wang H, Su Y, Zhao H, Yu H, Chen S, Zhang Y, Quan X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11984-11990. [PMID: 25232664 DOI: 10.1021/es503073z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Direct utilization of solar energy for photocatalytic removal of ammonia from water is a topic of strong interest. However, most of the photocatalysts with effective performance are solely metal-based semiconductors. Here, we report for the first time that a new type of atomic single layer graphitic-C(3)N(4) (SL g-C(3)N(4)), a metal-free photocatalyst, has an excellent photocatalytic activity for total ammonia nitrogen (TAN) removal from water. The results demonstrated that over 80% of TAN (initial concentration 1.50 mg · L(-1)) could be removed in 6 h under Xe lamp irradiation (195 mW · cm(-2)). Furthermore, the SL g-C(3)N(4) exhibited a higher photocatalytic activity in alkaline solution than that in neutral or acidic solutions. The investigation suggested that both photogenerated holes and hydroxyl radicals were involved the TAN photocatalytic oxidation process and that the major oxidation product was NO3(-)-N. In addition, SL g-C(3)N(4) exhibited good photocatalytic stability in aqueous solution. This work highlights the appealing application of an inexpensive metal-free photocatalyst in aqueous ammonia treatment.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Daghrir R, Drogui P, Delegan N, El Khakani MA. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:300-5. [PMID: 23911841 DOI: 10.1016/j.scitotenv.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 05/03/2023]
Abstract
The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO₂ used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO₂ compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH₄(+) have been recorded. During the treatment, CTC was mainly transformed into CO₂ and H₂O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units).
Collapse
Affiliation(s)
- Rimeh Daghrir
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9, Canada.
| | | | | | | |
Collapse
|
30
|
Daghrir R, Drogui P, Delegan N, El Khakani MA. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. WATER RESEARCH 2013; 47:6801-6810. [PMID: 24075724 DOI: 10.1016/j.watres.2013.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
The appearance and the persistence of pharmaceutical products in the aquatic environment urgently call for the development of an innovative and practical water treatment technology. This study deals with the development of nanostructured nitrogen-doped TiO2 photoanodes and their subsequent use for chlortetracycline (CTC) photoelectrocatalytic oxidation under visible light. The N-doped TiO2 photoanodes with different nitrogen contents were prepared by means of a radiofrequency magnetron sputtering (RF-MS) process, with the objective to tune shift their optical absorption from the UV towards the visible. The N-doped TiO2 consist of nanostructured anatase phase with average TiO2 nanocrystallite size of 29 nm. The nitrogen doping is clearly shown to produce the desired red shift of the absorption onset of the TiO2 coatings (from ~380 nm to ~550 nm). Likewise, the N-doped TiO2 are found to be highly photo-electroactive not only under the UV light but most interestingly under the visible light as well. Using the optimal N-doped photoanodes, 99.6% of CTC (100 μg/L) was successfully degraded after 180 min of treatment time with a current intensity of 0.6 A. Under these conditions, a relatively high mineralization of CTC (92.5% ± 0.26% of TOC removal and 90.3% ± 1.1% of TN removal) was achieved.
Collapse
Affiliation(s)
- Rimeh Daghrir
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | | | | | | |
Collapse
|