1
|
Altaf C, Colak TO, Karagoz E, Wang J, Liu Y, Chen Y, Liu M, Unal U, Sankir ND, Sankir M. Co-sensitization of Copper Indium Gallium Disulfide and Indium Sulfide on Zinc Oxide Nanostructures: Effect of Morphology in Electrochemical Carbon Dioxide Reduction. ACS OMEGA 2024; 9:19209-19218. [PMID: 38708266 PMCID: PMC11064200 DOI: 10.1021/acsomega.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Recent advances in nanoparticle materials can facilitate the electro-reduction of carbon dioxide (CO2) to form valuable products with high selectivity. Copper (Cu)-based electrodes are promising candidates to drive efficient and selective CO2 reduction. However, the application of Cu-based chalcopyrite semiconductors in the electrocatalytic reduction of CO2 is still limited. This study demonstrated that novel zinc oxide (ZnO)/copper indium gallium sulfide (CIGS)/indium sulfide (InS) heterojunction electrodes could be used in effective CO2 reduction for formic acid production. It has been determined that Faradaic efficiencies for formic acid production using ZnO nanowire (NW) and nanoflower (NF) structures vary due to structural and morphological differences. A ZnO NW/CIGS/InS heterojunction electrode resulted in the highest efficiency of 77.2% and 0.35 mA cm-2 of current density at a -0.24 V (vs. reversible hydrogen electrode) bias potential. Adding a ZTO intermediate layer by the spray pyrolysis method decreased the yield of formic acid and increased the yield of H2. Our work offers a new heterojunction electrode for efficient formic acid production via cost-effective and scalable CO2 reduction.
Collapse
Affiliation(s)
- Cigdem
Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Emine Karagoz
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Jiayi Wang
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Ya Liu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yubin Chen
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Maochang Liu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Ugur Unal
- Department
of Chemistry, Surface Science and Technology Centre (KUYTAM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| |
Collapse
|
2
|
Kedruk YY, Contestabile A, Zeng J, Fontana M, Laurenti M, Gritsenko LV, Cicero G, Pirri CF, Abdullin KA. Morphology Effects on Electro- and Photo-Catalytic Properties of Zinc Oxide Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2527. [PMID: 37764556 PMCID: PMC10534315 DOI: 10.3390/nano13182527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Environmental problems are among the most pressing issues in the modern world, including the shortage of clean drinking water partially caused by contamination from various industries and the excessive emission of CO2 primarily from the massive use of fossil fuels. Consequently, it is crucial to develop inexpensive, effective, and environmentally friendly methods for wastewater treatment and CO2 reduction, turning them into useful feedstocks. This study explores a unique method that addresses both challenges by utilizing ZnO, which is recognized as one of the most active semiconductors for photocatalysis, as well as a cost-effective electrocatalyst for the CO2 reduction reaction (CO2RR). Specifically, we investigate the influence of the morphology of various ZnO nanostructures synthesized via different low-cost routes on their photocatalytic properties for degrading the rhodamine-B dye (RhB) and on their electrocatalytic performance for the CO2RR. Our results show that the ZnO lamella morphology achieves the best performance compared to the nanorod and nanoparticle structures. This outcome is likely attributed to the lamella's higher aspect ratio, which plays a critical role in determining the structural, optical, and electrical properties of ZnO.
Collapse
Affiliation(s)
- Yevgeniya Y. Kedruk
- Department of General Physics, Satbayev University, Almaty 050013, Kazakhstan;
| | - Alessandra Contestabile
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Juqin Zeng
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Lesya V. Gritsenko
- Department of General Physics, Satbayev University, Almaty 050013, Kazakhstan;
- National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Giancarlo Cicero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Candido F. Pirri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Khabibulla A. Abdullin
- National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
3
|
Yu K, Sun K, Cheong WCM, Tan X, He C, Zhang J, Li J, Chen C. Oxalate-Assisted Synthesis of Hollow Carbon Nanocage With Fe Single Atoms for Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302611. [PMID: 37264721 DOI: 10.1002/smll.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Metal single-atom catalysts are promising in electrochemical CO2 reduction reaction (CO2 RR). The pores and cavities of the supports can promote the exposure of active sites and mass transfer of reactants, hence improve their performance. Here, iron oxalate is added to ZIF-8 and subsequently form hollow carbon nanocages during calcination. The formation mechanism of the hollow structure is studied in depth by controlling variables during synthesis. Kirkendall effect is the main reason for the formation of hollow porous carbon nanocages. The hollow porous carbon nanocages with Fe single atoms exhibit better CO2 RR activity and CO selectivity. The diffusion of CO2 facilitated by the mesoporous structure of carbon nanocage results in their superior activity and selectivity. This work has raised an effective strategy for the synthesis of hollow carbon nanomaterials, and provides a feasible pathway for the rational design of electrocatalysts for small molecule activation.
Collapse
Affiliation(s)
- Ke Yu
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kaian Sun
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Weng-Chon Max Cheong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR, 999078, P. R. China
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai, Guangdong, 519099, P. R. China
| | - Xin Tan
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chang He
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaqi Zhang
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiazhan Li
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Chen
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Warkentin H, O'Brien CP, Holowka S, Maxwell B, Awara M, Bouman M, Zeraati AS, Nicholas R, Ip AH, Elsahwi ES, Gabardo CM, Sinton D. Early Warning for the Electrolyzer: Monitoring CO 2 Reduction via In-Line Electrochemical Impedance Spectroscopy. CHEMSUSCHEM 2023:e202300657. [PMID: 37535892 DOI: 10.1002/cssc.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) to fuels and feedstocks presents an opportunity to decarbonize the chemical industry, and current electrolyzer performance levels approach commercial viability. However, stability remains below that required, in part because of the challenge of probing these electrolyzer systems in real time and the challenge of determining the root cause of failure. Failure can result from initial conditions (e. g., the over- or under-compression of the electrolyzer), gradual degradation of components (e. g., cathode or anode catalysts), the accumulation of products or by-products, or immediate changes such as the development of a hole in the membrane or a short circuit. Identifying and mitigating these assembly-related, gradual, and immediate failure modes would increase both electrolyzer lifetime and economic viability of CO2 RR. We demonstrate the continuous monitoring of CO2 RR electrolyzers during operation via non-disruptive, real-time electrochemical impedance spectroscopy (EIS) analysis. Using this technique, we characterise common failure modes - compression, salt formation, and membrane short circuits - and identify electrochemical parameter signatures for each. We further propose a framework to identify, predict, and prevent failures in CO2 RR electrolyzers. This framework allowed for the prediction of anode degradation ~11 hours before other indicators such as selectivity or voltage.
Collapse
Affiliation(s)
- Hugh Warkentin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Sarah Holowka
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Benjamin Maxwell
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Mariam Awara
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Mark Bouman
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
| | - Rachael Nicholas
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Alexander H Ip
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Essam S Elsahwi
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
| |
Collapse
|
5
|
Preikschas P, Martín AJ, Yeo BS, Pérez-Ramírez J. NMR-based quantification of liquid products in CO 2 electroreduction on phosphate-derived nickel catalysts. Commun Chem 2023; 6:147. [PMID: 37430001 PMCID: PMC10333308 DOI: 10.1038/s42004-023-00948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Recently discovered phosphate-derived Ni catalysts have opened a new pathway towards multicarbon products via CO2 electroreduction. However, understanding the influence of basic parameters such as electrode potential, pH, and buffer capacity is needed for optimized C3+ product formation. To this end, rigorous catalyst evaluation and sensitive analytical tools are required to identify potential new products and minimize increasing quantification errors linked to long-chain carbon compounds. Herein, we contribute to enhance testing accuracy by presenting sensitive 1H NMR spectroscopy protocols for liquid product assessment featuring optimized water suppression and reduced experiment time. When combined with an automated NMR data processing routine, samples containing up to 12 products can be quantified within 15 min with low quantification limits equivalent to Faradaic efficiencies of 0.1%. These developments disclosed performance trends in carbon product formation and the detection of four hitherto unreported compounds: acetate, ethylene glycol, hydroxyacetone, and i-propanol.
Collapse
Affiliation(s)
- Phil Preikschas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Antonio J Martín
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Boon Siang Yeo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Nayak S, Goveas LC, Selvaraj R, Vinayagam R, Manickam S. Advances in the utilisation of carbon-neutral technologies for a sustainable tomorrow: A critical review and the path forward. BIORESOURCE TECHNOLOGY 2022; 364:128073. [PMID: 36216285 DOI: 10.1016/j.biortech.2022.128073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Global industrialisation and overexploitation of fossil fuels significantly impact greenhouse gas emissions, resulting in global warming and other environmental problems. Hence, investigations on capturing, storing, and utilising atmospheric CO2 create novel technologies. Few microorganisms, microalgae, and macroalgae utilise atmospheric CO2 for their growth and reduce atmospheric CO2 levels. Activated carbon and biochar from biomasses also capture CO2. Nanomaterials such as metallic oxides, metal-organic frameworks, and MXenes illustrate outstanding adsorption characteristics, and convert CO2 to carbon-neutral fuels, creating a balance between CO2 production and elimination, thus zeroing the carbon footprint. The need for a paradigm shift from fossil fuels and promising technologies on renewable energies, carbon capture mechanisms, and carbon sequestration techniques that help reduce CO2 emissions for a better tomorrow are reviewed to achieve the world's sustainable development goals. The challenges and possible solutions with future perspectives are also discussed.
Collapse
Affiliation(s)
- Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam.
| |
Collapse
|
7
|
Zeng J, Castellino M, Fontana M, Sacco A, Monti NBD, Chiodoni A, Pirri CF. Electrochemical Reduction of CO2 With Good Efficiency on a Nanostructured Cu-Al Catalyst. Front Chem 2022; 10:931767. [PMID: 35873051 PMCID: PMC9300885 DOI: 10.3389/fchem.2022.931767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO) and formic acid (HCOOH) are suggested to be the most convenient products from electrochemical reduction of CO2 according to techno-economic analysis. To date, tremendous advances have been achieved in the development of catalysts and processes, which make this research topic even more interesting to both academic and industrial sectors. In this work, we report nanostructured Cu-Al materials that are able to convert CO2 to CO and HCOOH with good efficiency. The catalysts are synthesized via a green microwave-assisted solvothermal route, and are composed of Cu2O crystals modified by Al. In KHCO3 electrolyte, these catalysts can selectively convert CO2 to HCOOH and syngas with H2/CO ratios between 1 and 2 approaching one unit faradaic efficiency in a wide potential range. Good current densities of 67 and 130 mA cm−2 are obtained at −1.0 V and −1.3 V vs. reversible hydrogen electrode (RHE), respectively. When switching the electrolyte to KOH, a significant selectivity up to 20% is observed for C2H4 formation, and the current densities achieve 146 and 222 mA cm−2 at −1.0 V and −1.3 V vs. RHE, respectively. Hence, the choice of electrolyte is critically important as that of catalyst in order to obtain targeted products at industrially relevant current densities.
Collapse
Affiliation(s)
- Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- *Correspondence: Juqin Zeng,
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
| | - Nicolò B. D. Monti
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| |
Collapse
|