1
|
Singh R, Wang L, Huang J. In-Situ Characterization Techniques for Mechanism Studies of CO 2 Hydrogenation. Chempluschem 2024; 89:e202300511. [PMID: 38853143 DOI: 10.1002/cplu.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.
Collapse
Affiliation(s)
- Rasmeet Singh
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
2
|
Zhang H, Song L, Nie Z, Tian J, Yang J, Liu P, Chen L, Fu M, Huang H, Ye D. Investigation of catalytic methane oxidation over Ag/Co 2MO x (M = Co, Ni, Cu) catalysts with varying interfacial electron transfer. J Colloid Interface Sci 2024; 668:412-425. [PMID: 38688180 DOI: 10.1016/j.jcis.2024.04.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Atom-doped Co3O4 catalysts loaded with Ag were examined as cost-effective catalysts for methane oxidation. The synthesized Ag/Co2NiOx catalysts exhibited distinctive surface characteristics in contrast with Ag/Co3O4 and Ag/Co2CuOx catalysts prepared using a similar method. Characterization results unveiled that Ag/Co2NiOx featured a higher presence of active surface oxygen species, lattice defects, a larger surface area, and enhanced reducibility. A methane oxidation catalytic performance followed the sequence: Ag/Co2NiOx > Ag/Co3O4 > Ag/Co2CuOx. The investigation delved into methane degradation pathways on the surfaces of three catalysts, examining their behavior under both aerobic and anaerobic atmospheres through in-situ DRIFTS analysis. Furthermore, introducing Ag showed a marked positive effect on Co-Ni mixed oxide, inducing electron transfer and a more active electron system, whereas it exhibited an inverse impact within the surface of Co-Cu mixed oxide. This work provides innovative perspectives on the development of forthcoming environmental catalysts.
Collapse
Affiliation(s)
- Hang Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Linghe Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jie Yang
- Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd., Foshan 528300, China; Midea Group Co.,Ltd., Foshan 528300, China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Limin Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
3
|
Liu W, Yao L, Sun X, Wang W, Feng G, Yao Q, Zhang L, Lu ZH. Ultrafine Ni-MoO x Nanoparticles Anchored on Nitrogen-Doped Carbon Nanosheets: A Highly Efficient Noble-Metal-Free Catalyst for Ammonia Borane Hydrolysis. CHEMSUSCHEM 2024; 17:e202400415. [PMID: 38482550 DOI: 10.1002/cssc.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The development of low-cost and high-efficiency catalysts for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) is still a challenging technology. Herein, ultrafine MoOx-doped Ni nanoparticles (~3.0 nm) were anchored on g-C3N4@glucose-derived nitrogen-doped carbon nanosheets via a phosphate-mediated method. The strong adsorption of phosphate-mediated nitrogen-doped carbon nanosheets (PNCS) for metal ions is a key factor for the preparation of ultrasmall Ni nanoparticles (NPs). Notably, the alkaline environment formed by the reduction of metal ions removes the phosphate from the PNCS surface to generate P-free (P)NCS so that the phosphate does not participate in the subsequent catalytic reaction. The synthesized Ni-MoOx/(P)NCS catalysts exhibited outstanding catalytic properties for the hydrolysis of AB, with a high turnover frequency (TOF) value of up to 85.7 min-1, comparable to the most efficient noble-metal-free catalysts and commercial Pt/C catalyst ever reported for catalytic hydrogen production from AB hydrolysis. The superior performance of Ni-MoOx/(P)NCS can be ascribed to its well-dispersed ultrafine metal NPs, abundant surface basic sites, and electron-rich nickel species induced by strong electronic interactions between Ni-MoOx and (P)NCS. The strategy of combining multiple modification measures adopted in this study provides new insights into the development of economical and high-efficiency noble-metal-free catalysts for energy catalysis applications.
Collapse
Affiliation(s)
- Weihong Liu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Longhua Yao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiongfei Sun
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Wei Wang
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian University, Putian, 351100, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qilu Yao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lei Zhang
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhang-Hui Lu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
4
|
Szamosvölgyi Á, Rajkumar T, Sápi A, Szenti I, Ábel M, Gómez-Pérez JF, Baán K, Fogarassy Z, Dodony E, Pécz B, Garg S, Kiss J, Kukovecz Á, Kónya Z. Interfacial Ni active sites strike solid solutional counterpart in CO2 hydrogenation. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022. [DOI: 10.1016/j.eti.2022.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Lorber K, Zavašnik J, Arčon I, Huš M, Teržan J, Likozar B, Djinović P. CO 2 Activation over Nanoshaped CeO 2 Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31862-31878. [PMID: 35801412 PMCID: PMC9305712 DOI: 10.1021/acsami.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dry reforming of methane (DRM) is a promising way to convert methane and carbon dioxide into H2 and CO (syngas). CeO2 nanorods, nanocubes, and nanospheres were decorated with 1-4 wt % Ni. The materials were structurally characterized using TEM and in situ XANES/EXAFS. The CO2 activation was analyzed by DFT and temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets, varying the strength of the CO2 interaction and redox properties, which influence the CO2 activation. Temperature-programmed CO2 DRIFTS analysis revealed that under hydrogen-lean conditions mono- and bidentate carbonates are hydrogenated to formate intermediates, which decompose to H2O and CO. In excess hydrogen, methane is the preferred reaction product. The CeO2 cubes favor the formation of a polydentate carbonate species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria's surface, resulting in less-abundant surface sites for CO2 dissociation.
Collapse
Affiliation(s)
- Kristijan Lorber
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Janez Zavašnik
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Association
for Technical Culture (ZOTKS), Zaloška 65, 1000 Ljubljana, Slovenia
| | - Janvit Teržan
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Petar Djinović
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
6
|
Cortés-Reyes M, Azaoum I, Molina-Ramírez S, Herrera C, Larrubia MÁ, Alemany LJ. NiGa Unsupported Catalyst for CO 2 Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Cortés-Reyes
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Ibrahim Azaoum
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Sergio Molina-Ramírez
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Concepción Herrera
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - M. Ángeles Larrubia
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Luis J. Alemany
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|