1
|
Peng L, Zhao Y, Yang T, Tong Z, Tang Z, Orita A, Qiu R. Zirconium-Based Catalysts in Organic Synthesis. Top Curr Chem (Cham) 2022; 380:41. [PMID: 35951161 DOI: 10.1007/s41061-022-00396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO2 fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.,Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Cako E, Wang Z, Castro-Muñoz R, Rayaroth MP, Boczkaj G. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility - A review. ULTRASONICS SONOCHEMISTRY 2022; 88:106081. [PMID: 35777195 PMCID: PMC9253490 DOI: 10.1016/j.ultsonch.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.
Collapse
Affiliation(s)
- Elvana Cako
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chen Jiazhen, Shanghai 202162, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Manoj P Rayaroth
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
3
|
Modification of FCC slurry oil and deoiled asphalt for making high-grade paving asphalt. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Miro de Medeiros A, de Sousa Castro K, Gundim de Macêdo ML, Mabel de Morais Araújo A, Ribeiro da Silva D, Gondim AD. Catalytic pyrolysis of coconut oil with Ni/SBA-15 for the production of bio jet fuel. RSC Adv 2022; 12:10163-10176. [PMID: 35424960 PMCID: PMC8968544 DOI: 10.1039/d2ra00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Catalytic pyrolysis of vegetable oil is one of the potential routes to convert oil to drop-in biofuels, known as renewable hydrocarbons. In this paper, we explored catalytic pyrolysis of coconut oil using SBA-15 impregnated with Ni in proportions of 1% to 5% to produce sustainable aviation fuel. The catalysts were synthesized, calcined and then characterized by XRD, FTIR, SEM, and EDS. In order to better understand the behavior of this process, thermal and kinetic studies were carried out by thermogravimetry. The TG curves of vegetable oil with (10%) and without catalysts were obtained at heating rates of 5, 15 and 20 °C min-1, in the temperature range between 30 and 600 °C. The kinetic parameters were calculated by the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods. In the kinetic study, lower heat rates promoted higher conversions and the KAS model suits the process. The results calculated for the OC sample using the two kinetic models showed an increase in the E a energy as the conversion progressed to a certain point. Catalytic pyrolysis experiments were performed in a one-stage tubular reactor at 500 °C with a catalyst loading of 10 wt% on the basis of mass of oil. The catalyst with 5% Ni showed greater presence of hydrocarbons and greater formation of water, indicating that the deoxygenation process occurred through decarbonylation. With this, the present study was successful in the development of methodologies for obtaining hydrocarbons with a composition close to that of drop-in fuels, compared to the process carried out with vegetable oil in the absence of catalysts.
Collapse
Affiliation(s)
- Aldo Miro de Medeiros
- Federal University of Rio Grande do Norte, Institute of Chemistry Natal RN 59078-970 Brazil
| | | | | | | | | | - Amanda Duarte Gondim
- Federal University of Rio Grande do Norte, Institute of Chemistry Natal RN 59078-970 Brazil
| |
Collapse
|
5
|
Nazmi NASM, Razak FIA, Mokhtar WNAW, Ibrahim MNM, Adam F, Yahaya N, Rosid SJM, Shukri NM, Abdullah WNW. Catalytic oxidative desulfurisation over Co/Fe-γAl 2O 3 catalyst: performance, characterisation and computational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1009-1020. [PMID: 34341936 DOI: 10.1007/s11356-021-15733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al2O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3O4 and Fe3O4 species. The optimised catalyst, Co/Fe-Al2O3, calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2O3, two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT.
Collapse
Affiliation(s)
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Wan Nur Aini Wan Mokhtar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | | | - Farook Adam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - NoorFatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia
| | - Salmiah Jamal Mat Rosid
- Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Nurasmat Mohd Shukri
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
6
|
Ruchomski L, Pikula T, Kamiński D, Słowik G, Kosmulski M. Synthesis and characterization of a novel composites derived from SBA-15 mesoporous silica and iron pentacarbonyl. J Colloid Interface Sci 2021; 608:2421-2429. [PMID: 34750007 DOI: 10.1016/j.jcis.2021.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Fe(CO)5 was deposited on SBA-15 from gaseous phase and the adsorbed iron precursor was oxidized and hydrolyzed. We hypothesize that a novel method produces composites of unique and useful properties. The absence of sulfur and halides in the composites is of special importance with respect of their potential application as catalysts and catalyst supports. EXPERIMENTS We obtained composites containing 1.3-157.5% of iron oxide with respect to silica (counted as 100%). The new materials were characterized by specific surface area, XRD (X-ray diffraction), Mossbauer spectroscopy, electron microscopy coupled with EDS (energy dispersive X-Ray spectroscopy), and microelectrophoresis. FINDINGS In the composites low in iron (<57% of iron oxide) the Mossbauer spectra showed only doublets, which were interpreted as tiny nanoparticles of Fe(III) oxide in the pores of SBA-15. In the composites high in iron (>65%) the Mossbauer spectra showed doublets and sextets. The later were interpreted as larger nanocrystals of hematite, and the presence of such nanocrystals was confirmed by XRD. EDS confirmed that in the composites low in iron, iron oxide was evenly distributed in the entire volume of pores of SBA-15.
Collapse
Affiliation(s)
- Leszek Ruchomski
- Laboratory of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, 20618 Lublin, Poland
| | - Tomasz Pikula
- Laboratory of Physics, Lublin University of Technology, Nadbystrzycka 38, 20618 Lublin, Poland.
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Plac Marii Curie Skłodowskiej 5, 20031 Lublin, Poland.
| | - Grzegorz Słowik
- Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland.
| | - Marek Kosmulski
- Laboratory of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, 20618 Lublin, Poland.
| |
Collapse
|
7
|
Ultrasound-Assisted Hydrothermal Synthesis of V2O5/Zr-SBA-15 Catalysts for Production of Ultralow Sulfur Fuel. Catalysts 2021. [DOI: 10.3390/catal11040408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work reports the results of the ultrasound-assisted hydrothermal synthesis of two sets of V2O5 dispersed on SBA-15 and Zr doped SBA-15 catalysts used for the oxidation of dibenzothiophene (DBT) in a model diesel via the combination of oxidation, catalysis, and extraction technical route. These catalysts contained Lewis acidity as major and Brønsted acidity as minor. The amount of acidity varied with the content of vanadia and zirconium doping. It was found that DBT conversion is very sensitive to the Lewis acidity. DBT conversion increased by increasing the vanadium content and correlated well with the amount of surface Lewis acidity. Under the optimal experimental condition (Reaction temperature: 60 °C, reaction time 40 min, catalyst concentration: 1 g/L oil; H2O2/DBT mole ratio = 10), the 30% V2O5/SBA-15 and 30% V2O5/Zr-SBA-15 catalysts could convert more than 99% of DBT. Two reaction pathways of DBT oxidation involving vanadia surface structure, Lewis acidity, and peroxometallic complexes were proposed. When the vanadia loading V2O5 ≤ 10 wt%, the oxidative desulfurization (ODS) went through the Pathway I; in the catalysts with moderate vanadia content (V2O5 = 20–30 wt%), ODS proceeded via the Pathways II or/and the Pathway I.
Collapse
|
8
|
Abstract
Recalcitrant sulfur compounds are common impurities in crude oil. During combustion they produce SOx derivatives that are able to affect the atmospheric ozone layer, increasing the formation of acid rains, and reducing the life of the engine due to corrosion. In the last twenty years, many efforts have been devoted to develop conventional hydrodesulfurization (HDS) procedures, as well as alternative methods, such as selective adsorption, bio-desulfurization, oxidative desulfurization (ODS) under extractive conditions (ECODS), and others. Among them, the oxidative procedures have been usually accomplished by the use of toxic stoichiometric oxidants, namely potassium permanganate, sodium bromate and carboxylic and sulfonic peracids. As an alternative, increasing interest is devoted to selective and economical procedures based upon catalytic methods. Heterogeneous catalysis is of relevance in industrial ODS processes, since it reduces the leaching of active species and favors the recovery and reuse of the catalyst for successive transformations. The heterogenization of different types of high-valent metal transition-based organometallic complexes, able to promote the activation of stoichiometric benign oxidants like peroxides, can be achieved using various solid supports. Many successful cases have been frequently associated with the use of mesoporous silicas that have the advantage of easy surface modification by reaction with organosilanes, facilitating the immobilization of homogeneous catalysts. In this manuscript the application of SBA-15 as efficient support for different active metal species, able to promote the catalytic ODS of either model or real fuels is reviewed, highlighting its beneficial properties such as high surface area, narrow pore size distribution and tunable pore diameter dimensions. Related to this topic, the most relevant advances recently published, will be discussed and critically described.
Collapse
|
9
|
Deng T, Yan L, Li X, Fu Y. Continuous Hydrogenation of Ethyl Levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 Catalyst at Low Loading: The Effect of Fe Doping. CHEMSUSCHEM 2019; 12:3837-3848. [PMID: 31218835 DOI: 10.1002/cssc.201901198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Bimetallic Cu-Fe catalysts with low loading were prepared for hydrogenation of ethyl levulinate (EL) to 1,4-pentanediol (1,4-PDO). Among them, 2.8Cu-3.5Fe/SBA-15 (Cu/Fe molar ratio of 1:1.5) performed best, capable of converting EL to the key intermediate γ-valerolactone (GVL) at 140 °C with 97 % yield. It can also be used to hydrogenate GVL to 1,4-PDO with 92.6 % selectivity or convert EL to 1,4-PDO in one pot. The high activity of the catalyst at such a low loading was attributed to the highly dispersed metal species and the Fe doping effect. Various characterization methods indicated that Fe acted as both structural and electronic modifier to promote the chemical properties of the Cu species. Besides, the incorporation of Fe provided abundant Lewis acid sites and accelerated the reaction process. CuFeO2 was detected by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and XRD. On the basis of a combination of characterization and reaction kinetics, synergistic catalysis by Cu0 and CuFeO2 is considered to be responsible for the excellent performance of the Cu-Fe catalysts.
Collapse
Affiliation(s)
- Tianyu Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinglong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|