1
|
Zhuang H, Karvinen S, Törmäkangas T, Zhang X, Ojanen X, Velagapudi V, Alen M, Britton SL, Koch LG, Kainulainen H, Cheng S, Wiklund P. Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue. GeroScience 2021; 43:2679-2691. [PMID: 34089174 PMCID: PMC8602622 DOI: 10.1007/s11357-021-00387-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.
Collapse
Affiliation(s)
- Haihui Zhuang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sira Karvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Timo Törmäkangas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaobo Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ojanen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sulin Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Wiklund
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Huawei Helsinki Research Center, Huawei Technologies Oy (Finland) Co. Ltd, Helsinki, Finland
| |
Collapse
|
2
|
Biro PA, Thomas F, Ujvari B, Beckmann C. Can Energetic Capacity Help Explain Why Physical Activity Reduces Cancer Risk? Trends Cancer 2020; 6:829-837. [PMID: 32601046 DOI: 10.1016/j.trecan.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
Increased physical activity reduces cancer risk in humans, but why this whole-organism attribute reduces cancer remains unclear. Active individuals tend to have high capacity to generate energy on a sustained basis, which in turn can permit greater immune responses crucial for fighting emerging neoplasia. Thus, we suggest energetic capacity as a potential mechanism to explain the activity-cancer link, given that humans are intrinsically (not externally) energy limited. Human and rodent studies show that individuals with high energetic capacity mount greater immune responses and have lower cancer incidence; these trends persist after controlling for actual physical activity, supporting a direct role of energetic capacity. If true, exercise efforts might best target those that increase one's energetic capacity, which may be both individual and exercise specific.
Collapse
Affiliation(s)
- Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia.
| | - Frédéric Thomas
- CREEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC 3216, Australia; School of Science, Western Sydney University, Parramatta, NSW 2116, Australia
| |
Collapse
|
3
|
Zhang S, Zhao L, Zhang X, Liang W. Predicting the vulnerability of birds to trophic threat posed by phenological mismatch based on nutritional and physiological status of nestlings. CONSERVATION PHYSIOLOGY 2019; 7:coz096. [PMID: 31827800 PMCID: PMC6894998 DOI: 10.1093/conphys/coz096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Climate change induced phenological mismatches between nestlings and their optimal food resources have been found to negatively influence the survival of many bird species. Discriminating which species is vulnerable to such threat is difficult only based on the diet observation, and therefore it is necessary to establish a more reliable method to predict the vulnerability of bird species. In the case of Asian short-toed lark (Calandrella cheleensis), we predicted such vulnerability by evaluating whether nestlings can absorb equal level of nutrients from different diets and maintain equal physiological status. We compared the diet, plasma nutrients, plasma insulin-like growth factor-1 (IGF-1), body mass and survival rate of nestlings hatched under different optimal food (grasshopper nymph) abundance conditions in two breeding seasons. Plasma glucides, amino acids, tricarboxylic acid (TCA) cycle metabolites, some fatty acids, IGF-1, body mass and survival rate of the nestlings hatched under medium or low nymph abundance conditions were significantly lower than those of nestlings hatched under high nymph abundance condition. The relative abundance of plasma amino acids, glucides, TCA cycle metabolites and fatty acids were significantly, and positively, correlated with IGF-1 levels, which, in turn, was positively correlated with nestling body mass. These results indicate that the diet with low optimal food proportion was nutritionally inferior to the diet with high optimal food proportion and inhibited the growth of nestlings. Species like Asian short-toed lark is vulnerable to the trophic threat induced by phenological mismatch because the alternative food is insufficient to satisfy the nutritional requirement of nestlings.
Collapse
Affiliation(s)
- Shuping Zhang
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Lidan Zhao
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Xinjie Zhang
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Longkun south road 99, Haikou 571158, China
| |
Collapse
|
4
|
Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites 2017; 7:metabo7010010. [PMID: 28241477 PMCID: PMC5372213 DOI: 10.3390/metabo7010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is an inevitable condition leading to health deterioration and death. Regular physical exercise can moderate the metabolic phenotype changes of aging. However, only a small number of metabolomics-based studies provide data on the effect of exercise along with aging. Here, urine and whole blood samples from Wistar rats were analyzed in a longitudinal study to explore metabolic alterations due to exercise and aging. The study comprised three different programs of exercises, including a life-long protocol which started at the age of 5 months and ended at the age of 21 months. An acute exercise session was also evaluated. Urine and whole blood samples were collected at different time points and were analyzed by LC-MS/MS (Liquid Chromatography–tandem Mass Spectrometry). Based on their metabolic profiles, samples from trained and sedentary rats were differentiated. The impact on the metabolome was found to depend on the length of exercise period with acute exercise also showing significant changes. Metabolic alterations due to aging were equally pronounced in sedentary and trained rats in both urine and blood analyzed samples.
Collapse
|
5
|
Falegan OS, Vogel HJ, Hittel DS, Koch LG, Britton SL, Hepple RT, Shearer J. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging. J Proteome Res 2016; 16:798-805. [PMID: 27936752 DOI: 10.1021/acs.jproteome.6b00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy (1H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.
Collapse
Affiliation(s)
- Oluyemi S Falegan
- Department of Biological Sciences, Faculty of Science, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, Faculty of Science, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Dustin S Hittel
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Faculty of Kinesiology, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan , Ann Arbor, Michigan 48109, United States.,K. G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim NO-7491, Norway
| | - Russ T Hepple
- Department of Physical Therapy, University of Florida , Gainesville, Florida 32610, United States
| | - Jane Shearer
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Faculty of Kinesiology, University of Calgary , Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
6
|
Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2015; 6:1657-77. [PMID: 25077626 DOI: 10.4155/bio.14.119] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive, site-specific metabolite information could be better obtained from tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled with separation techniques are increasingly in demand in clinical research for tissue metabolomics application. Applying these techniques to nontargeted tissue metabolomics provides identification of distinct metabolites. These findings could help us to understand alterations at the molecular level, which can also be applied in clinical practice as screening markers for early disease diagnosis. However, tissues as solid and heterogeneous samples pose an additional analytical challenge that should be considered in obtaining broad, reproducible and representative analytical profiles. This manuscript summarizes the state of the art in tissue (human and animal) treatment (quenching, homogenization and extraction) for nontargeted metabolomics with mass spectrometry.
Collapse
|
7
|
Caetano-Anollés K, Mishra S, Rodriguez-Zas SL. Synergistic and antagonistic interplay between myostatin gene expression and physical activity levels on gene expression patterns in triceps Brachii muscles of C57/BL6 mice. PLoS One 2015; 10:e0116828. [PMID: 25710176 PMCID: PMC4339580 DOI: 10.1371/journal.pone.0116828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022] Open
Abstract
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sanjibita Mishra
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Khorana Scholars Program, Indo-US Science and Technology Forum, New Delhi, India
- National Institute of Technology, Rourkel, India
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 2012; 183:1-26. [DOI: 10.1007/s00360-012-0676-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 10/27/2022]
|
9
|
Konarzewski M, Książek A. Determinants of intra-specific variation in basal metabolic rate. J Comp Physiol B 2012; 183:27-41. [PMID: 22847501 PMCID: PMC3536993 DOI: 10.1007/s00360-012-0698-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 06/10/2012] [Accepted: 07/13/2012] [Indexed: 12/02/2022]
Abstract
Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and ‘omics’ studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.
Collapse
|